第二章平行线与相交线(两条直线的位置关系)
- 格式:doc
- 大小:239.50 KB
- 文档页数:15
七年级下册第二章 第一小节两条直线的位置关系测试试题1、在同一平面内,两条直线的位置关系分为相交和平行两种。
平行线:在同一平面内,不相交的两条直线叫做平行线。
若两条直线只有一个公共点,我们称这两条直线为相交线。
2、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。
3、对顶角的性质:对顶角相等。
5、对顶角是从位置上定义的,对顶角一定相等,但相等的角不一定是对顶角。
6、如果两个角的和是直角,那么称这两个角互为余角,简称为互余,称其中一个角是另一个角的余角。
7、如果两个角的和是平角,那么称这两个角互为补角,简称为互补,称其中一个角是另一个角的补角。
8、互余和互补是指两角和为直角或两角和为平角,它们只与角的度数有关,与角的位置无关。
9、余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等。
10、余角和补角的性质用数学语言可表示为:(1)则(同角的余角(或补角)相等)。
00001290(180),1390(180),∠+∠=∠+∠=23∠=∠(2)且则(等角的余角(或补角)相等)。
1、下列说法正确的是 。
A 、不相交的两条直线是平行线 B 、同一个平面内,不相交的两条射线叫平行线C 、同一平面内,两条直线不相交就重合 D 、同一平面内,没有公共点的两条直线是平行线2、如图所示,直线a ,b ,c 两两相交,∠1=2∠3,∠2=68°,则∠1= ,∠4= 。
(2题) (3题)3、下面四个图形中,∠1与∠2是对顶角的图形有( )A .0个B .1个C .2个D .3个 4、如图所示,已知O 是直线AB 上一点,∠1=40°,OD 平分∠BOC,则∠2= 。
.(4题) (8题) (9题)5、下面角的图示中,能与30°角互补的是 。
A .B .C .D .6、下列语句错误的有( )个.00001290(180),3490(180),∠+∠=∠+∠=14,∠=∠23∠=∠(1)两个角的两边分别在同一条直线上,这两个角互为对顶角(2)有公共顶点并且相等的两个角是对顶角(3)如果两个角相等,那么这两个角互补(4)如果两个角不相等,那么这两个角不是对顶角A.1 B.2 C.3 D.47、小明做了四道练习题:①有公共顶点的两个角是对顶角②两个直角互为补角③一个三角板中两个锐角互为余角④一个角的两边与另一个角的两边分别在同一直线上,这两个角是对顶角,其中正确的有。
第2课时垂直【知识与技能】1.会用符号表示两直线垂直,并能借助三角板、直尺和方格纸画垂线.2.通过折纸、动手操作等活动探究归纳垂直的有关性质,会进行简单的应用.3.初步尝试进行简单的推理.【过程与方法】通过从生活中提炼、动手操作、观察交流、猜想验证、简单说理等活动,进一步发展学生的空间观念、推理能力和有条理表达的能力.【情感态度】激发学生学习数学的兴趣,体会“数学来源于生活反之又服务于生活”的道理,在解决实际问题的过程中了解数学的价值,通过“简单说理”体会数学的抽象性、严谨性.【教学重点】根据点与线之间垂直的线段最短的原理,解决生活中的一些简单问题.【教学难点】根据点与线之间垂直的线段最短的原理,解决生活中的一些简单问题.一、情景导入,初步认知观察下面三个图形,你能找出其中相交的直线吗?他们有什么特殊的位置关系?【教学说明】数学来源于生活,通过课前开放,引导学生从身边熟悉的图形出发,既复习了上一节课的知识点——两条直线的位置关系,又体会到生活中存在大量特殊的相交线——垂直,在比较中发现新知,加深了学生对垂直和平行的感性认识,感受垂直“无处不在”.二、思考探究,获取新知1.在上面的三幅图形中,我们找出了一些相交的两条直线,那么它们有什么特殊的位置关系?这种位置关系我们称为什么呢?【归纳结论】两条直线相交成四个角,如果有一个角是直角,那么称这两条直线互相垂直(perpendicular),其中的一条直线叫做另一条直线的垂线.它们的交点叫做垂足.通常用“⊥”表示两直线垂直.如图1,记作:AB⊥CD;如图2,记作:l⊥m.2.思考:你能画出两条互相垂直的直线吗?你有哪些方法?(1)你能借助三角尺或者量角器,在一张白纸上画出两条互相垂直的直线吗?(2)如果只有直尺,你能在方格纸上画出两条互相垂直的直线吗?说出你的画法和理由.(3)你能用折纸的方法折出互相垂直的直线吗?试试看吧!请说明理由.3.动手画一画:(1)请画出直线m与点A,你有几种画法?(2)过点A画m的垂线,你能画几条?请用自己的语言概括你的发现.【归纳结论】平面内,过一点有且只有一条直线与已知直线垂直.4.动手画一画.请画出直线l与l外一点P,O是垂足,在l上取点A、B、C,比较PO、PA、PB、PC的长短,你发现了什么?【归纳结论】直线外一点与直线上各点连接的所有线段中垂线段最短.线段PO的长度,叫做点P到l的距离.【教学说明】通过动手画图,可以加深学生对知识的理解,能更好的关注知识的形成过程,这也是促使学生认真审题的重要策略.三、运用新知,深化理解1.如图,∠BAC=90°,AD⊥BC,则下列的结论中正确的个数是(C)①点B到AC的垂线段是线段AB;②线段AC是点C到AB的垂线段;③线段AD是点D到BC的垂线段;④线段BD是点B到AD的垂线段.A.1个B.2个C.3个D.4个2.如图,把水渠中的水引到水池C,先过C点向渠岸AB画垂线,垂足为D,再沿垂线CD开沟才能使沟最短,其依据是(C)A.垂线最短B.过一点确定一条直线与已知直线垂直C.垂线段最短D.以上说法都不对3.已知线段AB=10cm,在同一平面内,点A,B到直线l的距离分别为6cm,4cm.符合条件的直线l有(C)A.1条B.2条C.3条D.4条4.如图,直线a⊥b,∠1=50°,则∠2=40度.解析:∵a⊥b,∴∠1与∠2互余,∵∠1=50°,∴∠2=90°-∠1=90°-50°=40°5.如图,OA⊥OB,OB平分∠MON,若∠AON=120°,求∠AOM的度数.解:∵OA⊥OB,∴∠AOB=90°,∵∠AON=120°,∴∠BON=120°-90°=30°,∵OB平分∠MON,∴∠MOB=∠NOB=30°,∴∠AOM=90°-30°=60°6.如图,一辆汽车在直线形公路AB上由A向B行驶,M,N是分别位于公路AB两侧的两所学校.(1)汽车在公路上行驶时,噪声会对两所学校教学都造成影响,当汽车行驶到何处时,分别对两所学校影响最大?请在图上标出来.(2)当汽车从A向B行驶时,在哪一段上对两学校影响越来越大?在哪一段上对两学校影响越来越小?在哪一段上对M学校影响逐渐减小而对N学校影响逐渐增大?解:(1)如图所示:过M作ME⊥AB,过N作NF⊥AB,当汽车行驶到点E处时,对M学校影响最大;当汽车行驶到点F处时,对N学校影响最大;(2)由A向E行驶时,对两学校影响逐渐增大;由F向B行驶时,对两学校的影响逐渐减小;由E向F行驶时,对M学校影响逐渐减小而对N学校影响逐渐增大.【教学说明】可以满足不同层次学生学习的需要,能激发学生认知上的冲突,从而促使他们去探索,去对自身的认知结构进行调整和变革.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作以补充.五、教学板书1.布置作业:教材“习题2.2”中第2、3题.2.完成同步练习册中本课时的练习.本课时遵循“开放”的原则,在把握教材编写意图的基础上,进行了再创造.通过重组教材,恰当地创设情境,为学生构建了有效开放的学习环境.教学效果较好.。
课 题第二章 相交线与平行线1、两条直线的位置关系(第1课时)教 学 目 标1.知识与技能:在具体情境中了解相交线、平行线、补角、余角、对顶角的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并能解决一些实际问题。
2.过程与方法:经历操作、观察、猜想、交流、推理等获取信息的过程,进一步发展空间观念、推理能力和有条理表达的能力。
3.情感与态度:激发学生学习数学的兴趣,认识到现实生活中蕴含着大量的数量和图形的有关问题,这些问题可以抽象成数学问题,用数学方法予以解决。
教学重、难点1. 2.教 学 过 程 教 学 内 容可根据学生实际增减内容 第一环节 走进生活 引入课题 活动内容一:两条直线的位置关系1. 巩固练习:教师展示下列图片,学生快速回答:2.1—1 2.1—2 结论:1.一般地,在同一平面内,两条直线的位置关系有两种: 和 . 2.定义分别为: 。
问题1:在2.1—1中,直线m 和n 的关系是 ;a 和b 是 ;a 和n 是 。
问题2:在2,1—2你能提出哪些问题?第二环节 动手实践 探究新知动手实践一m nab请先画一画:两条直线直线和,交于点O,再回答下列问题..问题1:观察2.1—4:∠1和∠2的位置有什么关系?大小有何关系?为什么?小组合作交流,尝试用自己的语言描述对顶角的定义。
问题2:剪子可以看成图2.1—4,那么剪子在剪东西的过程中,∠1和∠2还保持相等吗?∠3和∠4呢?你有何结论? 问题3:下列各图中,∠1和∠2是对顶角的是( )问题4:如图2.1—6所示,有一个破损的扇形零件,利用图中的量角器可以量出这个扇形零件的圆心角的度数吗?你能说出所量角是多少度吗?为什么?动手实践二补角定义:一般地,如果两个角的和是1800,那么称这两个角互为补角( ) 余角定义:如果两个角的和是900,那么称这两个角互为余角( ) 动手实践三打台球时,选择适当的方向,用白球击打红球,反弹后的红球会直接入袋,此时∠1=∠2,将图2.1—7抽象成图2.1—8,与交于点O ,∠∠900,∠1=∠2小组合作交流,解决下列问题:在图2.1—8中 问题1:哪些角互为补角?哪些角互为余角?1 2 1 2 1 212A B CD 注意:互余与互补是指两个角之间的数量关系,与它们的位置无关。
2012~2013学年期末复习第二章《相交线与平行线》知识点一、相交线1、在同一平面内,两条直线的位置关系有 相交 和 平行 两种;2、互为余角:如果两个角的和是 90°,那么称这两个角互为余角;例如:23°角的余角为 余角的性质: 同角或等角的余角相等 ;3、互为补角:如果两个角的和是 180°,那么称这两个角互为补角;例如:32°角的补角为 补角的性质: 同角或等角的补角相等 ;4、对顶角:具有公共顶点,并且角的两边互为反向延长线的两个角叫做对顶角; 对顶角的性质: 对顶角相等 ;例题:如图1所示,直线AB 与CD 相交于O 点,OE ⊥AB ,则∠BOD 的余角是 ; ∠BOD 的补角是 ;∠BOD 的对顶角是 ;5、垂线:⑴定义:两条直线相交成四个角,如果有一个角是直角,则称这两条直线互相垂直,其中的一条直线叫另一条直线的垂线,它们的交点叫垂足。
如图2所示,如果有∠BOC=90°,则CD ⊥AB ⑵性质:①唯一性:平面内,过一点 有且只有 一条直线与已知直线垂直。
②直线外一点与直线上各点连接的所有线段中, 垂线段最短 。
⑶点到直线的距离:过直线外的一点作直线的垂线,则 垂线段 的 长度 叫做这一点到这条直线的距离二、平行线A BD O EC图1O ABCD图21、定义:在同一平面内, 不相交 的两条直线叫做平行线。
