航空发动机带转油封技术方案设计
- 格式:docx
- 大小:39.26 KB
- 文档页数:4
航空发动机开发制造方案一、实施背景随着中国航空工业的快速发展,航空发动机作为核心部件,却成为了制约整个产业进一步升级的瓶颈。
长期以来,中国航空发动机产业在设计与制造上,主要依赖国外技术,这不仅限制了产业发展,也削弱了国际竞争力。
为此,开展以自主创新为主导的产业结构改革与开发制造方案,对中国航空工业具有重大意义。
二、工作原理1.设计理念:采用国际先进的设计理念,结合超高温、超高压、高强度等极限环境的特点,将航空发动机的性能、寿命和可靠性提升至新的水平。
2.材料选择:选用具有优异耐热、耐腐蚀、抗疲劳性能的高温合金和新型复合材料。
3.制造工艺:采用先进的增材制造、精密铸造、热处理等工艺,确保零部件的制造精度和性能。
4.控制系统:引入先进的控制系统,实现航空发动机工作状态的实时监控与自动调节。
三、实施计划步骤1.研发团队建设:成立由国内顶级专家组成的研发团队,同时与高校和研究机构建立紧密合作关系。
2.技术引进与吸收:通过国际合作,引进先进的设计与制造技术,并进行消化吸收。
3.产品开发:结合中国实际需求,进行航空发动机的开发设计。
4.试验验证:进行严格的地面与空中试验,确保发动机的性能与可靠性达到预期目标。
5.产业化与市场化:推动航空发动机的产业化与市场化进程,实现规模生产与销售。
四、适用范围本方案适用于中国民用和军用航空市场的需求,包括但不限于客机、货机、战斗机、直升机等。
五、创新要点1.设计理念创新:采用国际前沿的设计理念,确保发动机性能的领先。
2.材料选择创新:选用新型高温合金和复合材料,提高发动机的耐久性和可靠性。
3.制造工艺创新:应用先进的增材制造和精密铸造技术,提高生产效率和产品质量。
4.控制系统创新:引入先进的控制系统,实现发动机工作状态的实时监控与自动调节。
六、预期效果1.提高国产航空发动机的技术水平:通过自主创新和技术引进,提高国产航空发动机在性能、寿命和可靠性方面的技术水平。
2.增强国际竞争力:通过与国际先进水平的对标,提高国产航空发动机在国际市场的竞争力。
航空发动机典型静动密封关键技术及产业化一、引言航空发动机是飞机的“心脏”,发动机的性能直接关系到飞机的安全性、经济性和环保性。
发动机的密封技术是影响其性能的重要因素之一,特别是静动密封技术在发动机中起着至关重要的作用。
本文将从航空发动机典型静动密封关键技术及产业化这一主题出发,对发动机密封技术进行全面评估,探讨其深度和广度,以期更全面地理解这一重要的技术领域。
二、航空发动机静动密封技术的重要性静动密封技术是指在发动机内部隔离高压气体和低压气体,使其不相互混合,以及在发动机外部阻止润滑油和冷却剂外泄的技术。
在航空发动机中,由于工作环境的特殊性,静动密封技术的重要性愈发凸显。
密封不严会导致气体泄露,影响发动机的性能和效率;另密封不合格会导致润滑油和冷却剂外泄,对环境和安全构成威胁。
航空发动机静动密封技术的重要性不言而喻。
三、航空发动机静动密封关键技术1. 材料技术航空发动机内部和外部的密封件要求具有良好的耐高温、耐腐蚀、耐磨损等特性,因此材料技术是静动密封技术的关键之一。
高温合金、特种陶瓷、聚合物材料等在航空发动机密封件中的应用,将对密封技术起到积极推动作用。
2. 结构设计技术发动机内部的结构设计对于静动密封技术至关重要,合理的结构设计可以减少气体泄露的可能性,提高发动机的效率和性能。
在密封环、密封垫、密封腔等方面的结构设计技术将成为发展的重点。
3. 加工工艺技术精密的加工工艺是保证静动密封件性能的重要保障。
高精度的加工技术可以提高密封件的密封性能和寿命,减少气体泄露和润滑油外泄的可能性。
4. 润滑和冷却技术润滑和冷却技术对于静动密封技术同样至关重要。
密封件在长期高温高速运转下,容易出现磨损和老化,因此润滑和冷却技术的改进将极大地提高密封件的使用寿命。
