1.1.2集合间的基本关系练习题
- 格式:doc
- 大小:69.50 KB
- 文档页数:5
2022-2022年高一必修一第1章1.1.2 集合的基本关系数学题带答案和解析(人教A版)填空题已知集合M={x|2m<x<m+1},且M=∅,则实数m的取值范围是____.【答案】m≥1【解析】∵M=∅,∴2m≥m+1,∴m≥1.故答案为m≥1解答题判断下列集合间的关系:(1)A={x|x-3>2},B={x|2x-5≥0};(2)A={x∈Z|-1≤xB(2) B A.【解析】试题分析:(1)利用一元一次不等式的解法分别求出集合A和集合B,由此能得到集合A是集合B的真子集.(2)A={x∈Z|-1≤x},∴利用数轴判断A、B的关系.如图所示,A B.(2)∵A={x∈Z|-1≤xA.选择题如果集合A={x|x≤},a=,那么()A. a∉AB. {a}AC. {a}∈AD. a⊆A【答案】B【解析】a=,∴a∈A,A错误.由元素与集合之间的关系及集合与集合之间的关系可知,C、D错,B正确.故选B点睛:本题考查了元素与集合,集合与集合的关系,元素与集合之间用属于∈,不属于∉的符号;集合与集合之间用包含于⊆,真包含,不包含相等=,的符号表示.解答题已知集合M={x|x=m+,m∈Z},N={x|x=-,n∈Z},P ={x|x=+,p∈Z},试确定M,N,P之间的关系.【答案】M P=N.【解析】试题分析:M={x|x=m+,m∈Z}={x|x=,m ∈Z}={x|x=,m∈Z}M表示3的偶数倍加1除以6的数;N ={x|x=,n∈Z}={x|x=,n∈Z}={x|x=,n-1∈Z},N表示3的整数倍加1除以6的数;P={x|x=+,p∈Z}={x|x=,p∈Z},P表示3的整数倍加1除以6的数即可得出结论.试题解析:∵M={x|x=m+,m∈Z}={x|x=,m∈Z}={x|x=,m∈Z},N={x|x=,n∈Z}={x|x=,n∈Z}={x|x=,n-1∈Z},P={x|x=+,p∈Z}={x|x=,p∈Z},比较3×2m+1,3(n-1)+1与3p+1可知,3(n-1)+1与3p+1表示的数完全相同,∴N=P,3×2m+1只相当于3p+1中当p为偶数时的情形,∴M P=N.综上可知M P=N.解答题设集合A={-1,1},集合B={x|x2-2ax+b=0},若B≠∅且B⊆A,求实数a、b的值.【答案】a=-1,b=1, a=b=1, a=0,b=-1【解析】试题分析:集合A={-1,1},集合B={x|x2-2ax+b=0},若B≠∅且B⊆A,∵B中元素是关于x的方程x2-2ax+b=0的根,且B⊆{-1,1},∴关于x的方程x2-2ax+b=0的根只能是-1或1,但要注意方程有两个相等根的条件是Δ=0.∵B={x|x2-2ax+b=0}⊆A={-1,1},且B≠∅,∴B={-1}或B={1}或B={-1,1},分情况进行讨论即可.试题解析:∵B中元素是关于x的方程x2-2ax+b=0的根,且B⊆{-1,1},∴关于x的方程x2-2ax+b=0的根只能是-1或1,但要注意方程有两个相等根的条件是Δ=0.∵B={x|x2-2ax+b=0}⊆A={-1,1},且B≠∅,∴B={-1}或B={1}或B={-1,1}.当B={-1}时,Δ=4a2-4b=0且1+2a+b=0,解得a=-1,b=1.当B={1}时,Δ=4a2-4b=0且1-2a+b=0,解得a=b=1.当B={-1,1}时,有(-1)+1=2a,(-1)×1=b,解得a=0,b=-1.综上:a=-1,b=1;或a=b=1;或a=0,b=-1选择题集合P={3,4,5},Q={6,7},定义P*Q={(a,b)|a∈P,b∈Q},则P*Q的子集个数为()A. 7B. 12C. 32D. 64【答案】D【解析】集合P*Q的元素为(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),共6个,故P*Q的子集个数为26=64.故选D选择题若集合A⊆{1,2,3},且A中至少含有一个奇数,则这样的集合A 有()A. 3个B. 4个C. 5个D. 6个【答案】D【解析】集合{1,2,3}的子集共有8个,其中至少含有一个奇数的有{1},{3},{1,2},{1,3},{2,3},{1,2,3},共6个.故选D选择题设A={x|-1a},若A B,则a的取值范围是()A. {a|a≥3}B. {a|a≤-1}C. {a|a>3}D. {a|aB,画出数轴如图可求得a≤-1,注意端点能取否得-1是正确求解的关键.故选B填空题集合⊆{(x,y)|y=3x+b},则b=____.【答案】2【解析】得,代入y=3x+b得b=2.