2、基本性质:①唯一性:过直线外一点 有且只有 一条直线与已知直线平行; ②传递性:平行于 同一条直线 的两条直线也互相平行; 3、“三线八角”:如右图,两直线AB 、CD 同时被第三条直线l 所截,共构成八个小于平角的角,习惯上,我们把直线l 叫做 截线 ;把直线AB 、CD 叫做 被截线 ;⑴同位角:在截线的同侧,并且在被截线的同一方向的两个角叫同位角;如上图的∠1与∠2; ⑵内错角:在截线的异侧,并且夹在两被截线内部的两个角叫内错角;如上图的∠2与∠7等; ⑶同旁内角:在截线同侧,并且夹在两被截线内部的两个角叫同旁内角;如上图的∠2与∠5等; 4、平行线的判定:(重点)⑴同位角相等,两直线平行;符号语言如下: ⑵内错角相等,两直线平行;符号语言如下:⑶同旁内角互补,两直线平行;符号语言如下:3、平行线的性质:(重点)⑴两直线平行,同位角相等;符号语言如下: ⑵两直线平行,内错角相等;符号语言如下:⑶两直线平行,同旁内角互补;符号语言如下:已知平行用性质, 说明平行用判定!a 1 bc2 ∵∠1=∠3∴a ∥b (内错角相等,两直线平行)a 1b c4∵∠1+∠4=180° ∴a ∥b (同旁内角互补,两直线平行) ∵∠1=∠2∴a ∥b (同位角相等,两直线平行)∵a ∥b∴∠1=∠2 (两直线平行,同位角相等)a 1 bc4 a 1bc 3 ∵a ∥b∴∠1+∠4=180°(两直线平行,同旁内角互补)a1b c 2 a 1bc3 ∵a ∥b ∴∠1=∠3 (两直线平行,内错角相等)①2121②12③12④2012~2013学年七(下)期末复习试题——第二章《相交线与平行线》一、选择题:1.下列所示的四个图形中,1∠和2∠是同位角...的是( )A. ②③B. ①②③C. ①②④D. ①④2.如右图所示,点E 在AC 的延长线上,下列条件中能判断...CD AB //( ) A. 43∠=∠ B. 21∠=∠C. DCE D ∠=∠D.180=∠+∠ACD D3.一学员练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )A. 第一次向左拐30,第二次向右拐30 B. 第一次向右拐50,第二次向左拐130 C. 第一次向右拐 50,第二次向右拐 130 D. 第一次向左拐 50,第二次向左拐130 4.两条平行直线被第三条直线所截,下列命题中正确..的是( ) A. 同位角相等,但内错角不相等 B. 同位角不相等,但同旁内角互补 C. 内错角相等,且同旁内角不互补 D. 同位角相等,且同旁内角互补 5.下列说法中错误..的个数是( ) (1)过一点有且只有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直。
北师大版义务教育课程标准实验教科书七年级下册2.1.1两直线的位置关系第1课时教学设计一、教材分析1、地位作用:本节课研究的相交线是平面内两条直线的两种位置关系中的其中一种情形,学生已经学习了直线、射线、线段和角的有关知识,因此,本节课是在学生已有知识和经验的基础上,来进一步研究平面内两条直线相交的情形。
在本节课中首先探究了两直线相交所成的角的位置和大小关系,给出了邻补角和对顶角的概念,得出了“对顶角相等”的结论;为接下来研究两条直线被第三条直线所截的情形,即同位角、内错角、同旁内角等概念的学习作了最基本的准备。
同时是后续学习垂直的基础。
2、目标和目标解析:1.理解邻补角和对顶角的概念;2.掌握“对顶角相等”的性质;3.理解对顶角相等的说理过程;4.经历质疑,猜想,归纳等数学活动,培养学生的观察,转化,说理能力和数学语言规范表达能力;5.通过师友互助、小组讨论,培养合作精神,让学生在探索问题的过程中,体验解决问题的方法和乐趣,增强学习兴趣。
3、教学重、难点教学重点:邻补角、对顶角的概念,对顶角的性质与应用。
教学难点:对顶角相等的性质的探索。
突破难点的方法:通过相关旧知的复习,按照猜想、推理的思维过程进行突破。
二、教学准备:多媒体课件、导学案、剪刀,纸。
三、教学过程教学内容师生活动设计意图一、创设情景,引入新知问题:在我们的生活的世界中,蕴涵着大量的相交线和平行线,大家对它们也不陌生,(播放图片)请找出图片中的相交线、平行线。
由此引入本节的主要内容。
(板书)课题学生观察图片,获得感性认识.让学生知道,相交线、平行线的概念是从实物中抽象出来的,通过学生熟悉的事物,激发学生的学习兴趣。
二、小组合作,探究新知1. 观察剪刀剪布的过程,引入两条相交直线所成的角问题1:张开地剪刀给人以什么形象?(出示一把张开的剪刀),张开的剪刀可看作两条相交直线。
(教师可以同时在黑板上画出几何图形)在用剪刀剪布的过程中,用力握紧把手引发了剪刀张角的变化,表演剪布过程,让学生仔细观察,提出问题问题2:两个把手之间的的角发生了什么变化?剪刀刀刃张开的口又怎么变化?握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.教师:如果把剪刀的构造看作两条相交的直线,以上就关系到两条相交直线所成的角的问题,本节课就是探讨两条相交线所成的角及其特征.2.认识邻补角和对顶角,探索它们性质(1)角的位置关系探究画直线AB、CD相交于点O问题:1 、两条相交直线.形成的小于平角的角有几个?2、两两相配共组成几对角?3、各对角存在怎样的位置关系?按位置关系对他们怎样进行分类?4、各对角的度数有什么关系?学生观察、思考、回答问题学生观察、思考、回答,得出结论学生思考并在小组内交流,全班交流.由实际问题引导学生初步感知相交线形成的角及特点,同时明确本节课要学习的内容用现实生活中的例子引出两线相交所成角的问题,自然而贴切,同时在这个过程中,让学生对两线相交所成角的关系有了初步的认识,这就为研究对顶角相等作了铺垫三.细心观察,归纳定义1、探究邻补角的定义问题:(1)∠1与∠2有怎样的位置关系?(2)∠1与∠2的顶点有什么特点?(3)∠1与∠2的边所在的位置有什么特点?邻补角定义:∠1和∠2有一条公共边OA,它们的另一边互为反向延长线(∠1和∠2互补),具有这种关系的两个角,互为邻补角。
1北师大版七年级下数学第二章《相交线与平行线》教案 《2.1两条直线的位置关系》教案一:教学目标1、掌握两条直线平行与垂直的条件;2、会运用条件判断两直线是否平行或垂直;3、能运用条件确定两平行或垂直直线的方程系数.二:教学重点、难点两条直线平行与垂直的条件, 两条直线平行与垂直的条件的应用.三:教学设计(一)情景引入A :两条直线位置关系当中平行为简单;现在我们来研究平面内两条直线平行的关系. ①先入为主的思想;在研究直线问题时首先考虑特殊情况:α=90°时,画图.这个情况很简单:当α=90°时只要x 1≠x 2,则两条直线平行.②一般情况:α≠90°时,则k 存在,∴y 1=kx +b 1 y 2=kx +b 2已知直线l 1,l 2的斜截式方程为:l 1:y =k 1x +b 1 l 2:y =k 2x +b 2,若l 1//l 2,则有α1=α2且b 1≠b 2,∴tan α=tan α [α1∈[0,180°),α2∈[0,180°)]∴k 1=k 2反之,是否成立?若k 1=k 2且b 1≠b 2则有tan α=tan α,∵0≤α1,α2<π,∴α1=α2且b 1≠b 2,∴l 1//l 2结论一:①特殊情况:若两条直线l 1,l 2斜率都不存在也不重合,则两直线l 1,l 2平行; ②有斜率的两条直线l 1//l 2 <=> k 1=k 2且b 1≠b 2∴判断不重合的两条直线平行的程序:两条直线方程——两条直线斜率都不存在且不重合→平行.两条直线方程——化为斜截式方程→求两条直线斜率.若k 1=k 2且b 1≠b 2→平行若k 1≠k 2→相交或者若A 1B 2≠B 1A 2且B 1C 2≠B 2C 1或A 1B 2=A 2B 1且A 1C 2≠A 2C 1 则两条直线平行.例1:已知两条直线l 1:4x +2y -7=0,l 2:2x -y -5=0求证l 1∥l 212122∵l 1的斜率为,l 2的斜率为 ∴k 1=k 2∴l 1∥l 2 例2:求过点A (1,-4)且与直线2x +3y +5=0平行的直线的方程?解:已知直线的斜率为-,因为所求直线与已知直线平行,因此它的斜率也是-. 根据点斜式,得到所求直线的方程是:y +4=-(x -1)即2x +3y +10=0 例3:如果直线ax +2y +2=0与3x -y -2=0平行,那么系数a =()A .3B .-6C .-D . 例4:求与直线3x +4y +1=0平行,且在两坐标轴上截距之和为的直线l 的方程? 法一:设直线方程为3x +4y +m =0,交x 轴于点(-,0)交y 轴于点(0,-),由题意可得(-)+(-)=即m =-4, ∴所求直线l 的方程为3x +4y -4=0, 法二:设直线方程为+=1, ∴a +b =,-=-,可得a =,b =1, ∴所求直线l 的方程为3x +4y -4=0B :平时我们已经理解了;接下来我们来研究两直线相互垂直的关系.①同样的先考虑特殊情况:若已知一条直线的倾斜角为90°,x =x 1,则求其另一条与它垂直的直线方程.②一般情况:若已知两条直线l 1:y =k 1x +b 1,l 2:y =k 2 x +b 2,相互垂直则k 1与k 2有何关系? α+(π-β)= ∴α-β=- ∴β=α+ 21213232322332373m 4m 3m 4m 37a x b y 37a b 43342π2π2π3tan β=tan (α+)=-cot α ∴tan α·tan β=tan α·(-cot α)=-1∴最后我们得证:若两条直线垂直则k 1k 2=-1.③α=90°时=>β=0°(特殊情况)k 1=0,k 2不存在.或者k 1不存在,k 2=0.例4:已知直线l 1:ax -y +2a =0与l 2:(2a -1)x +ay +a =0互相垂直,求a 的值一、①当α=90°即a =0时,l 2:x =0 ∴l 1:y =0 ∴l 1⊥l 2②当α≠90°则k 1·k 2=a ·(-)=-1 ∴a =1 二、A 1A 2+B 1B 2=0 =>a (2a -1)-a =0 2a ²-2a =0 =>a =1或a =0例5:求与3x +4y +1=0平行,且在两坐标轴上截距之和为7/3的直线l 的方程.(一)设直线方程为3x +4y +m =0,交x 轴于点(-,0)交y 轴于点(0,-) ∴(-)+(-)= ∴m =-4∴所求直线l 的方程为3x +4y -4=0(二)设直线方程为+=1 =>a +b =;-=-=>a =,b =1 ∴l :3x +4y -4=0例6:已知三角形两条高线为x +y =0和2x -3y +1=0且一个顶点C (1,2),求三角形AC ,BC 边所在直线的方程.∵AC ,BC 与两条高线垂直∴AC ,BC 的斜率为1和- ∴边AC ,BC 所在直线的方程为y -2=1(x -1),y -2=-(x -1) 即x -y +1=0,3x +2y -7=0《2.2探索直线平行的条件》教案一、导学目标1.使学生能够熟练识别同位角;2πaa )12(-3m 4m 3m 4m 37a xb y 37a b 433423232.使学生会用同位角相等判定二条直线平行.二、重点难点1.重点(1)识别同位角.(2)用同位角相等判定二条直线平行.2.难点用同位角相等判定二条直线平行.三、导学过程一、自主学习:操作---观察---探索如图:3根木条(或硬纸条)相交成∠1、∠2,固定木条b、c,转动木条a.问:1.在木条a的转动过程中,木条a、b的位置关系发生了什么变化?∠2与∠1的大小关系发生了什么变化?2.改变图中∠1的大小,按照上面的方式再试一试,当∠2与∠1的大小满足什么关系时,木条a与木条b平行?二、合作探究:活动一:利用平移三角尺的方法画平行线,探索直线平行的条件.当∠1与∠2相等,直线a、b就;当∠1与∠2不相等时,直线a、b平行吗?活动二:通过观察、比较,认识“同位角”,探索直线平行的条件.直线a、b被第三条直线c所截而成的8个角中,像∠1与∠2这样的一对角称为.请问图中还有没有其他的同位角?4归纳:相等,两直线.活动三:例题讲解.例:如图,∠1=∠C,∠2=∠C,请找出图中互相平行的直线,并说明理由.三、拓展提高:1.∠1与∠C、∠2与∠B、∠ 3与∠ C分别是哪两条直线被哪一条直线截成的同位角?2.如图,直线a、b被直线c所截,∠1=35°,∠2=145°,问:直线a与b平行吗?四、达标检测:1.如图,∠1与∠B是直线和被直线所截构成的同位角;∠2与∠A直线和被直线所截构成的同位角.2.如图,∠1、∠2、∠3中,和是同位角.3.如图,如果∠B=∠1,根据,那么可得DE//BC;如果∠B=∠2,根据同位角相等,两直线平行,那么可得// .4.如图,已知直线AB、CD被直线EF所截,如果∠BMN=∠DNF,∠1=∠2,那么MQ∥NP,为什么?AB CD EF13256《2.3平行线的性质》教案教学目标:理解平行线的性质的推导,掌握平行线的性质.教学重点:平行线的性质以及应用.