第一章晶体结构习题
- 格式:pdf
- 大小:834.00 KB
- 文档页数:12
第一章 晶体的结构习题一、填空题1.固体一般分为_____ _____ _____2.晶体的三大特征是_____ _____ _____3._____是晶格中最小的重复单元,_____既反映晶格的周期性又反映晶格的对称性。
4._____和_____均是表示晶体原子排列紧密程度。
5.独立的对称操作有______二、证明题1.试证明体心立方格子和面心立方格子互为正倒格子。
2.证明倒格子矢量112233G h b h b h b =++ 垂直于密勒指数为123()h h h 的晶面系。
3.对于简方晶格,证明密勒单立指数为(,,)h k l 的晶面系,面间距d 满足:22222()d a h k l =++,其中a 为立方边长;并说明面指数简单的晶面,其面密度较大,容易解理。
4.证明不存在5度旋转对称轴。
5.证明正格矢和倒格矢之间的关系式为:()为整数m m R G π2=⋅三、计算题1.已知某种晶体固体物理学原胞基矢为(1)求原胞体积。
(2)求倒格子基矢。
(3)求第一布里渊区体积。
2.一晶体原胞基矢大小m a 10104-⨯=,m b 10106-⨯=,m c 10108-⨯=,基矢间夹角90=α, 90=β, 120=γ。
试求:(1)倒格子基矢的大小; (2)正、倒格子原胞的体积; (3) 正格子(210)晶面族的面间距。
j 2a 3i 2a a 1+=j 2a 3i 2a -a 2+=k c a 3=3.如图1.所示,试求: (1) 晶列ED ,FD 和OF 的晶列指数;(2) 晶面AGK ,FGIH 和MNLK 的密勒指数;(3) 画出晶面(120),(131)。
a 2xy zA B D C G F E OIH y x Aa 2K O GLNM z图1.4.矢量a ,b ,c 构成简单正交系。
求:晶面族)(hkl 的面间距。
5.设有一简单格子,它的基矢分别为i a 31=,j a 32=,)(5.13k j i a ++=。
半导体物理习题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN附: 半导体物理习题第一章 晶体结构1. 指出下述各种结构是不是布拉伐格子。
如果是,请给出三个原基矢量;如果不是,请找出相应的布拉伐格子和尽可能小的基元。
(1) 底心立方(在立方单胞水平表面的中心有附加点的简立方); (2) 侧面心立方(在立方单胞垂直表面的中心有附加点的简立方); (3) 边心立方(在最近邻连线的中点有附加点的简立方)。
2. 证明体心立方格子和面心立方格子互为正、倒格子。
3. 在如图1所示的二维布拉伐格子中,以格点O 为原点,任意选取两组原基矢量,写出格点A 和B 的晶格矢量A R 和B R 。
4. 以基矢量为坐标轴(以晶格常数a 为度量单位,如图2),在闪锌矿结构的一个立方单胞中,写出各原子的坐标。
5.石墨有许多原子层,每层是由类似于蜂巢的六角形原子环组成,使每个原子有距离为a的三个近邻原子。
试证明在最小的晶胞中有两个原子,并画出正格子和倒格子。
第二章晶格振动和晶格缺陷1.质量为m和M的两种原子组成如图3所示的一维复式格子。
假设相邻原子间的弹性力常数都是β,试求出振动频谱。
2.设有一个一维原子链,原子质量均为m,其平衡位置如图4所示。
如果只考虑相邻原子间的相互作用,试在简谐近似下,求出振动频率ω与波矢q之间的函数关系。
3.若把聚乙烯链—CH=CH—CH=CH—看作是具有全同质量m、但力常数是以1β,2β交替变换的一维链,链的重复距离为a,试证明该一维链振动的特征频率为}])(2sin41[1{2/1221221212ββββββω+-±+=qam并画出色散曲线。