故答案为2选择题已知集合M={(x,y)|x+y0}和P={(x,y)|xM B. M P C. M=P D. M P【答案】C【解析】∴M=P.故选C填空题已知集合A={1,2,m3},B={1,m},B⊆A,则m=____.【答案】0或2或-1【解析】由B⊆A得m∈A,所以m=m3或m=2,所以m=2或m=-1或m=1或m=0,又由集合中元素的互异性知m≠1.所以m =0或2或-1.故答案为0或2或-1填空题已知集合{2x,x+y}={7,4},则整数x=___,y=____.【答案】25【解析】由集合相等的定义可知或解得或,又x,y∈Z.故x=2,y=5.故答案为2,5选择题已知集合A={x|x是三角形},B={x|x是等腰三角形},C={x|x 是等腰直角三角形},D={x|x是等边三角形},则()A. A⊆BB. C⊆BC. D⊆CD. A⊆D【答案】B【解析】∵等腰直角三角形必是等腰三角形,∴C⊆B.故选B选择题下列命题中,正确的有()①空集是任何集合的真子集;②若A B,B C,则A C;③任何一个集合必有两个或两个以上的真子集;④如果不属于B的元素也不属于A,则A⊆B.A. ①②B. ②③C. ②④D. ③④【答案】C【解析】空集只是空集的子集而非真子集,故①错;②真子集具有传递性;故②正确;③若一个集合是空集,则没有真子集,故③错;④由韦恩(Venn)图易知④正确,故选C.选择题已知集合A={1,2},B={x|ax-2=0},若B⊆A,则a的值不可能是()A. 0B. 1C. 2D. 3【答案】D【解析】试题分析:由B={x|ax﹣2=0},且B⊆A,故讨论B的可能性,从而求a.解:∵B={x|ax﹣2=0},且B⊆A,∴若B=∅,即a=0时,成立;若B={1},则a=2,成立;若B={2},则a=1,成立;故a的值有0,1,2;故不可能是3;故选D.选择题若{1,2}={x|x2+bx+c=0},则()A. b=-3,c=2B. b=3,c=-2C. b=-2,c=3D. b=2,c=-3【答案】A【解析】由条件知,1,2是方程x2+bx+c=0的两根,由韦达定理得b=-3,c=2.故选A选择题集合A={(x,y)|y=x}和B=,则下列结论中正确的是()A. 1∈AB. B⊆AC. (1,1)⊆BD. ∅∈A【答案】B【解析】B=={(1,1)},而A={(x,y)|y=x},B 中的元素在A中,所以B⊆A故选B.选择题下列四个集合中,是空集的是()A. {0}B. {x|x>8,且x<5}C. {x∈N|x2-1=0}D. {x|x>4}【答案】B【解析】选项A、C、D都含有元素.而选项B无元素,故选B.填空题已知集合A={1,2},B={x|ax-2=0},若B⊆A,则实数a的所有可能值构成的集合为____.【答案】{0,1,2}【解析】∵B⊆A,∴B=∅,{1}或{2}.当B=∅时,a=0;当B={1}时,a=2,当B={2}时,a=1.∴a∈{0,1,2}.故答案为{0,1,2}11。
1.2 集合间的基本关系(基础知识+基本题型) 知识点一 子集1.子集定义 一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集,记作A B ⊆(或B A ⊇),读作“A 含于B ”(或“B 包含A ”) 图示或 结论 (1)任何一个集合是它本身的子集,即A A ⊆;(2)对于集合A ,B ,C ,若A B ⊆,且B C ⊆,则A C ⊆.2.V enn 图用平面上封闭曲线的内部代表集合,这种图称为Venn 图.表示集合的Venn 图的边界是封闭曲线,它可以是圆、矩形、椭圆,也可以是其他封闭曲线.提示:(1)注意符号“∈”与“⊆”的区别. “⊆”只用于集合与集合之间,如{0}N ⊆,而不能写成0N ⊆;“∈”只能用于元素与元素之间,如0N ∈,而不能写成{0}N ∈.(2)“A 是B 的子集”:集合A 中的任何一个元素都是集合B 中的元素,即由任意x A ∈能推出x B ∈.(3)当A 不是B 的子集时,我们记作“A B ”(或“B A ”),读作“A 不含于B ”(或“B 不包含A ”),此时A 中至少存在一个元素不是B 中的元素,用图形语言表示如图1.1-2所示.例如,集合{,,}A a b c =不是集合{,,,,}B b c d e f =的子集,因为集合A 中的元素a 不是集合B 中的元素.知识点二 集合相等如果集合A 是集合B 的子集()A B ⊆,且集合B 是集合A 的子集()B A ⊆,此时,集合A 与集合B 中的元素是一样的,因此,集合A 与集合B 相等,记作A B =.