教学难点:平行线的性质公理与判定公理的区别.教学过程:一、梳理旧知,引出新课平行线的判定:判定方法1、同位角相等,两直线平行.判定方法2、内错角相等,两直线平行.判定方法3、同旁内角互补,两直线平行.问题:反过来也成立吗?过去我们学过:如果两个数的和为0,这两个数互为相反数.反过来,如果两个数互为相反数,那么这两个数的和为0.这两个句子都是正确的.现在换一个例子:如果两个角是对顶角,那么这两个角相等.它是对的.反过来,如果两个角相等,这两个角是对顶角.对吗?再看下面的例子:“如果一个整数个位上的数字是5,那么它一定能够被5整除.”对吗?这句话反过来怎么说?对不对?【结论】如果一个句子是正确的,反过来说(因果对调),就未必正确.二、动手操作,归纳性质上一节课,我们学过:同位角相等,两直线平行.反过来怎么说?它还是对的吗?(板书)性质1、两直线平行,同位角相等.P Q M N21F ED C B A7如果把平行线性质1:“两直线平行,同位角相等”看作是基本事实(公理),我们可以利用这个公理证明平行线性质2:“两直线平行,内错角相等”.【例】如图,已知:直线a 、b 被直线c 所截,且a ∥b ,求证:∠1=∠2.证明:∵a ∥b ,∴∠1=∠3(__________________).∵∠3=∠2(对顶角相等),∴∠1=∠2(等量代换).(板书)性质2、两直线平行,内错角相等【变式】下面我们来证明平行线的性质3:两直线平行,同旁内角互补.请模仿范例写出证明.如图,已知:直线a 、b 被直线c 所截,且a ∥b ,求证:∠1+∠2=180º.证明:(略)(板书)性质:两直线平行,同旁内角互补三、巩固新知,深化理解例1、如图,平行线AB ,CD 被直线AE 所截.(1)从∠1=110º.可以知道∠2是多少度吗?为什么?(2)从∠1=110º可以知道∠3是多少度吗?为什么?(3)从∠1=110º可以知道∠4是多少度吗?为什么?例2、如图,已知AB ∥CD ,AE ∥CF ,∠A = 39°,∠C 是多少度?为什么?ab1 2 3 c ab 1 23c ED CB A12348方法一解:∵AB ∥CD , ∴ ∠C=∠1.∵ AE ∥CF ,∴ ∠A=∠1.∴ ∠C=∠A .∵∠A = 39º,∴∠C = 39º.方法二解:∵AB ∥CD ,∴ ∠C=∠2.∵ AE ∥CF ,∴ ∠A=∠2.∴ ∠C=∠A .∵∠A = 39º,∴∠C = 39º.练习1:如图,已知直线a 、b 被直线c 所截,在括号内为下面各小题的推理填上适当的根据: (1)∵a ∥b ,∴∠1=∠3(___________________);(2)∵∠1=∠3,∴a ∥b (_________________).(3)∵a ∥b ,∴∠1=∠2(__________________);(4)∴a ∥b ,∴∠1+∠4=180º(_____________________________________)(5)∵∠1=∠2,∴a ∥b (___________________);(6)∵∠1+∠4=180º,∴a ∥b (_______________).练习2:教材第51页 随堂练习四、盘点收获,布置作业1、(1)平行线的性质是什么?(2)你能用自己的语言叙述研究平行线性质的过程吗?(3)性质2和性质3是通过简单推理得到的,在推理论证中需要注意哪些问题?2、作业G FED C B Aa b12 3 c 49《2.4用尺规作角》教案教学目的:1、经历尺规作角的过程,进一步培养学生的动手操作能力,增强学生的数学应用和研究意识.2、能按作图语言来完成作图动作,能用尺规作一个角等于已知角.教学重点:能按作图语言来完成作图动作,能用尺规作一个角等于已知角.教学难点:作图步骤和作图语言的叙述,及作角的综合应用.教学过程:一、问题的提出如图,要在长方形木板上截一个平行四边形,使它的一组对边在长方形木板的边缘上,另一组对边中的一条边为AB .(1)请过点C 画出与AB 平行的另一条边.(2)如果你只有一个圆规和一把没有刻度的直尺,你能解决这个问题吗?二 、新课内容一:(请按作图步骤和要求操作,别忘了留下作图痕迹)(一) 用尺规作一个角等于已知角.(1)已知:∠AOB求作:∠A′O′B′,使∠A′O′B′=∠AOB(2)已知:∠10求作:∠AOB ,使∠AOB=∠(二)用尺规作一个角等于已知角的倍数:(3)已知:∠1求作:∠MON ,使∠MON=2∠1∠COD ,使∠COD=3∠1(三)用尺规作一个角等于已知角的和:(4) 已知:∠1、∠2、∠3求作:①∠AOB ,使∠AOB=∠1+∠2②∠POQ ,使∠POQ=∠1+∠2+∠3③∠MON ,使∠MON=2∠1+∠2(四)用尺规作一个角等于已知角的差:已知:∠、∠、∠求作:①∠AOB ,使∠AOB=∠-∠②∠POQ ,使∠POQ=∠-∠-∠③求作一个角,使它等于2∠-∠(五) 综合练习:(通过以下练习,意味着你掌握了作角的真本领,多动一下脑筋,你一定会完成得很出色的)1、已知:线段AB 、 ∠、∠αα1αβγαβγαβαβγβγαβ13211求作:分别过点A 、点B 作∠CAB=∠、∠CBA=∠2、如图,点P 为∠ABC 的边AB 上的一点,过点P 作直线EF//BC .3、已知:直线L 和L 外一点P ,求作:一条直线,使它经过点P ,并与已知直线L 平行.4、已知:△ABC ,求作:直线MN ,使MN 经过点A ,且MN//BC .5、如图,以点B 为顶点,射线BA 为一边,在∠ABC 外再作一个角,使其等于∠ABC .(六)小结(七)作业αβLA αβ。
第二章相交线与平行线1 两条直线的位置关系第1课时对顶角、余角和补角【知识与技能】在具体情境中了解相交线、平行线、补角、余角、对顶角的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并能解决一些实际问题.【过程与方法】经历操作、观察、猜想、交流、推理等获取信息的过程,进一步发展空间观念、推理能力和有条理表达的能力.【情感态度】激发学生学习数学的兴趣,认识到现实生活中蕴含着大量的数量和图形的有关问题,这些问题可以抽象成数学问题,用数学方法予以解决.【教学重点】1.余角、补角、对顶角的概念.2.理解等角的余角相等、等角的补角相等、对顶角相等.【教学难点】对“在同一平面内的两条直线”含义的理解.理解等角的余角相等,等角的补角相等.一、情景导入,初步认知向同学们展示一些生活中的图片,让学生观察生活中的两条直线之间的位置关系.【教学说明】数学来源于生活,通过课前开放,引导学生从身边熟悉的图形出发,体会数学与生活的联系,总结出同一平面内两条直线的基本位置关系,体会本章内容的重要性和在生活中的广泛应用,为引入新课做好准备.通过亲身经历提炼有关数学信息的过程,可以让学生在直观有趣的问题情境中学到有价值的数学.二、思考探究,获取新知探究1:相交线、平行线1.从上面的图片中,你能找出两条直线有几种位置关系吗?2.请各组同学每人拿出两支笔,用它们代表两条直线,在同一平面内,随意移动笔,观察笔与笔有几种位置关系?各种位置关系,分别叫做什么?.【归纳结论】同一平面内的两条直线的位置关系有平行和相交两种;若两条直线只有一个公共点,我们称这两条直线为相交线;同一平面内不相交的两条直线叫做平行线.【教学说明】让学生用两支笔动手操作,不但培养了学生的动手能力,还能让学生更深层次的体会到平行线的含义,进一步明确同一平面内两条直线的位置关系.探究2:对顶角的概念和性质请先画一画:两条直线直线AB和CD,交于点O,再回答下列问题1.观察:∠1和∠2的位置有什么关系?大小有何关系?为什么?小组合作交流,尝试用自己的语言描述对顶角的定义.2.剪刀可以看成两直线相交,那么剪刀在剪东西的过程中,∠1和∠2还保持相等吗?∠3和∠4呢?你有何结论?【归纳结论】两个角的两边互为反向延长线,则这两个角叫做对顶角.对顶角相等.探究3:余角、补角的概念和性质1.用量角器,量出∠1、∠2、∠3、∠4的度数,观察∠1与∠3有什么关系?2.图中还有哪些角,具有这种关系?【归纳结论】如果两个角的和是180°,那么称这两个角互为补角.类似的,如果两个角的和是90°,那么称这两个角互为余角.3.打台球时,选择适当的方向,用白球击打红球,反弹后的红球会直接入袋,此时∠1=∠2,将图抽象成几何图形,ON与DC交于点O,∠DON=∠CON=900,∠1=∠2.小组合作交流,解决下列问题:问题1:哪些角互为补角?哪些角互为余角?问题2:∠3与∠4有什么关系?为什么?问题3:∠AOC与∠BOD有什么关系?为什么?你还能得到哪些结论?【归纳结论】同角或等角的余角相等.同角或等角的补角相等.【教学说明】概括归纳得到猜想和规律,并加以验证,是创新的重要方法.结合具体的学习内容,设计有效的数学探究活动,使学生经历数学的发生发展过程,积累数学活动经验.三、运用新知,深化理解1.在下列4个判断中:①在同一平面内,不相交的两条线段一定平行;②不相交的两条直线一定平行;③在同一平面内,不平行的两条射线一定相交;④在同一平面内,不平行的两条直线一定相交.其中正确的个数是(D)A.4B.3C.2D.12.如果一个角的补角是150°,那么这个角的余角的度数是60°3.已知∠α=24°,且∠α与∠β互余,∠β与∠γ互余,则∠γ的余角和补角的度数分别为66°,156°.4.判断.(1)一个角有余角也一定有补角.()(2)一个角有补角也一定有余角.()(3)一个角的补角一定大于这个角.()答案:(1)√(2)×(3)×5.填表:从中,你发现一个锐角的补角比它的余角大.答案:表格第一行:58°,148°;第二行:27°37′,117°37′;第三行:90°-x,180°-x;空格:90°.6.已知一个角的补角是它的余角的4倍,求这个角的度数.分析:可以利用方程思想解决这道题.解:设这个角为x°,则180-x=4(90-x),∴x=60.答:这个角是60°.7.如图,E、F是直线DG上两点,∠1=∠2,∠3=∠4=90°,找出图中相等的角并说明理由.解:∠5=∠6,理由是:等角的余角相等.8.如图,已知AOB是一直线,OC是∠AOB的平分线,∠DOE是直角,图中哪些角互余?哪些角互补?哪些角相等?解:互余:∠1与∠2,∠1与∠4,∠2与∠3,∠4与∠3;互补:∠1与∠EOB,∠3与∠EOB,∠4与∠AOD,∠2与∠AOD,∠AOC 与∠BOC,∠AOC与∠DOE,∠BOC与∠DOE.相等:∠AOC=∠BOC=∠DOE,∠1=∠3,∠2=∠4.【教学说明】巩固本节课的知识点,检验学生的掌握程度.四、师生互动,课堂小结1.你学到了哪些知识点?2.你学到了哪些方法?3.你还有哪些困惑?五、教学板书1.布置作业:教材“习题2.1”中第1、2、3题.2.完成同步练习册中本课时的练习.本节的教学是非常成功的一节课,学生的积极性、主动性完全迸发,整个课堂完全就是和谐统一的有机整体.仔细想想,从中得出:对于新旧知识具有类似内容的情况可以用类比的方法,这样省时高效;对于几何命题的验证,可通过多种方法证明,如本节的“等角的余角相等”,可以通过测量、叠合法、逻辑证明等方法,这样可以让不同的学生得到清晰而深刻的理解;更重要的是通过本节学习知道说明一个几何命题的过程是怎样的,须经历“猜想—推理—结论”这样一个过程,为以后的学习做了铺垫.第2课时垂直【知识与技能】1.会用符号表示两直线垂直,并能借助三角板、直尺和方格纸画垂线.2.通过折纸、动手操作等活动探究归纳垂直的有关性质,会进行简单的应用.3.初步尝试进行简单的推理.【过程与方法】通过从生活中提炼、动手操作、观察交流、猜想验证、简单说理等活动,进一步发展学生的空间观念、推理能力和有条理表达的能力.【情感态度】激发学生学习数学的兴趣,体会“数学来源于生活反之又服务于生活”的道理,在解决实际问题的过程中了解数学的价值,通过“简单说理”体会数学的抽象性、严谨性.【教学重点】根据点与线之间垂直的线段最短的原理,解决生活中的一些简单问题.【教学难点】根据点与线之间垂直的线段最短的原理,解决生活中的一些简单问题.一、情景导入,初步认知观察下面三个图形,你能找出其中相交的直线吗?他们有什么特殊的位置关系?