四、航空发动机静动密封技术的产业化现状目前,航空发动机静动密封技术的产业化水平不断提高,国际航空发动机制造商在这一领域进行了大量的研发和应用。
我国航空发动机制造商也在积极跟进,加大对静动密封技术的研究和产业化推进力度。
航空发动机中的润滑油系统设计航空发动机是整架飞机的心脏,其作用十分重要,承担着产生推力、驱动飞机前进的任务。
然而,高速旋转的各个部件在工作过程中会产生大量的摩擦和磨损,如果没有合适的润滑保护措施,就会影响到发动机的寿命和性能。
今天我们要探讨的问题是航空发动机中的润滑油系统设计。
一、润滑油系统的基本构成航空发动机中的润滑油系统主要由油箱、泵组、油滤器、润滑油冷却器、油压/油量测量及控制器件、油管和喷嘴等部分组成。
其中,泵组是润滑系统的“心脏”,主要作用是将油箱内的机油通过压力和泵的吸力驱动,送到发动机各个部位,达到润滑、冷却、清洗等效果。
油滤器则是润滑系统的“肾脏”,通过过滤机油中的污染物和颗粒杂质,保证机油清洁无污染,提高机油使用寿命。
而润滑油冷却器则是通过冷却机油的温度,降低发动机工作时的热量,提高效率和可靠性。
二、润滑油系统设计的关键因素在航空发动机设计中,润滑油系统的设计往往被归为一种附属的系统,但如果润滑油系统设计不当,会直接影响到发动机的使用寿命和性能。
因此,在设计润滑油系统时,需要考虑以下几个因素:1. 温度控制温度是润滑油系统设计中非常重要的因素。
机油的黏度随温度变化而变化,在温度过高或者过低的情况下,都会影响到机油的性能与流动性。
一般来说,润滑油的温度应该控制在90℃~120℃之间,这样可以保证机油的润滑效果且不会因过高温度损坏机油。
2. 压力控制同样的,润滑油的压力也是润滑油系统设计中十分重要的因素。
发动机的各个部件需要获得足够的油压,以达到润滑效果,如果系统压力不足,将会严重影响到发动机寿命和性能。
3. 机油流量控制在润滑油系统设计中,机油的流量也应该被充分考虑。
过高的机油流量会导致过多的机油进入摩擦部位,造成磨损,而过低的机油流量又会导致摩擦部位润滑不足,同样会造成磨损。
4. 系统清洁性作为飞机发动机中的重要组成部分之一,润滑油系统的清洁性也被归为一个重要的设计因素。
因为如果润滑油中存在杂质、污垢等不纯物质,将直接影响到机油的性能和使用寿命。
主轴旋转气密封设计
主轴旋转气密封设计是一种用于防止气体或液体泄漏的技术,主要用于高速旋转设备,如汽轮机、压缩机、离心分离机等的主轴密封部位。
其主要目标是在主轴高速旋转的情况下,保证内外空间的隔离,防止压力较高的介质从高压区泄漏到低压区。
设计要点主要包括:
1.密封结构选择:常见的主轴旋转气密封包括迷宫密封、干气密封、碳环密封和机械接触式密封等多种形式。
其中,干气密封利用氮气或其他惰性气体作为密封介质,通过多级密封环形成多道气膜来实现有效密封。
2.动态密封元件:采用耐磨、耐高温、耐腐蚀且具有良好弹性的材料制作密封件,例如碳石墨、陶瓷、硬质合金等。
这些元件在主轴旋转时与定子之间保持微小间隙,以形成稳定的气膜。
3.气压控制与监控:系统中需要有精密的压力调节装置,以维持密封腔体内的气体压力稳定,并配备相应的压力传感器实时监测密封效果,一旦发现异常及时报警。
4.冷却润滑系统:对于高速运转且发热量较大的主轴,还需要设计有效的冷却润滑系统,确保密封部件的工作温度适中,延长使用寿命。
5.密封腔体设计:合理设计密封腔体形状和尺寸,使气体流动路径合理,降低气体动能损失,提高密封效率。
6.平衡措施:为避免高速旋转带来的不平衡力对密封造成破坏,有时还需要考虑主轴动平衡以及密封结构自身的平衡设计。
航空发动机设计手册第11册第一章前言1.1简介航空发动机是飞机最重要的部件之一,它的设计和性能直接影响飞机的飞行性能和经济性。
航空发动机设计手册第11册是对航空发动机设计的详细介绍,旨在帮助设计师更好地理解发动机设计的原理和方法。