第三章 半导体中的电子状态1. 设晶格常数为a 的一维晶格,导带极小值附近的能量)(k E c 为mk k m k k E c 21222)(3)(-+=(3.1)价带极大值附近的能量)(k E v 为mk m k k E v 2221236)( -=(3.2)式中m 为电子质量,14.3,/1==a a k πÅ。
第一章晶体的结构简单回答下面的问题:1 a原胞与单胞有什么不同?何谓布拉菲格子?何谓倒格子?以一结点为顶点,以三个不同方向的周期为边长的平行六面体可作为晶格的一个重复单元.体积最小的重复单元,称为原胞或固体物理学原胞.它能反映晶格的周期性.原胞的选取不是惟一的,但它们的体积都相等.为了同时反映晶体对称的特征,结晶学上所取的重复单元,体积不一定最小,结点不仅在顶角上,还可以是体心或面心.这种重复单元称作晶胞、惯用晶胞或布喇菲原胞.晶体内部结构可以看成是由一些相同的点子在空间作规则的周期性无限分布,这些点子的总体称为布喇菲点阵。
布拉菲格子:由基元代表点(格点)在空间中的周期性排列所形成的晶格。
倒格子*(Reciprocal Lattice,Reciprocal有相互转换的含意)已知有正格子基矢,定义倒格矢基矢为:;; .其中为正格子原胞体积。
由平移操作所产生的格点叫倒格点:为倒格矢;倒格点的总体叫倒格子,叫一组倒格基矢。
由与所决定的点阵为互为倒格子b晶体的宏观对称性可以概括为多少点群?晶体中有几种基本对称素?多少个晶系?这些晶系分别包括哪些布拉菲格子?晶体学中共有32种点群八种基本对称素C1 (1)、C2 (2)、C3 (3)、C4 (4)、C6 (6)、Ci (i)、CS (m)和 S4七大晶系十四种布拉菲格子c什么是晶体、准晶体和非晶体?晶体:组成固体的原子(或离子)在微观上的排列具有长程周期性非晶体:组成固体的粒子只有短程序(在近邻或次近邻原子间的键合:如配位数、键长和键角等具有一定的规律性),无长程周期性准晶:有长程的取向序,沿取向序的对称轴方向有准周期性,但无长程周期性2试推导面心和体心立方点阵的x射线衍射的系统消光规律3多晶体与单晶体的x射线衍射图有什么区别?多晶(衍射环对应一个晶面);单晶(衍射点对应一个晶面)4a)何谓晶体、准晶体及非晶体?它们的x光或电子衍射有何区别?黄昆第45页晶体:衍射图样是一组组清晰的斑点非晶体:由于原子排列是长程无序的,衍射图样呈现为弥散的环,没有表征晶态的斑点准晶体:衍射图样具有五重对称的斑点分布,斑点的明锐程度不亚于晶体的情况(b)何谓布拉菲格子、晶体学点群、晶系和晶体学空间群?C1 (1)、C2 (2)、C3 (3)、C4 (4)、C6 (6)及S1,S2,S3,S4,S5这十种对称素组成32个不同的点群结晶学中把a, b, c满足同一类要求的一种或数种布喇菲格子称为一个晶系。
固体物理习题参考答案(部分)第一章 晶体结构1.氯化钠:复式格子,基元为Na +,Cl -金刚石:复式格子,基元为两个不等价的碳原子 氯化钠与金刚石的原胞基矢与晶胞基矢如下:原胞基矢)ˆˆ()ˆˆ()ˆˆ(213212211j i a a i k a a k j a a +=+=+= , 晶胞基矢 ka a j a a ia a ˆˆˆ321===2. 解:31A A O ':h:k;l;m==-11:211:11:111:1:-2:1 所以(1 1 2 1) 同样可得1331B B A A :(1 1 2 0); 5522A B B A :(1 1 0 0);654321A A A A A A :(0 0 0 1)3.简立方: 2r=a ,Z=1,()63434r 2r a r 3333πππ===F体心立方:()πππ833r4r 342a r 3422a 3r 4a r 4a 33333=⨯=⨯=∴===F Z ,,则面心立方:()πππ622r 4r 34434442r 4a r 4a 233ar 33=⨯=⨯=∴===F Z ,,则 六角密集:2r=a, 60sin 2c a V C = a c 362=,πππ622336234260sin 34223232=⨯⨯⨯=⨯=⎪⎭⎫ ⎝⎛a a c a r F a金刚石:()πππ163r 38r 348a r 3488Z r 8a 33333=⨯=⨯===F ,, 4. 