【教学说明】数学来源于生活,通过课前开放,引导学生从身边熟悉的图形出发,既复习了上一节课的知识点——两条直线的位置关系,又体会到生活中存在大量特殊的相交线——垂直,在比较中发现新知,加深了学生对垂直和平行的感性认识,感受垂直“无处不在”.二、思考探究,获取新知1.在上面的三幅图形中,我们找出了一些相交的两条直线,那么它们有什么特殊的位置关系?这种位置关系我们称为什么呢?【归纳结论】两条直线相交成四个角,如果有一个角是直角,那么称这两条直线互相垂直(perpendicular),其中的一条直线叫做另一条直线的垂线.它们的交点叫做垂足.通常用“⊥”表示两直线垂直.如图1,记作:AB⊥CD;如图2,记作:l⊥m.2.思考:你能画出两条互相垂直的直线吗?你有哪些方法?(1)你能借助三角尺或者量角器,在一张白纸上画出两条互相垂直的直线吗?(2)如果只有直尺,你能在方格纸上画出两条互相垂直的直线吗?说出你的画法和理由.(3)你能用折纸的方法折出互相垂直的直线吗?试试看吧!请说明理由.3.动手画一画:(1)请画出直线m与点A,你有几种画法?(2)过点A画m的垂线,你能画几条?请用自己的语言概括你的发现.【归纳结论】平面内,过一点有且只有一条直线与已知直线垂直.4.动手画一画.请画出直线l与l外一点P,O是垂足,在l上取点A、B、C,比较PO、PA、PB、PC的长短,你发现了什么?【归纳结论】直线外一点与直线上各点连接的所有线段中垂线段最短.线段PO的长度,叫做点P到l的距离.【教学说明】通过动手画图,可以加深学生对知识的理解,能更好的关注知识的形成过程,这也是促使学生认真审题的重要策略.三、运用新知,深化理解1.如图,∠BAC=90°,AD⊥BC,则下列的结论中正确的个数是(C)①点B到AC的垂线段是线段AB;②线段AC是点C到AB的垂线段;③线段AD是点D到BC的垂线段;④线段BD是点B到AD的垂线段.A.1个B.2个C.3个D.4个2.如图,把水渠中的水引到水池C,先过C点向渠岸AB画垂线,垂足为D,再沿垂线CD开沟才能使沟最短,其依据是(C)A.垂线最短B.过一点确定一条直线与已知直线垂直C.垂线段最短D.以上说法都不对3.已知线段AB=10cm,在同一平面内,点A,B到直线l的距离分别为6cm,4cm.符合条件的直线l有(C)A.1条B.2条C.3条D.4条4.如图,直线a⊥b,∠1=50°,则∠2=40度.解析:∵a⊥b,∴∠1与∠2互余,∵∠1=50°,∴∠2=90°-∠1=90°-50°=40°5.如图,OA⊥OB,OB平分∠MON,若∠AON=120°,求∠AOM的度数.解:∵OA⊥OB,∴∠AOB=90°,∵∠AON=120°,∴∠BON=120°-90°=30°,∵OB平分∠MON,∴∠MOB=∠NOB=30°,∴∠AOM=90°-30°=60°6.如图,一辆汽车在直线形公路AB上由A向B行驶,M,N是分别位于公路AB两侧的两所学校.(1)汽车在公路上行驶时,噪声会对两所学校教学都造成影响,当汽车行驶到何处时,分别对两所学校影响最大?请在图上标出来.(2)当汽车从A向B行驶时,在哪一段上对两学校影响越来越大?在哪一段上对两学校影响越来越小?在哪一段上对M学校影响逐渐减小而对N学校影响逐渐增大?解:(1)如图所示:过M作ME⊥AB,过N作NF⊥AB,当汽车行驶到点E处时,对M学校影响最大;当汽车行驶到点F处时,对N 学校影响最大;(2)由A向E行驶时,对两学校影响逐渐增大;由F向B行驶时,对两学校的影响逐渐减小;由E向F行驶时,对M学校影响逐渐减小而对N学校影响逐渐增大.【教学说明】可以满足不同层次学生学习的需要,能激发学生认知上的冲突,从而促使他们去探索,去对自身的认知结构进行调整和变革.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作以补充.五、教学板书1.布置作业:教材“习题2.2”中第2、3题.2.完成同步练习册中本课时的练习.本课时遵循“开放”的原则,在把握教材编写意图的基础上,进行了再创造.通过重组教材,恰当地创设情境,为学生构建了有效开放的学习环境.教学效果较好.2 探索直线平行的条件第1课时利用同位角判定两条直线平行【知识与技能】1.会识别由“三线八角”所成的同位角.2.掌握直线平行的条件,并能解决一些问题.【过程与方法】经历探索直线平行的条件的过程,掌握直线平行的条件,并能解决一些问题.【情感态度】进一步发展空间观念,推理能力和有条理表达的能力.【教学重点】会识别各种图形下的同位角,并掌握直线平行的条件是“同位角相等,两直线平行”.【教学难点】判断两直线平行的说理过程.一、情景导入,初步认知1.在同一平面内,两条直线的位置关系是.2.在同一平面内,的两条直线是平行线.3.如教材中P44彩图,装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹的角为多少度时才能使木条a与木条b平行?你能说明其中的道理吗?【教学说明】教师通过设置问题,层层设疑,在引导学生思考、层层释疑的基础上,既复习旧知识,又做好新知识学习的铺垫,同时也不断激活学生思维、生成新问题,引起认知冲突,从而自然引入新课.二、思考探究,获取新知1.动手操作移动活动木条,完成书中P44的做一做内容.2.改变图中∠1的大小,按照上面的方式再做一做,∠1与∠2的大小满足什么关系时,木条a与木条b平行?小组内交流.3.如图,直线AB,CD被直线l所截:具有∠1与∠2,这样位置关系的角,可以看作是在被截直线的同一侧,在截线的同一旁,相对位置是相同的角,我们把这样的角称为同位角.4.图中还有其他的同位角吗?这些角相等也可以得出两直线平行吗?【归纳结论】两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称“同位角相等,两直线平行”.两直线平行,用符号“∥”表示.如直线a与b平行,记作“a∥b”.5.想一想,如何利用三角板画平行线?小明是这样作的,你认为他作得对不对?你能说明其中的原理吗?6.动手画一画:①你能过直线AB外一点P画直线AB的平行线吗?能画几条?②在下图中,分别过C,D画直线AB的平行线EF、GH.那么EF与GH有怎样的位置关系?【教学说明】由浅入深,充分地让学生经历了解决问题的过程,较好的突出了重点,突破了难点.【归纳结论】过直线外一点有且只有一条直线与这条直线平行.平行于同一条直线的两条直线互相平行.几何语言:∵a∥b,a∥c,∴b∥c (平行于同一条直线的两条直线互相平行).三、运用新知,深化理解1.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是同位角相等,两直线平行.2.如图所示,FE⊥CD,∠2=26°,当∠1=64°时,AB∥CD.3.如图,当∠1=∠D时,可以得到AD∥BC,其理由是同位角相等,两直线平行.4.如图,已知∠1=∠2,试说明AB与CD的关系.解:AB∥CD.理由:∵∠1=∠2(已知)∠2=∠3(对顶角相等)∴∠1=∠3(等量代换)∴AB∥CD(同位角相等,两直线平行)5.如图,若∠1=∠4,∠1+∠2=180°,则AB、CD、EF的位置关系如何?解:∵∠1+∠2=180°,∠2+∠3=180°,∴∠1=∠3,∴AB∥CD.又∵∠1=∠4,∴AB∥EF,∴AB∥CD∥EF.6.如图,∠B=∠C,B、A、D三点在同一直线上,∠DAC=∠B+∠C,AE是∠DAC的平分线,则AE与BC平行吗?为什么?解:AE∥BC.理由:∵∠DAC=∠B+∠C,∠B=∠C,∴∠DAC=2∠B.∵AE是∠DAC的平分线,∴∠DAC=2∠1,∴∠B=∠1,∴AE∥BC.7.如图,BE平分∠FBD,∠ABC=∠C,那么直线FB与AC平行吗?试说明理由.解:FB∥AC.理由如下:∵BE平分∠FBD,∴∠DBE=∠FBE,∵∠DBE=∠ABC,∴∠FBE=∠ABC,∵∠ABC=∠C,∴∠FBE=∠C,∴FB∥AC.【教学说明】进一步激发学生的探究兴趣,学生学会用所学知识解释和解决实际生活中的问题,提高能力.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作以补充.五、教学板书1.布置作业:教材“习题2.3”中第1、2题.2.完成同步练习册中本课时的练习.整节课构建了“以问题研究和学生活动”为中心的课堂学习环境,使教学过程成为在教师指导下学生的一种自主探索的学习活动过程,在探索中形成自己的观点.所以,合理把握教学问题,是保证学生自主、合作、探究的学习方式纵向发展的关键,要克服以完成教学任务为主要目标,不舍得给学生探究时间的倾向,要给学生提供较为充分的思维、探究的时间和空间.第2课时利用内错角、同旁内角判定两条直线平行【知识与技能】1.会识别由“三线八角”构成的内错角和同旁内角.2.经历探索直线平行条件的过程,掌握利用同位角相等、同旁内角互补判别直线平行的结论,并能解决一些问题.【过程与方法】经历观察、操作、想象、图例、交流等活动,体会利用操作、归纳获得数学结论的过程,进一步发展空间想象、推理能力和有条理表达的能力.【情感态度】使学生在参与探索、交流的数学活动中,进一步体验数学与实际生活的密切联系.【教学重点】弄清内错角和同旁内角的意义,会用“内错角相等,两直线平行”和“同旁内角互补,两直线平行”的结论.【教学难点】会用“内错角相等,两直线平行”和“同旁内角互补,两直线平行”的结论.一、情景导入,初步认知小明有一块小画板,他想知道它的上下边缘是否平行,于是他在两个边缘之间画了一条线段AB(如图所示).他只有一个量角器,他通过测量某些角的大小就能知道这个画板的上下边缘是否平行,你知道他是怎样做的吗?【教学说明】通过实际问题的引入,提高学生学习的兴趣.二、思考探究,获取新知1.如图,直线AB,CD被直线l所截如上图,∠4和∠5在截线的两侧,在被截线的内部,具有这样位置关系的角叫做内错角.∠4和∠7在截线的同旁,在被截线的内部,具有这种位置关系的角叫做同旁内角.2.请找出其他的内错角和同旁内角.3.议一议:(1)内错角满足什么关系时,两直线平行?为什么?(2)同旁内角满足什么关系时,两直线平行?为什么?【归纳结论】两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称“内错角相等,两直线平行”.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称“同旁内角互补,两直线平行”.【教学说明】本环节选取了课本的议一议,采取的方式是先独立思考、探究,再讨论交流,目的是充分发挥每一个学生的积极性,尽可能的找到多种方法,这样合作交流才有更充分的内容,才能够互相启发,博采众长.在学生交流的基础上,教师再利用课件展示,进一步验证结论,从而引导学生得出结论.三、运用新知,深化理解1.如图所示,∠1与∠2是内错角的是(D)2.如图所示,与∠C互为同旁内角的角有(C)A.1个B.2个C.3个D.4个3.如图所示,下列条件中不能判定DE∥BC的是(C)A.∠1=∠CB.∠2=∠3C.∠1=∠2D.∠2+∠4=180°4.如图所示,∠DCB和∠ABC是直线和被直线所截而成的角.答案:AB;CD;BC;同旁内.5.如图所示,∠1=∠2,则∥,理由是.答案:AB;CD;内错角相等,两直线平行.6.如图所示,AB⊥BC于点B,BC⊥CD于点C,∠1=∠2,那么EB∥CF吗?为什么?解:EB∥CF.理由如下:∵AB⊥BC于点B,BC⊥CD于点C,∴∠ABC=∠BCD=90°,∴∠1+∠3=∠2+∠4=90°,∵∠1=∠2,∴∠3=∠4,∴EB∥CF(内错角相等,两直线平行).7.如图所示,AB与CD相交于点O,∠A+∠1=110°,∠B+∠2=110°,判断AC与DB的位置关系,并说明理由.解:AC∥DB.理由如下:∵AB与CD相交于点O,∴∠1=∠2,∵∠A+∠1=110°,∠B+∠2=110°∴∠A=∠B,∴AC∥DB.(内错角相等,两直线平行).8.如图所示,BE是∠ABD的平分线,DE是∠BDC的平分线,且∠1+∠2=90°,那么直线AB,CD的位置关系如何?并说明理由.解:AB∥CD.理由如下:∵BE是∠ABD的平分线,DE是∠BDC的平分线,∴∠ABD=2∠1,∠BDC=2∠2,又∵∠1+∠2=90°,∴∠ABD+∠BDC=180°,∴AB∥CD(同旁内角互补,两直线平行).