1.2编写目的本手册旨在系统地介绍航空发动机的设计原理、方法和技术,全面而深入地探讨发动机设计中的关键问题。
通过本手册的学习,读者将能够掌握航空发动机设计的基本知识,提高设计水平,为飞机设计和研发工作提供技术支持。
1.3适用范围本手册适用于航空发动机设计领域的专业技术人员和工程师,也可供相关专业的学生参考。
内容包括航空发动机设计的基本原理、气动、机械、热力等相关知识,还包括先进发动机技术和发展趋势的介绍。
第二章发动机设计基础2.1发动机构成和工作原理航空发动机主要由进气系统、压气机、燃烧室、涡轮和喷气管道等部件组成,其工作原理是通过压气机将空气压缩后送入燃烧室燃烧,然后再通过涡轮转动,从而驱动喷气管道产生推力。
设计师需要深入了解每个部件的工作原理和设计特点,才能设计出高性能的发动机。
2.2发动机设计原理发动机的设计原理包括气动设计、机械设计、热力设计等方面。
气动设计是指通过流体动力学的原理,设计出具有良好气动性能的发动机气动外形,机械设计是指设计出具有高强度和轻量化的发动机机械结构,热力设计是指设计出具有高效率和低排放的发动机燃烧和涡轮系统。
设计师需要掌握这些设计原理,才能设计出性能卓越的发动机。
第三章发动机设计方法3.1发动机参数计算发动机设计的第一步是确定发动机的基本参数,包括推力、燃油消耗率、空气动力学性能等。
设计师需要通过理论计算和实验验证,确定这些参数的合理数值,作为设计的依据。
3.2发动机结构设计发动机的结构设计是指确定各个部件的尺寸、形状和材料,以满足发动机的性能和安全要求。
设计师需要考虑气动、机械和热力等多方面的因素,综合分析,确定最优的结构设计方案。
3.3发动机系统集成发动机系统包括进气系统、燃油系统、控制系统等多个子系统,设计师需要进行系统集成,使各个子系统协调工作,保证发动机的整体性能。
航空发动机密封技术应用研究胡广阳【摘要】介绍了石墨圆周密封、刷式密封、指状密封、气膜密封和其他几种新型密封技术研究的新进展和在航空发动机上的应用,对密封技术的机理、特点和在研究中遇到的问题进行了分析和讨论。
阐明了为适应航空发动机的发展要求,密封技术应进行材料、工艺、结构、机理等多方面的开创性设计,并提出在密封技术设计中应引入控制概念的观点。
%The development and application of aeroengine seal technology were introduced, which include high misalignment carbon seals, brush seal, finger seal, film sealand other new kinds of seal technology. The principles, characteristics, problems were analyzed and discussed. The innovative design on materials, process, structures and principles of seal technology should be conducted to meet aeroengine development requirements and the views of control concept were introduced in seal technology design.【期刊名称】《航空发动机》【年(卷),期】2012(038)003【总页数】4页(P1-4)【关键词】密封技术;航空发动机;材料;工艺【作者】胡广阳【作者单位】中航工业沈阳发动机设计研究所,沈阳110015【正文语种】中文【中图分类】V230 引言随着航空发动机技术的发展,密封技术已成为影响发动机性能和寿命的重要因素。