解:'28109)31arccos(312323)ˆˆˆ()ˆˆˆ(cos )ˆˆˆ()ˆˆˆ(021*******12211=-=-=++-⋅+-=⋅=++-=+-=θθa a k j i a k j i a a a a a kj i a a kj i a a 5.解:对于(110)面:2a 2a a 2S =⋅=所包含的原子个数为2,所以面密度为22a2a22=对于(111)面:2a 2323a 22a 2S =⨯⨯= 所包含的原子个数为2,所以面密度为223a34a 232=8.证明:ABCD 是六角密堆积结构初基晶胞的菱形底面,AD=AB=a 。
晶体结构习题第一章晶体结构1.三维空间中有多少种brafi格?画一张图来说明这些布拉菲格子。
解:三维空间有14种布拉菲格子,分别如下图所示:2.石墨层中的碳原子排列成六角形网络结构,如图所示。
一个原电池包含多少个原子?为什么?么?解决方案:石墨层中的原电池包含两个原子。
在图中,a和B原子并不相等,它们的几何位置也不同,所以在一个原始细胞中至少有两个碳原子;如图所示,石墨单层可以通过周期性平移图中由点框包围的两个原子A和B的单元来获得。
它可以形成石墨单层的原细胞。
因此,石墨层中的一个原细胞包含两个原子。
3、利用刚球密堆模型,求证球可能占据的最大体积与总体积之比为:(1)简单立方体6(5)金刚石;(2)体心立方322(3)面心立方(4)六方密积?;?;?;8663?。
解:(1)在简单的立方晶体学原胞中,假设原子半径为r,则原胞的晶体学常数为a?2R,则简单立方体的密度(即球可能占据的最大体积与总体积的比率)为:441??r31??r333?33?6A(2R)(2)在体心立方晶体学原胞中,如果原子半径为r,则原胞的晶体学常数为a?4R/3,则BCC的密度为:442??r32??r33?3??33??38a(4r/3)(3)在面心立方的结晶学原胞中,设原子半径为r,则原胞的晶体学常数a?22r,则面心立方的致密度为:444?? r32??r33??33?? a(22r)32?6(4)在六方密积的晶体学原胞中,假设原子半径为r,那么原胞的晶体学常数a?2rc?(26/3)a?(46/3)r,则六角密积的致密度为:446?? r36??r333223a3(2r)6?c6?(46/3)r442?6(5)在金刚石晶胞中,如果原子半径为r,晶胞的晶胞常数为a?(8/3)r,那么钻石的密度是:448??r38??r33?3??33??3316a(8/3)r4.有一个简单的格,它的基向量是A1?3i,a2?3j,a3?1.5(i?j?k)。
第一章金属的晶体结构1-1. 作图表示立方晶系中的(123),(012),(421)晶面和[102],[211],[346]晶向。
附图1-1 有关晶面及晶向1-2、立方晶系的{111}晶面构成一个八面体,试作图画出该八面体,并注明各晶面的晶面指数。
{111}=(111)+(111)+(111)+(111)(111)与(111)两个晶面指数的数字与顺序完全相同而符号相反,这两个晶面相互平行,相当于用-1乘某一晶面指数中的各个数字。
xy z1-3 (题目见教材)解:x方向截距为5a,y方向截距为2a,z方向截距为3c=3 2a/3=2a。
取截距的倒数,分别为1/5a,1/2a,1/2a化为最小简单整数分别为2,5,5 故该晶面的晶面指数为(2 5 5)1-4 (题目见课件)解:(100)面间距为a/2;(110)面间距为2a/2;(111)面间距为3a/3。
三个晶面中面间距最大的晶面为(110)。
1-5 (题目见课件)解:方法同1-4题1-7 证明理想密排六方晶胞中的轴比c/a=1.633。