【教学说明】通过练习及时巩固所学知识,并学会灵活应用.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.五、教学板书1.布置作业:教材“习题2.4”中第1、2题.2.完成同步练习册中本课时的练习.通过本节课的学习,学生初步了解了内错角和同旁内角,但在三线八角图中,找同位角、内错角、同旁内角就有些混乱了,不过能通过观察内错角、同旁内角度数的变化发现“内错角相等,两直线平行”和“同旁内角互补,两直线平行”的结论.在实际应用中比较乱,容易出现“同旁内角相等,两直线平行”的错误. 所以在教学中要重点强调.3 平行线的性质第1课时平行线的性质【知识与技能】经历探索平行线性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.【过程与方法】经历观察、测量、推理、交流等活动,进一步发展空间观念,能有条理地思考和表达自己的探索过程和结果,从而进一步增强分析、概括、表达能力.【情感态度】在自己独立思考的基础上,积极参与小组活动.在对平行线的性质进行的讨论中,敢于发表自己的看法,并从中获益.【教学重点】理解平行线的性质.【教学难点】学会利用平行线的性质解决实际问题.一、情景导入,初步认知窗户的内窗的两条竖直的边是平行的,在推动过程中,两条竖直的边与窗户外框形成的两个角∠1、∠2有什么数量关系?【教学说明】通过引入生活中的平行线,激发学生的求知欲.二、思考探究,获取新知1.现在我们反过来思考这个问题,如果先知道两条直线平行,对应的同位角、内错角、同旁内角会产生怎样的关系呢?2.已知直线a∥b,测量角的度数,把结果填入表内,并分析各角之间的关系.(1)图中有几对同位角?它们的大小有什么关系?为什么?(2)图中有几对内错角?它们的大小有什么关系?为什么?(3)图中有几对同旁内角?它们的大小有什么关系?为什么?(4)换一组平行线试一试,你能得到同样的结论吗?【教学说明】通过测量、猜想、验证,让学生在动手探索的过程中感知平行线的性质.【归纳结论】两条平行线被第三条直线所截,同位角相等.简称“两直线平行,同位角相等”.两条平行线被第三条直线所截,内错角相等.简称“两直线平行,内错角相等”.两条平行线被第三条直线所截,同旁内角互补.简称“两直线平行,同旁内角互补”.三、运用新知,深化理解1.如图,一把长方形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为(A)A.55°B.65°C.75°D.125°2.如图,直线c与直线a、b相交,且a//b,则下列结论:(1)∠1=∠2;(2)∠1=∠3;(3)∠3=∠2中正确的个数为(D)A.0B.1C.2D.33.如图,已知:DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ACB=50°,求∠EDC和∠BDC的度数.解:∵CD是∠ACB的平分线,∴∠ACD=∠BCD.∵∠ACB=50°,∴∠BCD=25°.∵DE∥BC,∴∠EDC=∠BCD=25°.∵DE∥BC,∴∠BDE+∠B=180°.∴∠BDE=180°-∠B=110°.∴∠BDC=∠BDE-∠EDC=110°-25°=85°.【教学说明】通过练习及时巩固平行线的三条性质.四、师生互动,课堂小结通过刚才的应用,大家能谈一谈今天学习的平行线有哪些性质?五、教学板书1.布置作业:教材“习题2.5”中第1、2题.2.完成同步练习册中本课时的练习.平行线的性质是几何证明的基础,教学中注意基本的推理格式的书写,培养学生的逻辑思维能力,鼓励学生勇于尝试,在课堂上,力求体现学生的主体地位,把课堂放交给学生,让学生在动口、动手、动脑中学习.第2课时平行线的判定与性质的综合应用【知识与技能】经历掌握平行线性质与判定的过程,能用它们进行简单的推理和计算.【过程与方法】经历观察、测量、推理、交流等活动,进一步提高推理能力.【情感态度】通过学习平行线性质和判定直线平行条件的联系与区别,让学生懂得事物既是普遍联系又是相互区别的辩证唯物主义思想.【教学重点】平行线的三条性质及简单应用.【教学难点】平行线的性质与平行线判定方法的区别.一、情景导入,初步认知在前几节课我们探究了如何去判别两条直线是平行的,即平行线的判定.下面我想请同学来回答一下有哪些方法可以判定两条直线平行?二、思考探究,获取新知请用学过的同位角、内错角、同旁内角的概念及两直线平行的条件填空:(1)因为∠1=∠5(已知);所以a∥b().(2)因为∠4=∠(已知);所以a∥b(内错角相等,两直线平行).(3)因为∠4+∠=180°(已知);所以a∥b().【教学说明】判定平行线的条件和平行线的性质是互逆的,对初学者来说易将它们混淆.因此,复习判定直线平行的条件能为后面学习性质做好准备.三、运用新知,深化理解1.见教材52例1、例2、例3,2.如果两条直线被第三条直线所截,那么一组内错角的平分线(D)A.互相垂直B.互相平行C.互相重合D.以上均不正确3.如图已知∠1=∠2,∠BAD=∠BCD,则下列结论(1)AB∥CD;(2)AD∥BC;(3)∠B=∠D;(4)∠D=∠ACB中正确的有(C)A.1个B.2个C.3个D.4个4.如图,如果∠1=∠2,那么∠2+∠3=180°吗?为什么?解:∵∠1=∠2,∴L1∥L2. ∴∠2+∠3=180°.5.如图,AB∥CD,BF∥CE,则∠B与∠C有什么关系?请说明理由.解:∵AB∥CD,∴∠B=∠1.∵BF∥CE,∴∠C=∠2.∵∠1+∠2=180°,∴∠B+∠C=180°.即∠B与∠C互补.6.如图,已知AB∥CD,∠1=∠2,试探索∠BEF与∠EFC之间的关系,并说明理由.解:∠BEF=∠EFC.理由如下:分别延长BE.DC相交于点G.。
第二章相交线与平行线第1节两直线的位置关系∙知识点聚焦1.相交线与平行线(1)相交线:在同一平面内如果两条直线只有一个公共点时,我们称这两条直线相交.∙(2)平行线:在同一平面内,永不相交的两条直线叫做平行线.注:(1)在同一平面内,两条直线的位置关系有相交和平行两种.(2)两条直线相交,只有一个交点.2.对顶角与邻补角(1)对顶角:两条直线相交所成的四个角中,一个角的两边与另一个角的;两边互为反向延长线,这两个角叫作对顶角,对顶角相等.注:相等的角不一定是邻补角.(2)邻补角:两条直线相交所成的四个角中,两个角有一条公共边,另一边互为反向延长线,这两个角叫作邻补角,邻补角互补.注:互补的角不一定是邻补角.3.余角和补角(1)余角①定义:如果两个角的和是o90,那么称这两个角“互为余角”,简称“互余”,也可以说其中一个角是另一个角的余角.②性质:同角或等角的余角相等.(2)补角180那么称这两个角“互为补角”,简称“互补”,①定义:如果两个角的和是o也可以说其中一个角是另一个角的补角.②性质:同角或等角的补角相等.4.垂线(1)定义:当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足.(2)性质:①在同一平面内,过一点有且只有一条直线与已知直线垂直. ②连接直线外一点与直线上的所有点的连线中,垂线段最短.简称垂线段最短.(3)点到直线的距离:直线外一点到这条到这条直线的垂线段的长度,叫作点到直线的距离.注:距离是指线段的长度,是一个数量;线段是图形,它们之间不能等同. (4)垂线的画法一靠:用三角尺一条直角边靠在已知直线上. 二移:移到三角尺使已知点落在它的另一条直角边上. 三画:沿着这条直角画线.注:①画一条线段或射线的垂线,就是画它们所在直线的垂线.②过一点作线段的垂线,垂足可以线段上,也可以在线段的延长线上.典型例题 例1.如图,三条直线AB 、CD 、EF 相交于点O ,一共构成哪几对对顶角?一共 构成哪几对邻补角?分析:⑴对顶角和邻补角是两条直线所形成的图角.⑵对顶角:有一个公共顶点,并且一个角的两边是另一个角的两边的反向延长线.⑶邻补角:两个角有一条公共边,另一边互为反向延长线. 有6对对顶角.12对邻补角.ABC DEF例2.如图所示,点O 是直线AB 上一点,OE 、OF 分别平分∠BOC 、∠AOC .⑴求∠EOF 的度数;⑵写出∠BOE 的余角及补角.分析:⑴∵OE 、OF 平分∠BOC 、∠AOC ∴,21BOC EOC ∠=∠,21AOC FOC ∠=∠∴)(212121AOC BOC AOC BOC FOC EOC EOF ∠+∠=∠+∠=∠+∠=∠又∵︒=∠+∠180AOC BOC ∴︒=︒⨯=∠9018021EOF⑵∠BOE 的余角是:∠COF 、∠AOF ;∠BOE 的补角是:∠AOE.例3.(1)已知,如图,直线AB 、CD 交于点O ,且o BOC AOD 120=∠+∠,求AOC ∠的度数.(2)如图,AB 、CD 、EF 交于点O ,o AOE 25=∠,o DOF 45=∠,求AOD ∠的对顶角的度数.(3)如图,AB 、CD 交于点O ,OE 平分AOD ∠,o BOD BOC 30-∠=∠,求CO E ∠的度数.分析:(1)由对顶角相等可得o BOC AOD 60=∠=∠,从而可得o o o A O C 12060180=-=∠.CEF(2)由对顶角相等可知o DOF EOC 45=∠=∠,从而可得o o o o A O D 1102545180=--=∠.(3)o BOD COB 180=∠+∠,o BOD BOC 30-∠=∠,则o C O B 75=∠,o BOD 105=∠,o COB AOD 75=∠=∠,OE 平分AOD ∠,则o AOE 5.37=∠, o BOD AOC 105=∠=∠,则o o o AOE COA COE 5.1425.37105=+=∠+∠=∠.例 4.已知,如图所示直线AB 、CD 、EF 交于点O ,BOD APF ∠=∠2,AOC COE ∠=∠23,求COE ∠的度数.分析:方程思想,将图中的角用未知数表示,找到等量关系,设方程,一般设较小的为x .例5.如图,OE 与CD 相交与点O ,且21,90∠=∠︒=∠=∠COE DOE .(1)BOE AOE ∠∠与有什么关系?为什么? (2)BOC AOD ∠∠与有什么关系?为什么? 分析:(1)BOE AOE ∠∠与相等.因为21,902,901∠=∠︒=∠+∠︒=∠+∠且BOE AOE ,所以BOE AOE ∠=∠.(2)BOC AOD ∠∠与相等,21,1802,1801∠=∠︒=∠+∠︒=∠+∠且BOC AOD ,所以BOC AOD ∠=∠.例6.(1)如图,已知o ACB 90=∠,AB CD ⊥,垂足为D ,则点A 到直线CB 的距离为线段 的长;线段DB 的长为点 到直线 的距离.AE CB OD12(2)如图,在直角三角形ABC 中,o C 90=∠,c AB =,b AC =,a BC =,则AB BC AC BC AB AB AC -++-+-= .分析:(1)垂线的性质.(2)垂线段最短+两点间线段最短.例7.探索规律(1)2条直线相交于一点,有多少对不同的对顶角? (2)3条直线相交于一点,有多少对不同的对顶角? (3)4条直线相交于一点,有多少对不同的对顶角?(4)n 条直线相交于一点,有多少对不同的对顶角?分析:两条直线相交时可出现两对不同的对顶角,故找对顶角的对数其实质就是找有多少对不同的直线相交.课堂练习1.下列说法正确的是( )A.同一平面内没有公共点的两条线段平行B.两条不相交的直线是平行线C.同一平面内没有公共点的两条直线平行D.同一平面没有公共点的两条射线平行2.下面四个图形中,∠1与∠2是对顶角的图形有( )A.0B.1C.2D.33.如图所示,∠1的邻补角是( )A .BOC ∠B .BOE ∠和AOF ∠C .AOF ∠D .BOE ∠和AOC ∠4.下列各图中,∠1与∠2互为余角的是( )A. B .C .D .5.如图,直线1l 与2l 相交于点O ,1l OM ⊥,若o 44=∠α,则=∠β等于( )A .o 56B .o 46C .o 45D .o 446.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm 的点的个数是( )个.A .0B .1C .2D .37.