航空发动机工艺流程规划和整体布局下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!航空发动机作为一种高度复杂和精密的系统,其工艺流程规划和整体布局对于保证产品质量、提高生产效率以及确保生产安全至关重要。
“小细节决定大成败”,发动机封严技术不容小觑!现代航空发动机技术已达到很高水平,但是由于用户对低能耗、低噪声和高效益等方面的要求不断提高,各项技术都在不断突破创新,尤其是封严技术。
今天小编将为大家详细介绍这一在航空发动机领域至关重要的技术。
封严技术对发动机性能的影响封严是指对转动部件和非转动部件间的泄露进行控制。
研究表明,封严泄露量减少1%,可使发动机推力增加1%,耗油率降低0.1%;对于先进战斗机发动机,在发动机转速和涡轮转子进口温度保持不变的情况下,高压涡轮封严泄露量减少1%,则推力增加8%,耗油率降低0.5%。
另外,发动机涡轮的径向间隙每增大0.13毫米,发动机单位耗油量约增加0.5%;反之,减少0.25毫米,涡轮效率提高1%。
由此可见,无论对于军用航空发动机还是民用航空发动机,密封技术直接影响发动机的性能。
通过采用新型封严技术来减少发动机漏气损失、增大发动机推力、减少发动机耗油率、提高发动机效率是十分必要的。
航空发动机上使用封严的地方很多,例如主流道密封、空气系统二次流密封、主轴承油腔密封、附件传动机匣中传动附件输出轴密封等(如图1所示)。
图1 密封装置在航空发动机上的应用常见的封严技术01.迷宫式密封(即篦齿封严)技术迷宫式密封也就是所谓的篦齿密封,主要用于内流道密封和空气系统二次流密封。
篦齿封严技术广泛用于各种蒸汽机、燃气轮机的封严装置中。
该装置主要由轮盘、鼓、轴、叶冠等转动机件上的周向篦齿及静子部件上的环形圆柱面组成, 通过减小压力差来减少漏气损失,封严的效率取决于转子部件和静子部件之间的径向间隙和篦齿数目。
图2 篦齿封严结构篦齿封严装置的优点是:结构简单,使用性较好;篦齿封严装置的缺点是:由于其属于非接触式密封装置,泄漏量比接触式的大,工作中磨损会导致泄漏量加大,磨粒会打坏涡轮叶片;若封严环压差稍大时,气流逸漏过程中易激发封严环振动。
篦齿封严装置改进方式:(1)涂覆可磨耗封严涂层。
simrit 油封技术手册SIMRIT油封技术手册一、简介SIMRIT油封是一种高效的密封材料,广泛应用于各种工业领域。
本手册旨在介绍SIMRIT油封的技术特点、应用范围以及安装和维护要点。
二、技术特点1. 优异的密封性能SIMRIT油封采用高质量橡胶材料制成,具有出色的密封性能。
其密封结构设计科学合理,能够有效抵御液体和气体的渗透,确保系统的稳定运行。
2. 耐磨性强SIMRIT油封具有优秀的耐磨性能,能够在高速运动和恶劣工况下保持长久的使用寿命。
其表面采用特殊处理工艺,有效减少磨损和摩擦,提高密封性能。
3. 适应性广泛SIMRIT油封适用于各种行业和领域,包括机械制造、汽车工业、航空航天等。
不论是高温、低温、高压还是低压环境,SIMRIT油封都能够发挥其卓越的性能。
4. 安装简便SIMRIT油封的安装相对简便快捷,能够方便地与轴或孔配合,达到良好的密封效果。
在安装过程中,请注意避免损坏油封,保持安装环境清洁,并遵循相应的安装规范。
5. 维修方便当SIMRIT油封出现损坏或老化时,可以迅速更换以恢复其正常功能。
维修时,请仔细清理轴封座和孔的残留物,并使用适当的工具和方法进行正确的安装。
三、应用范围SIMRIT油封广泛应用于以下领域:1. 机械制造SIMRIT油封可用于各种机械设备的密封,如泵、风机、减速器等。
它能够有效隔绝内外介质,确保机械设备的正常运行,并延长使用寿命。
2. 汽车工业作为汽车发动机等关键部件的密封材料,SIMRIT油封能够在高温、高压环境下保持稳固的密封,防止润滑油泄漏,提高发动机效率。
3. 航空航天在航空航天领域,对密封件的要求极高。