证明:理想密排六方晶格配位数为12,即晶胞上底面中心原子与其下面的3个位于晶胞内的原子相切,构成正四面体,如图所示。
则OD=2c,AB=BC=CA=AD=BD=CD=a 因∆ABC 是等边三角形,所以有OC=32CE 因(BC)2=(CE)2+(BE)2则CE=23a ,OC=32×23a =33a又(CD)2=(OC)2+(21c )2,即(CD)2=(33a )2+(21c )2=(a )2因此,ac=38≈1.6331-8解:面心立方八面体间隙半径 r=a/2-2a/4=0.146a , 面心立方原子半径R=2a/4,则a=4R/2,代入上试有CBADEOr=0.146⨯4R/2=0.414R。
(其他的证明类似)1-9 a)设有一刚球模型,球的直径不变,当由面心立方晶格转变为体心立方晶格时,试计算其体积的膨胀?b)经X射线测定,在912℃时γ-Fe的晶格常数为0.3633nm,α-Fe的晶格常数为0.2892nm,当由γ-Fe转变为α-Fe时,试求其体积膨胀? c)分析实际体积膨胀小于理论体积膨胀的原因?解:a)令面心立方晶格与体心立方晶格的体积及晶格常数分别为V面、V体与a面、a体,刚球半径为r,由晶体结构可知,对于面心晶胞有4r=2a面,a面=22r,V面= (a面)3=(22r)3对于体心晶胞有4r=3a体,a体=334r,V体= (a体)3=(334r)3则由面心立方晶胞转变为体心立方晶胞的体积膨胀∆V为∆V=2×V体-V面=2.01r3b)按晶格常数计算实际转变体积膨胀∆V实,有∆V实=2×V体-V面=2×(0.2892)3-(0.3633)3=0.000425 nm3c)实际体积膨胀小于理论体积膨胀的原因在于由γ-Fe转变为α-Fe时,Fe 原子半径发生了变化,原子半径减小了。
第一章晶体结构习题1、晶体结构的堆积比率 在sc, bcc 和fcc 结构中,fcc 是原子排列最密积的,sc 是最稀疏的,它们的配位数分别是fcc-12;bcc-8;sc-6;而金刚石结构比简单立方结构还要稀疏,配位数是4。
如果把同样的硬球放置在这些结构原子所在的位置上,球的体积取得尽可能大,以使最近邻的球正好接触,但彼此并不重迭。
我们把一个晶胞中被硬球占据的体积和晶胞体积之比定义为结构的堆积比率(又叫最大空间利用率)。
试证明以上四种结构的堆积比率是fcc :74.062=π bcc :68.083=π sc :52.061=π 金刚石:34.0163=π 2、点阵常数的计算 已知氯化钠是立方晶体,其分子量为58.46,在室温下的密度是2.167×103 kg·m -3,试计算氯化钠结构的点阵常数。
3、立方晶系的晶面和晶向 证明立方晶系中方向[hkl ]垂直于平面(hkl )。
4、六角密堆积结构 (a) 证明理想的六角密堆积结构(hcp)的轴比c /a 是 (8/3)1/2=1.633。
(b) 钠在23K 附近从bcc 结构转变为hcp 结构(马氏体相变),假如在此相变过程中保持密度不变,求hcp 相的点阵常数a 。
已知bcc 相的点阵常数是4.23Å,且hcp 相的c /a 比值与理想值相同。
5、面间距 考虑晶体中一组互相平行的点阵平面 (hkl ),(a) 证明倒易点阵矢量G (hkl )=h b 1+k b 2+l b 3垂直于这组平面(hkl );(b) 证明两个相邻的点阵平面间的距离d (hkl )为:)(2)(hkl G hkl d π= (c) 证明对初基矢量a 1、a 2、a 3互相正交的晶体点阵,有 232221)/()/()/(1)(a l a k a h hkl d ++=(d) 证明对简单立方点阵有 )()()()(222l k h ahkl d ++=6、一个单胞的尺寸为a 1=4 Å ,a 2=6 Å ,a 3=8 Å ,α=β=90°,γ=120°,试求:(a) 倒易点阵单胞基矢;(b)倒易点阵单胞体积;(c) (210)平面的面间距。