如图,已知直线AB 与CD 交于点O ,ON 平分DOB ∠,若o BOC 110=∠,则AON ∠的度数为___度.8.如图所示,o ACB 90=∠,AB CD ⊥,BC DE ⊥,①钝角与锐角互补; ②α∠的余角是α∠-090; ③β∠的补角是β∠-o 180;④若∠1+∠2+∠3=90°,则∠1、∠2、∠3互余.10.已知:如图,三条直线AB ,CD EF 相交于O ,且EF CD ⊥,11.已知,所示,o ACB 90=∠,cm BC 5=,cm AC 12=,12.通过画图,寻找对顶角和邻补角(不含平角):(1)若2条直线相交于同一点,则有 对对顶角, 对邻补角. (2)若3条直线相交于同一点,则有 对对顶角, 对邻补角. (3)若4条直线相交于同一点,则有 对对顶角, 对邻补角.(4)通过(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于同一点,则可形成 对对顶角, 对邻补角.13.如图,AB ,CD ,EF 相交于点O ,如果o AOC 65=∠,o DOF 50=∠.(1)求BOE ∠的度数;(2)计算AOF ∠的度数,发现射线OA 有什么特殊性吗?14.如图,AOB 是一条直线,o EOC BOD AOD 90=∠==∠.1:3:=∠∠AOE BOD , (1)求COD ∠的度数. (2)图中有哪几对角互为余角? (3)图中有哪几对角互为补角?15.将一张长方形纸片按图中的方式折叠,BC ,BD 为折痕,求CBD ∠的大小.16.已知:如图,直线AB ,CD 相交于点O ,OE 平分BOD ∠,OF 平分COB ∠,1:4:=∠∠DOE AOD .求AOF ∠的度数.17.如图,若EO ⊥AB 于O ,直线CD 过点O ,∠EOD ︰∠EOB =1︰3,求∠AOC 、∠AOE 的度数.18.如图,O 为直线AB 上一点,∠BOC =3∠AOC ,OC 平分∠AOD .CDBAEO19.已知:直线AB 与直线CD 相交于点O ,o BOD 45=∠.(1)如图1,若AB EO ⊥,求DOE ∠的度数; (2)如图2,若FO 平分AOC ∠,求DOF ∠的度数.20.如图所示,已知直线AB 、CD 交于点0,x =1,1-=y 是方程34-=+y ax 的解,也是方程a ay bx 21+=-的解,且a b AOD AOC ::=∠∠,AB EO ⊥. (1)求EOC ∠的度数.(2)若射线OM 从OC 出发,绕点O 以s o /1的速度顺时针转动,射线ON 从OD 出发,绕点O 以s o /2的速度逆时针第一次转动到射线OE 停止,当ON 停止时,OM 也随之停止.在转动过程中,设运动时间为t ,当t 为何值时,ON OM ⊥. (3)在(2)的条件下,当ON 运动到EOC ∠内部时,下列结论:①BON EOM ∠-∠2不变;②BON EOM ∠+∠2不变,其中只有一个是正确的,请选择并证明.第2节 探索直线平行的条件∙知识点聚焦1.同位角具有1∠和5∠这样位置关系的角称为同位角, 图中的同位角还有2∠和6∠,3∠和7∠,4∠和8∠ 2.内错角具有3∠和5∠这样位置关系的角称为内错角, 图中的内错角还有4∠和6∠ 3.同旁内角具有4∠和5∠这样位置关系的角称为同旁内角,图中的同旁内角还有3∠和6∠ 注:(1)同位角、内错角、同旁内角是成对出现的,两直线被第三条直线所截形成的8个角中有4对同位角,2对内错角,2对同旁内角.(2)同位角、内错角、同旁内角各自的位置关系:同位角是“同旁同侧”,内错角是“内部异侧”,同旁内角“内部同侧” 4.两条直线平行条件(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称为:同位角相等.两直线平行.(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,简称:内错角相等.两直线平行.(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行,简称:同旁内角互补.两直线平行. (4)平行于同一条直线的两条直线平行.(5)在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行 5.平行线的性质:过直线外一点有且只有一条直线与这条直线平行41 2 3 5 876DCBEAF例1:如图所示:⑴图中∠1与∠2是哪两条直线被哪一条直线所截形成的?⑵图中∠1与哪个角是同位角?它们是哪两条直线被哪一条直线所截形成的? ⑶∠3与∠C 是什么位置关系的角?它们是哪两条直线被哪一条直线所截形成的?分析:⑴∠1与∠2是直线AB 、DE 被直线EF 所截形成的;⑵∠1与∠B 是同位角,它们是直线EF 、BC 被直线AB 所截形成的; ⑶∠3与∠C 是同旁内角,它们是直线AC 、DE 被直线BC 所截形成的.例2: 如图,指出下列各组角是哪两条直线被哪一条直线所截而得到的,并说出它们的名称:分析:(1)∠1和∠2:是AB 、EF 被直线CD 所截而得到的,一组同位角(2)∠1和∠3:是AB 、CD 被直线CD 所截而得到的,一对内错角(3)∠1和∠6:是AB 、CD 被直线CD 所截而得到的,一对同旁内角(4)∠2和∠6:是EF 、CD 被直线AB 所截而得到的,一对同位角 (5)∠2和∠4:是EF 、AB 被直线CD 所截而得到的,一对同旁内角 (6)∠3和∠5:是EF 、CD 被直线AB 所截而得到的,一对内错角 (7)∠3和∠4:是AB 、CD 被直线EF 所截而得到的,一对同旁内角 例3:如图,根据下列条件,可推得哪两条直线平行?并说明理由. ⑴∠CBD =∠ADB ; ⑵∠BCD +∠ADC =180°; ⑶∠ACD =∠BAC ;3CFEBAD1 423 65ABCDO分析: ⑴由∠CBD =∠ADB ,可推得AD ∥BC ;根据内错角相等,两直线平行. ⑵由∠BCD +∠ADC =180°,可推得AD ∥BC ;根据同旁内角互补,两直线平行. ⑶由∠ACD =∠BAC 可推得AB ∥DC ;根据内错角相等,两直线平行.例4: 如图,平面内有六条两两不平行的直线,试证:在所有的交角中,至少有一个角小于31°.分析:如图⑵,我们可以将所有的直线移动后,使它们相交于同一点,此时的图形为图⑵.证明:假设图⑵中的12个角中的每一个角都不小于31° 则12×31°=372°>360° 这与一周角等于360°矛盾所以这12个角中至少有一个角小于31°课堂练习01.如图,∠EAC =∠ADB =90°.下列说法正确的是( ) A .α的余角只有∠B B .α的邻补角是∠DAC C .∠ACF 是α的余角 D .α与∠ACF 互补02.如图,已知直线AB 、CD 被直线EF 所截,则∠EMB 的同位角为( ) A .∠AMF B .∠BMF C .∠ENC D .∠ENDl 1l 2l 3 l 4l 5l 6图⑴l 1l 2 l 3l 4l 5l 6图⑵A E BCF DABC D FEMNα第1题图 第2题图ABDC第4题图03.下列语句中正确的是( )A .在同一平面内,一条直线只有一条垂线B .过直线上一点的直线只有一条C .过直线上一点且垂直于这条直线的直线有且只有一条D .垂线段就是点到直线的距离04.如图,∠BAC =90°,AD ⊥BC 于D ,则下列结论中,正确的个数有( ) ①AB ⊥AC ②AD 与AC 互相垂直 ③点C 到AB 的垂线段是线段AB ④线段AB 的长度是点B 到AC 的距离 ⑤垂线段BA 是点B 到AC 的距离 ⑥AD >BD A .0 B . 2 C .4 D .605.点A 、B 、C 是直线l 上的三点,点P 是直线l 外一点,且PA =4cm ,PB =5cm ,PC =6cm ,则点P 到直线l 的距离是( )A .4cmB .5cmC .小于4cmD .不大于4cm06.将一副直角三角板按图所示的方法旋转(直角顶点重合),则∠AOB +∠DOC = .07.如图,矩形ABCD 沿EF 对折,且∠DEF =72°,则∠AEG = . 08.在同一平面内,若直线a1∥a2,a2⊥a3,a3∥a4,…则a1 a10.(a1与a10不重合)09.如图所示,直线a 、b 被直线c 所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判断a ∥b 的条件的序号是 .10.在同一平面内两条直线的位置关系有 .11.如图,已知BE 平分∠ABD ,DE 平分∠CDB ,且∠E =∠ABE +∠EDC .试说明AB ∥CD ?12.如图,已知BE 平分∠ABC ,CF 平分∠BCD , ∠1=∠2,那么直线AB 与CD 的位置关系如何?ABCDOABCDEFG H abc第6题图第7题图第9题图1 2 3 4 5 6 7 81A C D EB A BC DEF 1 213.如图,推理填空:⑴∵∠A = (已知) ∴AC ∥ED ( )⑵∵∠2= (已知)∴AC ∥ED ( )⑶∵∠A + =180°(已知) ∴AB ∥FD .14.如图,请你填上一个适当的条件 .使AD ∥BC .15.在同一平面内有9条直线如何安排才能满足下面的两个条件?⑴任意两条直线都有交点; ⑵总共有29个交点.1 23 AB C DE F第13题图 AB C D E F第14题图GFEDCB A第3节 平行线的性质∙知识点聚焦1. 平行线的性质(1)两条平行线被第三条直线所截,同位角相等.简称为:两直线平行,同位角相等.(2)两条平行线被第三条直线所截,内错角相等.简称为:两直线平行,内错角相等.(3)两条平行线被第三条直线所截,同旁内角互补.简称为:两直线平行,同旁内角互补.2.平行线的判定与性质的区别与联系 (1)直线平行的条件同位角相等;内错角相等;同旁内角互补;两直线平行; (2)平行线的性质两直线平行;同位角相等;内错角相等;同旁内角互补;例1 如图,平行线CD AB ,被直线AE 所截.(1) 从︒=∠1101可以知道2∠是多少度吗?为什么? (2) 从︒=∠1101可以知道3∠是多少度吗?为什么? (3) 从︒=∠1101可以知道4∠是多少度吗?为什么? 分析:(1)︒=∠1102( 两直线平行,内错角相等.)(2)︒=∠1103 ( 两直线平行,同位角相等.) (4)︒=∠704 (两直线平行,同旁内角互补.)例2 如图,已知C A CF AE CD AB ∠︒=∠,39,//,//是多少度?为什么? 分析:因为CF AE //,所以FGB A ∠=∠因为CD AB //,所以C FGB ∠=∠ 所以︒=∠39C例3 如图,AB ∥CD ,AE 、DF 分别是∠BAD 、∠CDA 的角平分线,AE 与DF 平行吗?•为什么?分析:平行. ∵AB ∥CD ,∴∠BAD=∠CDA (两直线平行,内错角相等). ∵AE 、DF 分别是∠BAD 、∠CDA 的平分线,∴∠EAD=12∠BAD ,∠FDA=12∠CDA .∴∠EAD=∠FDA .∴AE ∥DF (内错角相等,两直线平行).例4 如图,已知∠AMB=∠EBF ,∠BCN=∠BDE ,求证:∠CAF=∠AFD .分析:∵∠AMB=∠DMN ,又∠ENF=∠AMB ,∴∠DMN=∠ENF , ∴BD ∥CE .∴∠BDE+∠DEC=180°.又∠BDE=∠BCN ,∴∠BCN+∠CED=180°, ∴BC ∥DE ,∴∠CAF=∠AFD .例5 如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角A 是120°,第二次拐的角B 是150°,第三次拐的角是∠C ,这时的道路恰好和第一次拐弯之前的道路平行,问∠C 是多少度?说明你的理由.分析:∠C=150°.理由:如答图,过点B 作BE ∥AD ,则∠ABE=∠A=120°(两直线平行,内错角相等).∴∠CBE=∠ABC-∠ABE=150°-120°=30°. ∵BE ∥AD ,CF ∥AD ,∴BE ∥CF (平行于同一条直线的两直线平行). ∴∠C+∠CBE=180°(两直线平行,同旁内角互补). ∴∠C=180°-∠CBE=180°-30°=150°.