SIMRIT油封以其卓越的耐高温、耐低温性能,被广泛应用于飞机、航天器等关键设备。
四、安装和维护要点1. 安装要点(1)清洁轴和孔的表面,确保无杂质和污垢。
(2)保持安装环境干燥和清洁,避免尘埃和水分进入。
(3)使用适当的工具和方法将油封安装到轴或孔上,确保安装正确并紧固可靠。
【长知识】航空发动机封严技术的进展导读:封严技术一直是高性能航空发动机研发工作的重要组成部分,先进封严技术是满足发动机耗油率、推重比、污染物排放、耐久性及寿命期成本目标的关键技术。
通过减少发动机内部气流的泄漏量,可大大提高发动机的性能和效率。
本文针对航空发动机典型封严技术,详细介绍了石墨封严、篦齿封严、刷式封严的结构特点及其技术改进和发展趋势。
重点阐述了德国MTU公司开发的新型刷式封严技术,其独特的结构解决了刷式封严掉毛这一技术难题。
1 引言现代航空发动机技术已达到很高水平,要进一步提高叶轮机效率,很大程度上取决于叶轮机转子与机匣之间的封严效果。
因此,许多航空发动机研究计划把如何减少发动机内流损失、提高发动机性能作为重点研究内容之一。
随着军用发动机工作环境越来越苛刻及民用发动机用户对低能耗、低噪声和高效益等方面要求的不断提高,低泄漏封严技术将面临高温、高转速、高压差、高湿度、高摩擦、高频振动及破坏性化学反应等一系列挑战。
研发泄漏量更小、在恶劣环境中使用寿命更长的先进封严装置已成当务之急。
2 封严技术的应用及其影响封严是对转动部件和非转动部件间的泄漏进行控制。
航空发动机上使用封严的地方很多,如主流道密封、空气系统二次流密封、主轴承油腔密封、附件传动机匣中传动附件输出轴密封等(见图1)。
航空发动机密封装置的形式也多种多样,按工作性质可分为接触式和非接触式两种。
前者主要有皮碗、涨圈、浮动环、端面石墨、径向石墨和刷式密封等,后者主要有螺旋槽、篦齿、液力和气膜密封等。
航空发动机封严的密封特性对发动机性能具有极为重要的影响,尤其是气路密封,将直接影响发动机增压比和涡轮效率的提高。
研究表明,封严泄漏量减少1%,可使发动机推力增加1%,耗油率降低0.1%;对于先进战斗机发动机,在发动机转速和涡轮转子进口温度保持不变的情况下,高压涡轮封严泄漏量减少1%,则推力增加0.8%,耗油率降低0.5%。
因此,美国IHPTET计划第二、第三阶段二次流路系统设定的目标分别是密封泄漏量减少50%和60%。
航空发动机整机的性能方案设计介绍:航空发动机作为飞行器的动力源,对于飞机的性能和安全具有至关重要的影响。
为了确保飞机的正常运行和高效性能,航空发动机必须经过精密设计和详细考虑。
本文将探讨航空发动机整机的性能方案设计,包括设计流程、关键要素和优化策略等方面的内容。
一、航空发动机性能方案设计的流程航空发动机的性能方案设计需要经过一系列的工作流程和步骤。
下面是一个常见的航空发动机性能方案设计流程的概述:1. 确定设计需求:首先,设计团队需要明确航空发动机的使用情况、航线和任务要求等,以确定设计的性能目标和约束条件。
2. 制定标准和规范:根据航空领域相关的标准和规范,制定适用于航空发动机设计的技术标准和验收标准。
3. 性能分析和建模:基于已知的工作参数和技术要求,进行发动机的性能分析和建模,包括气动参数、燃烧特性和机械设计等方面。
4. 优化设计:通过数值模拟和实验测试等手段,对航空发动机的各个部件和系统进行优化设计,以提高性能和降低能耗。
5. 验证和验证:进行地面测试和飞行试验,以验证航空发动机的性能和安全性。
6. 改进和维护:基于试验结果和运行数据,对航空发动机进行改进和维护,以确保长期的可靠性和出色的性能。
二、航空发动机性能方案设计的关键要素航空发动机性能方案设计需要考虑多个关键要素,下面列举了其中一些重要的要素:1. 推力需求:航空发动机的推力需求直接影响飞机的起飞、飞行和爬升性能。