拓展:(1)若A B ⊆,且B A ⊆,则A B =;反之,若A B =,则A B ⊆,且B A ⊆,这就给出了证明两个集合相等的方法,即欲证A B =,只需要证A B ⊆与B A ⊆均成立即可.(2)若两个集合相等,则这两个集合中所含的元素完全相同,与元素的排列顺序无关.(3) 要判断两个集合是否相等,对于元素较少的有限集,可用列举法将元素列举出来,看两个集合中的元素是否完全相同;对于元素较多的有限集或无限集,应从“互为子集”入手进行判断.()A B B A A A AB B B 1.12-图知识点三 真子集定义 如果集合A B ⊆,但存在元素x B ∈,且x A ∈/,我们称集合A 是集合B 的真子集,记作A B (或B A )图示结论(1)若A B ⊆,且A B ≠,则AB ; (2)若AB ,且BC ,则A C . 提示(1)在证明AB ,时,应先证明A B ⊆,再证明B 中至少存在一个元素a ,使得a A ∉即可. (2) A B 对任意x A ∈都有x B ∈,但存在0x B ∈,且0x A ∉.(3)注意符号“⊆”与“”的区别. A B ⊆⇒A B =或A B ,例如,若集合{}1,2A =,{}1,2,3B =,则A 是B 的子集,也是真子集,用A B ⊆与A B 均可,但用AB 更准确. 知识点四 空集我们把不含任何元素的集合叫做空集,记为φ,并规定:空集是任何集合的子集.在这个规定的基础上,结合子集和真子集的有关概念。
集合间的基本关系1、下列八个关系式①{0}=φ ②φ=0 ③φ {φ} ④φ∈{φ} ⑤{0}⊇φ ⑥0∉φ ⑦φ≠{0} ⑧φ≠{φ}其中正确的个数( )A 、4B 、5C 、6D 、72、集合{1,2,3}的真子集共有( )A 、5个B 、6个C 、7个D 、8个3、集合A={x Z k k x ∈=,2} B={Z k k x x ∈+=,12} C={Z k k x x ∈+=,14} 又,,B b A a ∈∈则有( )A 、(a+b )∈ AB 、 (a+b) ∈BC 、(a+b) ∈ CD 、 (a+b) ∈ A 、B 、C 任一个4. 集合{1,2,3}的真子集共有( )A 、5个B 、6个C 、7个D 、8个5、集合A={x Z k k x ∈=,2} B={Z k k x x ∈+=,12} C={Z k k x x ∈+=,14} 又,,B b A a ∈∈则有( )A 、(a+b )∈ AB 、 (a+b) ∈BC 、(a+b) ∈ CD 、 (a+b) ∈ A 、B 、C 任一个6、下列各式中,正确的是( )A 、2}2{≤⊆x xB 、{12<>x x x 且}C 、{Z k k x x ∈±=,14}},12{Z k k x x ∈+=≠D 、{Z k k x x ∈+=,13}={Z k k x x ∈-=,23}7、设一元二次方程ax 2+bx+c=0(a<0)的根的判别式042=-=∆ac b ,则不等式ax 2+bx+c ≥0的解集为( )A 、RB 、φC 、{a b x x 2-≠} D 、{a b 2-}8.下列语句:(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};(3)方程(x-1)2(x-2)2=0的所有解的集合可表示为{1,1,2};(4)集合{54<<x x }是有限集,正确的是( )A 、只有(1)和(4)B 、只有(2)和(3)C 、只有(2)D 、以上语句都不对9、在直角坐标系中,坐标轴上的点的集合可表示为10、设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k 的取值范围是。
学业分层测评(三)(建议用时:45分钟)[学业达标]一、选择题1.已知集合A={x|x2-1=0},则有()A.1∉A B.0⊆AC.∅⊆A D.{0}⊆A【解析】因为A={1,-1},所以选项A,B,D都错误,因为∅是任何非空集合的真子集,所以C正确.【答案】C2.已知集合N={1,3,5},则集合N的真子集个数为()A.5 B.6C.7 D.8【解析】∵集合N={1,3,5},∴集合N的真子集个数是23-1=7个,故选C.【答案】C3.集合A={2,-1},B={m2-m,-1},且A=B,则实数m=() A.2 B.-1C.2或-1 D.4【解析】∵A=B,∴m2-m=2,即m2-m-2=0,∴m=2或-1.【答案】C4.已知集合M={x|-5<x<3,x∈Z},则下列集合是集合M的子集的为()A.P={-3,0,1}B.Q={-1,0,1,2}C.R={y|-π<y<-1,y∈Z}D.S={x||x|≤3,x∈N}【解析】集合M={-2,-1,0,1},集合R={-3,-2},集合S={0,1},不难发现集合P中的元素-3∉M,集合Q中的元素2∉M,集合R中的元素-3∉M ,而集合S ={0,1}中的任意一个元素都在集合M 中,所以S ⊆M .