西B 30°A北东南例6 (1)如图,若AB ∥DE ,∠B=135°,∠D=145°,你能求出∠C 的度数吗?(2)在AB ∥DE 的条件下,你能得出∠B 、∠C 、∠D 之间的数量关系吗?并说明理由.分析:(1)如答图5-3-2,过点C 作CF ∥AB ,则∠1=180°-∠B=180°-135°=45°(两直线平行,同旁内角互补).∵CF ∥AB ,DE ∥AB ,∴CF ∥DE (平行于同一条直线的两直线平行).∴∠2=∠180°-∠D=180°-145°=35°(两直线平行,同旁内角互补). ∴∠BCD=∠1+∠2=45°+35°=80°. (2)∠B+∠C+∠D=360°.理由:如答图5-3-2过点C 作CF ∥AB ,得∠B+∠1=180°(两直线平行,•同旁内角互补).∵CF ∥AB ,DE ∥AB ,∴CF ∥DE (平行于同一条直线的两直线平行). ∴∠D+∠2=180°(两直线平行,同旁内角互补). ∴∠B+∠1+∠2+∠D=360°. 即∠B+∠BCD+∠D=360°.点拨:辅助线CF 是联系AB 与DE 的纽带.课堂练习01.如图,由A 测B 得方向是( ) A .南偏东30° B .南偏东60°C .北偏西30°D .北偏西60°02.命题:①对顶角相等;②相等的角是对顶角;③垂直于同一条直线的两直线平行;④平行于同一条直线的两直线垂直.其中的真命题的有( ) A .1个B .2个C .3个D .4个03.一个学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,两次拐弯的角度可能是()A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向左拐50°,第二次向右拐130°D.第一次向左拐60°,第二次向左拐120°04.下列命题中,正确的是()A.对顶角相等 B.同位角相等 C.内错角相等D.同旁内角互补05.学习了平行线后,小敏想出过直线外一点画这条直线的平行线的新方法,是通过折一张半透明的纸得到的[如图⑴—⑷]从图中可知,小敏画平行线的依据有()①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行.A.①② B.②③C.③④D.①④06.在A、B两座工厂之间要修建一条笔直的公路,从A地测得B地的走向是南偏东52°.现A、B两地要同时开工,若干天后,公路准确对接,则B地所修公路的走向应该是()A.北偏东52° B.南偏东52° C.西偏北52°D.北偏西38°07.下列几种运动中属于平移的有()①水平运输带上的砖的运动;②笔直的高诉公路上行驶的汽车的运动(忽略车轮的转动);③升降机上下做机械运动;④足球场上足球的运动.A.1种 B.2种C.3种D.4种08.如图,网格中的房子图案正好处于网格右下角的位置.平移这个图案,使它正好位于左上角的位置(不能出格)09.观察图,哪个图是由图⑴平移而得到的()10.如图,AD∥BC,AB∥CD,AE⊥BC,现将△ABE进行平移. 平移方向为射线AD 的方向. 平移距离为线段BC的长,则平移得到的三角形是图中()图的阴影部分.11.判断下列命题是真命题还是假命题,如果是假命题,举出一个反例.⑴对顶角是相等的角;⑵相等的角是对顶角;⑶两个锐角的和是钝角;⑷同旁内角互补,两直线平行.150°120°DBCE湖4321ABEFC D4P231A BEFC D12.如图,在湖边修一条公路.如果第一个拐弯处∠A=120°,第二个拐弯处∠B =150°,第三个拐弯处∠C,这时道路CE恰好和道路AD平行,问∠C是多少度?并说明理由.13.如图,一条河流两岸是平行的,当小船行驶到河中E点时,与两岸码头B、D成64°角. 当小船行驶到河中F点时,看B点和D点的视线FB、FD恰好有∠1=∠2,∠3=∠4的关系. 你能说出此时点F与码头B、D所形成的角∠BFD的度数吗?14.如图,AB∥CD,∠1=∠2,试说明∠E和∠F的关系.第4节尺规作图知识点聚焦1.“尺规作图”的含义(1)在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.尺规作图在操作过程中不允许度量.(2)基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.2.熟练掌握尺规作图题的规范语言(1)用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、× .3.了解尺规作图题的一般步骤(1)已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;(2)求作:能根据题目写出要求作出的图形及此图形应满足的条件;(3)作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.例1. 例2.例3. 典型例题如下图,已知线段a 和b ,求作一条线段AD 使它的长度等于b a -2.解:(1)作射线AM ;(2)在射线AM 上,顺次截取AB =BC =a ;(3)在线段CA 上截取CD =b ,则线段AD 就是所求作的线段.求作一个角等于已知角∠MON .解:(1)作射线11M O ;(2)以O 为圆心,任意长为半径作弧,交OM 于点A ,交ON 于点B ; (3)以1O 为圆心,OA 的长为半径作弧,交11M O 于点C ; (4)以C 为圆心,以AB 的长为半径作弧,交前弧于点D ; (5)过点D 作射线D O 1.则∠D CO 1就是所要求作的角.如下图,已知α∠及线段a ,求作等腰三角形,使它的底角为α,底边为a .分析 先假设等腰三角形已经作好,根据等腰三角形的性质,知两底角∠B =∠C =∠α,底边BC =a ,故可以先作∠B =∠α,或先作底边BC =a .∙作法 如下图(1)∠MBN =∠α;(2)在射线BM 上截取BC =a ;(3)以C 为顶点作∠PCB =∠α,射线CP 交BN 于点A .△ABC 就是所要求作的等腰三角形.说明 画复杂的图形时,如一时找不到作法,一般是先画出一个符合条件的草图,再根据这个草图进行分析,逐步寻找画图步骤.已知∠AOB ,求作∠AOB 的平分线OC .解(1)以点O 为圆心,任意长为半径作弧,分别交OA 、OB 于D 、E 两点;(2)分别以D 、E 为圆心,以大于21DE 的长为半径作弧,两弧交于C 点;(3)作射线OC ,则OC 为∠AOB 的平分线.如下图,在一次军事演习中,红方侦察员发现蓝方指挥部在A 区内,到铁路与公路的距离相等,且离铁路与公路交叉处B 点700米,如果你是红方的指挥员,请你在图示的作战图上标出蓝方指挥部的位置.分析 依据角平分线的性质可以知道,蓝方指挥部必在A 区内两条路所夹角的平分线上,然后由蓝方指挥部距B 点的距离,依据比例尺,计算出图上的距离为3.5cm ,就可以确定出蓝方指挥部的位置.解 如下图,图中C 点就是蓝方指挥部的位置.例4. 例5.课堂练习1.如图,已知∠A 、∠B ,求作一个角,使它等于B A ∠-∠.2.如图作△ABC ,使得BC=a 、AC=b 、AB=c3.如图,画一个等腰△ABC ,使得底边BC=a ,它的高AD=h4.如图,已知∠AOB 及M 、N 两点,求作:点P ,使点P 到∠AOB 的两边距离相等,且到M 、N 的两点也距离相等。
87654321FED C B A图1F E DCBA4321图2cba 87654321图3ED CBA 第二章 相交线与平行线一、知识提要:1、两条直线的位置关系:平行、相交(垂直).2、两条直线相交:对顶角,余角和补角,三线八角,内错角,同位角,同旁内角. 和为度的两个角互为余角;和为度的两个角互为补角;余角和补角都是角.对顶角是 形成的角;同位角、内错角、同旁内角是 角. 定理:①对顶角 ;② 余角相等;③ 补角相等. 3、两直线垂直:同一平面内直线外一点有且只有一条直线与已知直线垂直;直线外一点与直线上各点的所有线段中,垂线段最短.4、平行线的判定:① ,两直线平行;② ,两直线平行;③ ,两直线平行.5、平行线的性质:①两直线平行, ;②两直线平行, ;③两直线平行, . 6、尺规作图:作一个角等于已知角,作两个角的和或者差,或者一个角的平分线.二、试题精讲:1. 下列说法正确的个数是( )①若∠1与∠2是对顶角,则∠1=∠2;②若∠1与∠2是邻补角,则∠1=∠2; ③若∠1与∠2不是对顶角,则∠1≠∠2;④若∠1与∠2不是邻补角,则∠1+∠2≠180°A .0 B .1 C .2 D .32. 如右图,直线AB 、CD 与直线EF 相交,∠5和 是同位角,和 是内错角,与 是同旁内角.( )A .∠1;∠4;∠2B .∠1;∠3;∠2C .∠2;∠4;∠1D .∠2;∠3;∠13. 如图1,∠1=∠A ,则下列结论一定成立的是( )A .AB ∥FD B .ED ∥ACC .∠B =∠1D .∠3=∠14. 如图2,直线a 、b 被c 所截,则下列式子:①∠1=∠2;②∠3=∠6;③∠1=∠8;④∠5+∠8=180°,能说明a ∥b 的条件是( ) A .①② B .①②③ C .②④ D .①②③④5. 如图3,AB ∥CD ,∠BAE =120°,∠DCE =30°,则∠AEC =( )A .90°B .150°C .75°D .60° 作业:FE DCBA 图4图1nm21GF E DC BA321图3图21FEDCB AFEDCBA21E D CBACB A1. 如图1,若m ∥n ,∠1=105°,则∠2 = .2. 如图2,若∠1= ,那么AB ∥EF ,若∠1= ,那么DF ∥AC ,若∠DEC + =180°,那么DE ∥BC .3. 如图3,EF ∥AD ,∠1=∠2,∠BAC =70°.将求∠AGD 的过程填写完整:因为EF ∥AD ,所以∠2= .又因为∠1=∠2,所以∠1=∠3.所以AB ∥ .所以∠BAC +___=180°.又因为∠BAC =70°,所以∠AGD = .4. 填空并在括号内加注理由. 如图4,已知DE ∥BC ,DF 、BE 分别平分∠ADE 和∠ABC求证:∠FDE =∠DEB . 证明:∵DE ∥BC∴∠ADE = ( ) ∵DF 、BE 分别平分∠ADE 、∠ABC∴∠ADF =12∴∠ABE =12( )∴∠ADF =∠ABE ( )∴ ∥ ( ) ∴∠FDE =∠ ( )5. 如图,AB ∥CD ,∠B =40°,∠E =30°,求∠D 的度数.6. 如图,已知DE ∥BC ,∠1=∠2,求证:∠B =∠C .7. 如图:已知∠B =25°,∠BCD =45°,∠CDE =30°,∠E =10°,求证:AB ∥EF .HG CB A FED 21FEDB C A 3A 12B C D E F G 8. 已知:如图∠1=∠2,∠C =∠D ,请问∠A 与∠F 相等吗?试说明理由.解题过程训练1. 已知如图,AB ∥CD ,∠AEB=∠B ,∠CED=∠D ,试说明BE ⊥DE . 解:作射线EF ,使∠AEB =∠BEF (作辅助线)∵∠AEB =∠B (已知)∴∠ =∠ ( ) ∴ ∥ ( ) ∵AB ∥CD (已知)∴ ∥ ( ) ∴∠DEF=∠D ( )∵∠CED=∠D ( ) ∴∠ =∠ ( )∴∠AEB+∠CED=∠BEF+∠DEF ( ) ∵∠AEC =180°( )∴∠BED=∠BEF+∠DEF =90°( )∴BE ⊥DE ( ).2. 如图,已知BD ⊥AC ,EF ⊥AC ,D 、F 为垂足,G 是AB 上一点,且∠l=∠2.判断∠AGD 和∠ABC 的数量关系?并说明你的理由.解:∠______ =∠______, 理由如下: ∵______⊥_______,______⊥_______,( )∴______//______( ) ∴∠_____=∠_____( ) 又 ∵∠_____=∠_____( ),∴∠_____=∠_____( ) ∴______//______(_______________________________)12A BCD E F 354∴∠_____=∠_____(______________________________).3. 如图,已知∠1+∠2=180°,∠3=∠B ,试判断∠AED 与∠C 的关系.平行线常见模型4. 如图,a ∥b ,∠1=120°,∠2=100°,则∠3= .5. 如图,AB ∥CD ,∠BAC 的平分线和∠ACD 的平分线交于点E ,则∠AEC 的度数是 .6. 探究:(1)如图(1),AB ∥CD ,BO 与DO 相交于点O ,试探索下列各种情况下∠ABO 、∠CDO 、∠BOD 之间的关系,并说明理由.(2)如图(2),AB ∥CD ,BO 与DO 相交于点O ,试探索下列各种情况下∠ABO 、∠CDO 、∠BOD 之间的关系,并说明理由.(3)如图(3),AB ∥CD ,BO 与DO 相交于点O ,试探索下列各种情况下∠ABO 、∠CDO 、∠BOD 之间的关系,并说明理由.(3)(2)(1)OO OACDBACDBACD Bba 321EDCBA。