设计中需要充分考虑飞机的重量、气动参数和运营条件等因素,以确保发动机的推力满足需求。
2. 燃油效率:随着环保意识的提高,燃油效率成为设计航空发动机的重要指标之一。
通过优化设计和采用先进的燃烧技术,可以降低燃油消耗,提高发动机的经济性和可持续性。
3. 高温性能:航空发动机在高温环境下运行,需要具备良好的高温性能。
材料的选择和热传递设计等方面都需要考虑高温下的稳定性和可靠性。
4. 噪音和振动:减少噪音和振动是现代航空发动机设计的重要目标之一。
航空发动机带转油封技术方案设计
荆涛;常诚
【摘要】The engine oil seal is the main technical measures to prevent the corrosion of every parts and components when storing the engine. At present, the oil seal working of engine is on the test bench after test run qualified, so it will hold-up time in quantity of the test bench, meanwhile, it will reduce the service life of the starter, leading to bring down the test efficiency. In this article, through research and analysis of the engine oil seal technology, the project of take turn to oil seal technology is worked out to solve this problem. After the engine test run, do not oil seal on the test bench, but remove the engine from test bench directly, afterwards, at the oil seal chamber, using of hydraulic motor turns instead of turbine starter, establishing a small hydraulic station as the power supply to oil seal, so as to solve problems such as test bench shortage and too short starter service life.%发动机油封是存放发动机时防止其锈蚀的主要技术措施。
目前国内涡扇发动机试车后的油封工作一般在试车台上进行,大量占用了试车台架的使用时间和起动机的使用寿命,降低了试车效率。
本文通过对发动机油封技术的研究、分析,制定出该发动机的带转油封技术方案来解决这一问题。
发动机试车结束后,在台下的油封间内利用液压马达带转的方式来代替涡轮起动机,建立小型的液压站动力源进行油封,从而解决了试车台架紧张和起动机寿命短等问题。
【期刊名称】《价值工程》
【年(卷),期】2014(000)018
【总页数】2页(P62-62,63)
【关键词】带转油封;发动机;液压马达
【作者】荆涛;常诚
【作者单位】中航工业沈阳黎明航空发动机集团有限责任公司,沈阳110043;中航工业沈阳黎明航空发动机集团有限责任公司,沈阳110043
【正文语种】中文
【中图分类】V23
0 引言
众所周知航空发动机是飞机的心脏,航空发动机油封技术是发动机维护的重要部分。
油封是指对发动机滑油系统、燃油系统的管路以及重要的发动机附件进行充满油封油的过程,从而有效的防止了因长时间贮存使发动机零部件发生锈蚀。