故选D.【答案】 D5.集合M =,,则( )A .M =NB .M ⊆NC .N ⊆MD .M ∩N ∅【解析】 ∵M 中:x =k 2+13=⎩⎨⎧ n +13,k =2n ,n ∈Z , n +56,k =2n +1,n ∈Z . N 中:x =k +13=n +13,k =n ∈Z ,∴N ⊆M .【答案】 C二、填空题6.设a ,b ∈R ,集合⎩⎨⎧⎭⎬⎫0,b ,b a ={1,a ,a +b },则a +2b =________. 【解析】 ∵⎩⎨⎧⎭⎬⎫0,b ,b a ={1,a ,a +b },而a ≠0,∴a +b =0,b a=-1,从而b =1,a =-1,可得a +2b =1.【答案】 17.已知集合A ={x|x 2-3x +2=0},B ={1,2},C ={x|x<8,x ∈N },用适当的符号填空:(1)A ________B ;(2)A ________C ;(3){2}________C ;(4)2________C .【解析】 集合A 为方程x 2-3x +2=0的解集,即A ={1,2},而C ={x |x <8,x ∈N }={0,1,2,3,4,5,6,7}.故(1)A =B ;(2)A C ;(3){2} C ;(4)2∈C .【答案】 (1)= (2) (3) (4)∈8.设集合A ={x |x 2+x -6=0},B ={x |mx +1=0},则满足B ⊆A 的实数m 的取值集合为________.【解析】 ∵A ={x |x 2+x -6=0}={-3,2},又∵B ⊆A ,当m =0,mx +1=0无解,故B =∅,满足条件;若B ≠∅,则B ={-3},或B ={2},即m =13,或m =-12.故满足条件的实数m ∈⎩⎨⎧⎭⎬⎫0,13,-12. 【答案】 ⎩⎨⎧⎭⎬⎫0,13,-12 三、解答题9.已知A ={x|x <3},B ={x|x <a}.(1)若B ⊆A ,求a 的取值范围;(2)若A ⊆B ,求a 的取值范围.【解】 (1)因为B ⊆A ,由图(1)得a ≤3.(1)(2)因为A ⊆B ,由图(2)得a ≥3.(2)10.已知集合A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0,a ∈R },若B ⊆A ,求实数a 的取值范围.【解】 A ={x |x 2+4x =0}={0,-4},∵B ⊆A ,∴B =∅或B ={0}或B ={-4}或B ={0,-4}.(1)当B =∅时,方程x 2+2(a +1)x +a 2-1=0无实根,则Δ<0,即4(a +1)2-4(a 2-1)<0.∴a <-1.(2)当B ={0}时,有{ Δ=0, a 2-1=0,∴a =-1.(3)当B ={-4}时,有{ Δ=0, a 2-8a +7=0,无解.(4)当B ={0,-4}时,由韦达定理得a =1.综上所述,a =1或a ≤-1.[能力提升]1.已知集合A 满足{1,2}⊆A ⊆{1,2,3,4},则集合A 的个数为( )A .8B .2C .3D .4【解析】 由题意,集合A 可以为:{1,2},{1,2,3},{1,2,4},{1,2,3,4}.故选D.【答案】 D2.已知集合M ={x ∈Z |1≤x ≤m },若集合M 有4个子集,则实数m =( )A .1B .2C .3D .4【解析】 根据题意,集合M 有4个子集,则M 中有2个元素,又由M ={x ∈Z |1≤x ≤m },其元素为大于等于1而小于等于m 的全部整数,则m =2.【答案】 B3.已知∅ {x |x 2-x +a =0},则实数a 的取值范围是________.【解析】 ∵∅ {x |x 2-x +a =0},∴Δ=(-1)2-4a ≥0,∴a ≤14.【答案】 ⎩⎨⎧ a ⎪⎪⎪⎭⎬⎫a ≤144.已知集合A ={x |-3≤x ≤5},B ={x |m -2<x <2m -3},且B ⊆A ,求实数m 的取值范围.【解】 ∵集合A ={x |-3≤x ≤5},B ={x |m -2<x <2m -3},且B ⊆A , ∴当B ≠∅时,应有{ m -2≥-3, 2m -3≤5, m -2<2m -3,解得1<m ≤4.当B =∅时,应有m -2≥2m -3,解得m ≤1.综上可得,实数m的取值范围为{m|m≤4}.。
1.1.2集合间的基本关系
一、选择题
1.对于集合A ,B ,“A ⊆B ”不成立的含义是( )
A .