《两条直线的位置关系》作业设计方案(第一课时)一、作业目标本作业旨在巩固学生对两条直线的位置关系的理解,通过实际问题的解决,提高学生运用所学知识分析问题和解决问题的能力,并培养学生良好的数学学习习惯。
二、作业内容作业内容主要围绕《两条直线的位置关系》这一课时的知识点展开,具体包括:1. 理解平行线和相交线的概念及其性质。
学生需掌握平行线、相交线的定义,能够判断两条直线是否平行或相交,并理解这两类直线间的位置关系。
2. 掌握直线间的角的关系。
学生应能根据直线的位置关系判断所形成的角(如:平行线间的同位角、内错角等)的性质和大小。
3. 运用所学知识解决实际问题。
设计一些实际问题,如:在地图上判断两地是否在同一直线上、在建筑设计中如何利用直线的位置关系等。
4. 练习题的设计应包括填空题、选择题和解答题等多种题型,以全面考察学生对知识的掌握情况。
三、作业要求1. 作业量适中,难度梯度合理。
作业应兼顾基础知识的巩固和思维能力的拓展,题目难度应由浅入深,逐步提升。
2. 注重实际应用。
作业中的问题应贴近生活实际,引导学生将所学知识应用于实际生活中。
3. 明确要求完成时间。
作业应在规定的时间内完成,以保证学生的自主学习和课堂效率。
4. 书写规范。
学生应按照数学作业的规范格式完成作业,字迹清晰、工整。
四、作业评价1. 评价标准明确。
根据学生的知识掌握情况、解题思路和解题步骤进行评价,鼓励创新和独特的解题方法。
2. 及时反馈。
教师应对学生的作业进行及时批改和反馈,指出学生的优点和不足,帮助学生改进学习方法。
3. 激励性评价。
对表现优秀的学生给予表扬和鼓励,激发学生的学习积极性。
五、作业反馈1. 课堂讲解与答疑。
教师应在课堂上对学生的作业进行讲解和答疑,重点讲解普遍存在的问题和难点。
2. 学生自评与互评。
引导学生对自己的作业进行自评和互评,培养学生的自我反思和合作学习能力。
3. 针对反馈调整教学。
根据学生的作业反馈,教师应对教学进度和教学方法进行适当调整,以满足学生的学习需求。
2.1两条直线的位置关系1 姓名1.在同一平面内,两条直线的位置关系有___________和_________两种.2.下列各图中,∠1和∠2是对顶角的是( )3.补角定义:一般地,如果两个角的和是180°,那么称这两个角互为___________. 数学式子余角定义:如果两个角的和是900,那么称这两个角互为_____________. 数学式子4.打台球时,选择适当的方向,用白球击打红球,反弹后的红球会直接入袋,此时∠1=∠2,将图2.1—7抽象成图2.1—8,ON 与DC 交于点O ,∠DON=∠CON=900,∠1=∠2. 在图2.1—8中1、哪些角互为补角?哪些角互为余角?2、∠3与∠4有什么关系?为什么?3、∠AOC 与∠BOD 有什么关系?为什么?练习:1.因为∠1+∠2=90º,∠2+∠3=90º,所以∠1= ,理由是 . 2.因为∠1+∠2=180º,∠2+∠3=180º,所以∠1= ,理由是 .3.如图2.1—11已知:直线AB 与CD 交于点O, ∠EOD=900,回答下列问题: (1) ∠AOE 的余角是 ;补角是 。
(2) ∠AOC 的余角是 ;补角是 ;对顶角是 。
拓展提升1.下列说法正确的有__________________ .(填序号) ①已知∠A=40º,则∠A 的余角等于50 º.②若1+∠2=180º,则∠1和∠2互为补角. ③一个角的补角必为钝角.2.⑴若∠1与∠2互余,则∠1+∠2=__________ ⑵若∠1= 90o —∠2,则∠1+∠2=__________ ⑶60O 的补角是_______,余角是_______(一个角的余角一定比这个角的补角小吗? )⑷30O角的余角的补角是__________ ⑸填表:⑹若一个角是它余角的4倍,求这个角。
(7)一个角的补角是它的3倍,求这个角。
第二章平行线与相交线 (两条直线的位置关系)
一、1、同一平面内两条直线的位置关系有相交和平行两种.
(1)相交线:若两条直线只有一个公共点,我们称这两条直线为相交线.这个公共点叫做交点.
(2)平行线:在同一平面内,不相交的两条直线叫做平行线.
注意:互相重合的直线通常看做一条直线.
二、(一)如图,∠1和∠3,∠2和∠4有一个公共顶点,且∠1的两边分别是∠3的两边的反向延长线,具有这种位置关系的两个角,叫做对顶角.对顶角性质: 对顶角相等
例1:1、下面四个图形中,∠1与∠2是对顶角的图形()
A、
B、 C、
D、
2、下列四个图中,∠1和∠2是对顶角的图的个数是()
A.0个
B.1个
C.2个
D.3个
3.如图所示
,直线AB与CD相交于点O,OE平分∠AOD,∠AOC= 120°,求∠BOD,∠AOE的度数.
4.找出图2中∠AOE,∠BOD的对顶角。
∠AOE的对顶角
是;∠BOD的对顶角是
5.说出图3中的对顶角.
图3中对顶角有:
(图2) (图3)
5、平面内两条直线交于一点对顶角的对数:_____;三条直线交于一点对顶角的对数:_____;
四条直线交于一点对顶角的对数:_____;n条直线交于一点对顶角的对数:_____;(注:不含平角)。
(二)、1、如果两个角的和等于90o (直角)
,我们就说这两个角互为余角,(简称:互余)。
即其中一个角是另一个角的余角.例如,∠1与∠2互为余角,∠1是∠2的余角,∠2也是∠1的余角.
同样,如果两个角的
和等于180o (平角),就说
这两个角互为补角,(简称:互补)。
即其中一个角是另一个角的补角。
⑵符号语言:若∠1+∠2= 90o ,那么∠1与∠2互余。
若∠3+∠4=180o ,那么∠3与∠4互补。
注:互余以及互补的角,主要反映了角的数量关系,而不是角的位置关系,区分互为补角和互为余角,区别在于两角的和是180°还是90°。
练习:(1)填表:
一个角30O 70O
90o-∠
这个角的余角
180o-∠
这个角的补角
(2)60O32’的余角是______,补角是_____。
(3)30O的余角的补角是_____。
(4)若一个角是它余角的4倍,求这个角。
变式:(1)一个角的补角是它的3倍,求这个角。
(2)一个角的补角是这个角的余角的4倍,求这个角。
2、余角与补角的性质:
同角或等角的余角相等,同角或等角的补角相等。
例: 如图:∠1与∠2互补,∠3与∠4互补,如果∠1=∠3,那么∠2与∠4相等吗?
已知∠1与∠2互余,∠3与∠4互余,如果∠1=∠3,那么∠2与∠4相等吗?
练习:(1)已知:如图∠AOB =∠COD= 90度,问:图中有几对相等的角,并说明理由。
变式:已知,如图,∠AOD为钝角,OC⊥OA,OB⊥OD
求证:∠AOB=∠COD
证明:∵OC⊥OA,OB⊥OD()
∴∠AOB+∠1=,
∠COD+∠1=90°(垂直的定义)
∴∠AOB=∠COD()
(2)如图,∠EDC=∠CDF=90°,∠1=∠2.图中哪
些角互为余角?哪些角互为补角? ∠ADC与∠BDC有什么关系?为什么?
∠ADF与∠BDE有什么关系?为什么?
三、1、两条直线相交成四个角,如果有一个角是直角,则称这两条直线互相垂直。
互相垂直的两条直线的交点叫做垂足。
垂直符号:“⊥”
(1)直线AB与直线CD垂直。
记作:AB⊥CD;
(2)直线 m 与直线 n 垂直。
记作:m⊥n ;
注:“⊥”是“垂直”的符号,而“” 是图形中“垂直”(直角)的标记。
2、性质1:平面内过一点有且只有一条直线与已知直线垂直。
线段AB 的长度叫做点A 到直线m 的距离。
线段AB叫做垂线段。
3、(1)、找出图中点P到直线m的垂线段。
(2)、线段PA, PB, PC , PD谁最短?
性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。
练习:(1)在灌溉时,要把河中的水引到农田P处,如何挖渠能使渠道最短?
(2)、如图,在△A BC中,∠ABC=90,
①过点B作三角形ABC的AC边上的高BD,过D点作三角形ABD的AB边上的高DE。
②点A到直线BC的距离是线段的长度.
点B到直线AC的距离是线段的长度.
点D到直线AB的距离是线段的长度
线段AD的长度是点到直线的距离.
四、同位角、内错角、同旁内角。
如图1,直线AB、CD与EF相交(也可以说两条直线AB、CD被第三条直线EF所截),形成了8个小于平角的角,我们通常将这样的几何模型简称为“三线八角”。
同位角、形状:
内错角、形状:
同旁内角、形状:
例:如图,∠1与∠6是直线____与直线____被直线____所截而形成的___________角。
(练习:指出图中某一个角的同位角、内错角和同旁内角。
)练习:1.如图,
(1)
与是内错角。
(2)
与是同旁内角。
(3)
与是内错角。
2.如图,
(1)
与
是角。
(2)
与
是角。
(3)
与
是角。
(4)
与
是角。
(5)
与
是角。
(6)
与
是同位角吗?
3.如图,
的同位角有,内错角有,同旁内角
有
4、如图所示,下列说法不正确的是()
A.∠1与∠B是同位角 B.∠1与∠4是内错角
C.∠3与∠B是同旁内角 D.∠C与∠A不是同旁内角
5、如图所示,∠1与∠2是哪两条直线被另一条直线所截,
构成的是什么角的关系?∠3与∠D呢
5、平行线:一般地,在同一平面内,不相交的两条直线叫做平行线.
如图,记作“
∥
”或“AB∥CD”,读作“直线
平行于直线
”.
练习一:
1.下列说法中,正确的是().
A.两直线不相交则平行 B.两直线不平行则相交
C.若两线段平行,那么它们不相交 D.两条线段不相交,那么它们平行
2.在同一平面内,有三条直线,其中只有两条是平行的,那么交点有().
A.0个 B.1个 C.2个 D.3个
做一做:(1)已知直线a外一点P, . P
那么经过点P可以画多少条直线与已知
直线a平行?动手画一画。
a
通过观察和画图,可以体验一个基本事实(平行公理):
经过直线外一点,一条直线与这条直线平行.
(2)已知直线a,画直线b和直线a平行,
再画直线c与直线a平行. a
同样,我们得出(平行线的传递性):如果两条直线都与第三条直线平行,那么这两条直线也互相平行.简单的说就是:平行于同一直线的两直线平行.
用几何语言可表示为:如果
∥
,
∥
,那么 .
练习:
1.在同一平面内,一条直线和两条平行线中一条直线相交,那么这条直线与平行线中的另一边必__________.
2.同一平面内,两条相交直线不可能与第三条直线都平行,这是因为
________________.
3.判断题
(1)不相交的两条直线叫做平行线.( )
(2)在同一平面内,不相交的两条射线是平行线.( )
(3)如果一条直线与两条平行线中的一条平行, 那么它与另一条也互相平行.( )
五、中考链接
1、下列说法中正确的个数是()
(1)两条不重合的直线的位置关系不是相交就是平行(2)过一点有且只有一条直线和已知直线平行(3)若直线a∥b,b∥c,那么a∥c
A.0
B.1
C.2
D.4
2、已知OA∥EC,OB∥EF,试判断∠1,∠2,∠3,∠4的关系,观察∠1和∠3的两边的关系,∠1和∠4的两边的关系,你能得出什么样的关系?
A
C
O ﹚1 ﹚ 2
3( B
E ﹚4
F。