1 发动机带转油封总体技术方案设计思路
该设计方案最终实现的目标是在试车台下进行带转油封。
起动机不仅价格昂贵而且起动寿命有限,所以采用液压马达带转的方式来代替起动机,可以有效的降低试车成本提高了起动机的使用效率。
文章通过电机带动液压泵建立起小型的液压站,为液压马达提供动力源输出功率。
该动力系统形成动力的传递路线为:电机带动液压增压泵经高压管路传递到液压马达为其提供动力,液压马达将动力经过齿轮、传动轴再传递到发动机,将发动机高压转子带转到需求的转速,本方案采用一般通用型的设备,使用寿命较长,工作和维护非常方便。
2 带转油封系统
2.1 发动机动力系统传递路线发动机动力系统传递路线如图1所示。
2.2 带转油封系统组成①电机。
考虑到传递效率,可以使电机的带转功率逐渐减小,电机的选择功率需要为发动机所需功率的1.5~2倍。
②液压马达。
它是旋转
动力的输出端,使用高压软管把液压泵和液压马达连接起来,液压马达的输出端传送应在满足所需转速以上,且便于调节。
③液压泵(包括液压油油箱、阀、滤、表)。
与电机配套形成液压站,输出高压液压油,如果长时间工作需要建立冷却系统,具备相当的冷却功能。
发动机未工作时,液压起动系统工作,带动发动机运转,直至输出端达到需要转速,转动一定时间后液压起动系统停止工作。
④齿轮箱。
将液压马达与齿轮箱预留的接口对接。
齿轮箱固定在发动机预装架上。
齿轮箱需要能够满足发动机的油封带转要求,该箱旋转部位要有独立的润滑系统,长时间工作需要进行冷却,便于使用维护。
此部分还用于固定柔轴的固定支架,该支架两端分别连接柔轴-发动机附件机匣端法兰盘和带柔性联轴节的传动轴-马达端的套齿轴。
⑤电气控制系统1套。
本系统通过动力源的输出功率,带转发动机的高压转子,带
转前期功率较小,实现逐步带转,以减少对发动机的冲击;中段转速加速增加,减少总的带转时间;后段功率输出要恒定。
此项工作需要增加相关的控制开关,设置在操纵台的面板上,便于现场操作。
⑥其它组成部分。
此外,本系统还包括其它主要部分,例如:高压管路、电动油门杆及相关部件、供油系统、预装架、油雾分离装置、滑油机外循环装置、加温油箱等等。
图1 发动机传动方框示意图
3 发动机带转动力系统
该设计方案采用液压马达带转的方式带动发动机转动,依据目前涡扇发动机启动时使用起动机的相关参数,通过计算选择,能够满足发动机启动的参数要求。
3.1 液压马达的主要参数
最高压力:P=35MPa
排量:q=90ml/r
最高转速:n=4500r/min
最大扭矩:M=500N·m
说明:需配置液压泵站,来保证液压马达能够达到其工作参数。
3.2 带转方案
采用液压马达作为动力源,通过柱塞泵组向液压马达提供一定流量、压力的液压油,来驱动液压马达转动,从而带动发动机转动;采用比例方向阀来控制液压马达入口的流量和压力,使得液压马达的转速由低逐渐升高,以减小由于转速突然增加给发动机带来较大的冲击。
采用单向阀和溢流阀组成的制动装置是防止液压突然停止工作时发动机出现卡死现象。
循环泵组主要用于向油箱加油和对油箱的油液进行循环过滤,保证油箱油液的清洁度。
液压泵采用一台电机拖动,考虑到电机容量较大,采用软起动器U1启动。
电气系统图如图2所示。
4 结论
该方案创新性的设计出在试车台下进行发动机带转油封技术方案,可有效利用试车台架资源及节约起动机工作寿命,并且具有很高的经济性。
油封工艺设备操作简洁方便,便于操作,带转油封工艺及设备的应用可以较小的成本投入换来较高的效益回报。
图2 电气系统原理图
参考文献:
[1]焦静波.举全集团之力振兴航空发动机产业[N].中国航空报,2009-07-31(001).
[2]洪山.斯奈克玛公司坡露未来航空发动机概念[N].中国航空报,2007-05-22.
[3]罗沙,任沁沁.国产航空发动机有望列入重大科技专项[N].新华每日电讯,2011-03-12(014).。