B 是A 的子集
B .A 中的元素都不是B 的元素
C .A 中至少有一个元素不属于B
D .B 中至少有一个元素不属于A
[答案] C
[解析] “A ⊆B ”成立的含义是集合A 中的任何一个元素都是B 的元素.不成立的含义是A 中至少有一个元素不属于B ,故选C.
2.集合M ={(x ,y )|x +y <0,xy >0},P ={(x ,y )|x <0,y <0}那么( )
A .P M
B .M P
C .M =P
D .M P
[答案] C
[解析] 由xy >0知x 与y 同号,又x +y <0
∴x 与y 同为负数 ∴⎩⎨⎧ x +y <0xy >0等价于⎩⎨⎧
x <0y <0∴M =P . 3.设集合A ={x |x 2=1},B ={x |x 是不大于3的自然数},A ⊆C ,B ⊆C ,则集合C 中元素最少有( )
A .2个
B .4个
C .5个
D .6个 [答案] C
[解析] A ={-1,1},B ={0,1,2,3},
∵A ⊆C ,B ⊆C ,
∴集合C 中必含有A 与B 的所有元素-1,0,1,2,3,故C 中至少有5个元素.
4.若集合A ={1,3,x },B ={x 2,1}且B ⊆A ,则满足条件的实数x 的个数是( )
A .1
B .2
C .3
D .4
[答案] C
[解析] ∵B ⊆A ,∴x 2∈A ,又x 2≠1
∴x 2=3或x 2=x ,∴x =±3或x =0.故选C. 5.已知集合M ={x |y 2=2x ,y ∈R }和集合P ={(x ,y )|y 2=2x ,y ∈R },则两个集合间的关系是( )
A .M P
B .P M
C .M =P
D .M 、P 互不包含
[答案] D
[解析] 由于两集合代表元素不同,因此M 与P 互不包含,故选D.
6.集合B ={a ,b ,c },C ={a ,b ,d };集合A 满足A ⊆B ,A ⊆C .则满足条件的集合A 的个数是( )
A .8
B .2
C .4
D .1 [答案] C
[解析] ∵A ⊆B ,A ⊆C ,∴集合A 中的元素只能由a 或b 构成.∴这样的集合共有22=4个.
即:A =∅,或A ={a },或A ={b }或A ={a ,b }.
7.设集合M ={x |x =k 2+14,k ∈Z },N ={x |x =k 4+12
,k ∈Z },则( ) A .M =N
B .M N
C .M N
D .M 与N 的关系不确定 [答案] B
[解析] 解法1:用列举法,令k =-2,-1,0,1,2…可得
M ={…-34,-14,14,34,54
…}, N ={…0,14,12,34
,1…}, ∴M N ,故选B.
解法2:集合M 的元素为:x =k 2+14=2k +14(k ∈Z ),集合N 的元素为:x =k 4+12=k +24
(k ∈Z ),而2k +1为奇数,k +2为整数,∴M N ,故选B.
[点评] 本题解法从分式的结构出发,运用整数的性质方便地获解.注意若k 是任意整
数,则k+m(m是一个整数)也是任意整数,而2k+1,2k-1均为任意奇数,2k为任意偶数.8.集合A={x|0≤x<3且x∈N}的真子集的个数是()
A.16 B.8
C.7 D.4
[答案] C
[解析]因为0≤x<3,x∈N,∴x=0,1,2,即A={0,1,2},所以A的真子集个数为23-1=7.
9.(09·广东文)已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的韦恩(Venn)图是()
[答案] B
[解析]由N={x|x2+x=0}={-1,0}得,N M,选B.
10.如果集合A满足{0,2}A⊆{-1,0,1,2},则这样的集合A个数为()
A.5 B.4
C.3 D.2
[答案] C
[解析]集合A里必含有元素0和2,且至少含有-1和1中的一个元素,故A={0,2,1},{0,2,-1}或{0,2,1,-1}.
二、填空题
11.设A={正方形},B={平行四边形},C={四边形},D={矩形},E={多边形},则A、B、C、D、E之间的关系是________.
[答案]A D B C E
[解析]由各种图形的定义可得.
12.集合M={x|x=1+a2,a∈N*},P={x|x=a2-4a+5,a∈N*},则集合M与集合P 的关系为________.
[答案]M P
[解析]P={x|x=a2-4a+5,a∈N*}
={x |x =(a -2)2+1,a ∈N *}
∵a ∈N * ∴a -2≥-1,且a -2∈Z ,即a -2∈{-1,0,1,2,…},而M ={x |x =a 2+1,a ∈N *},∴M P .
13.用适当的符号填空.(∈,∉,⊆,⊇,,,=)
a ________{
b ,a };a ________{(a ,b )};
{a ,b ,c }________{a ,b };{2,4}________{2,3,4};
∅________{a }.
[答案] ∈,∉,,,
*14.已知集合A =⎩⎨⎧⎭
⎬⎫x |x =a +16,a ∈Z , B ={x |x =b 2-13
,b ∈Z }, C ={x |x =c 2+16
,c ∈Z }. 则集合A ,B ,C 满足的关系是________(用⊆,,=,∈,∉,⃘中的符号连接A ,B ,
C ).
[答案] A B =C
[解析] 由b 2-13=c 2+16
得b =c +1, ∴对任意c ∈Z 有b =c +1∈Z .
对任意b ∈Z ,有c =b -1∈Z ,
∴B =C ,又当c =2a 时,有c 2+16=a +16
,a ∈Z . ∴A C .也可以用列举法观察它们之间的关系.
15.(09·北京文)设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A ,那么k 是A 的一个“孤立元”.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有______个.
[答案] 6
[解析] 由题意,要使k 为非“孤立元”,则对k ∈A 有k -1∈A .∴k 最小取2.
k -1∈A ,k ∈A ,又A 中共有三个元素,要使另一元素非“孤立元”,则其必为k +1.所以这三个元素为相邻的三个数.∴共有6个这样的集合.
三、解答题
16.已知A ={x ∈R |x <-1或x >5},B ={x ∈R |a ≤x <a +4},若A 包含B ,求实数a
的取值范围.
[解析] 如图
∵A 包含B ,∴a +4≤-1或者a >5.
即a ≤-5或a >5.
17.已知A ={x |x <-1或x >2},B ={x |4x +a <0},当B ⊆A 时,求实数a 的取值范围.
[解析] ∵A ={x |x <-1或x >2},
B ={x |4x +a <0}={x |x <-a 4
}, ∵A ⊇B ,∴-a 4
≤-1,即a ≥4, 所以a 的取值范围是a ≥4.
18.A ={2,4,x 2-5x +9},B ={3,x 2+ax +a },C ={x 2+(a +1)x -3,1},a 、x ∈R ,求:
(1)使A ={2,3,4}的x 的值;
(2)使2∈B ,B ⊆A 成立的a 、x 的值;
(3)使B =C 成立的a 、x 的值.
[解析] (1)∵A ={2,3,4} ∴x 2-5x +9=3
解得x =2或3
(2)若2∈B ,则x 2+ax +a =2
又B ⊆A ,所以x 2-5x +9=3得x =2或3,将x =2或3分别代入x 2+ax +a =2中得a =-23或-74
(3)若B =C ,则⎩⎪⎨⎪⎧
x 2+ax +a =1①
x 2+(a +1)x -3=3② ①-②得:x =a +5 代入①解得a =-2或-6
此时x =3或-1.
*19.已知集合A ={2,4,6,8,9},B ={1,2,3,5,8},又知非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集,若各元素都减2后,则变为B 的一个子集,求集合
C .
[解析] 由题设条件知C ⊆{0,2,4,6,7},C ⊆{3,4,5,7,10},∴C ⊆{4,7},∵C ≠∅,∴C =。