时间序列分析复习要点重点
- 格式:doc
- 大小:431.00 KB
- 文档页数:11
1、时间序列:按时间顺序排列的一组随机变量。
2、平稳性:序列所有的统计性质都不随着时间的推移而变化时,叫严平稳;当一个时间序列满足均值为常数,且自协方差函数只与时间长度有关时,叫弱平稳。
3、随机过程:是一连串随机事件动态关系的定量描述。
4、白噪声序列:也叫纯随机序列,各项之间没有任何相关关系,且存在方差齐性,服从正态分布,最简单的平稳序列。
5、随机游走:是非平稳的,未来的发展趋势无法预测。
6、单整与协整:单整是指时间序列显著平稳,不存在单位根,则称序列为零阶单整序列;协整是指几个时间序列本身是非平稳的,但具有长期均衡关系,以它们建立的回归模型的残差序列是平稳的,称这几个时间序列存在协整关系。
二、方法、重要模型与公式 1、AR 模型的平稳性检验:a 、特征根判别或特征系数判别:所有的特征根的绝对值都小于1,或者所有的特征系数大于1。
如t t t x x ε+=-18.0特征方程:λ—0.8=0⇒λ=0.8<1⇒平稳;b 、平稳域判别:AR(2)的平稳域:t t t tx x x εφφ++=--2211特征方程:0212=--φλφλ,则它的平稳条件:21121,λλφλλ=+=2φ-,且11<λ,12<λ ,可以导出212λλφ=<1,21φφ+=2121λλλλ++-=)1)(1(121λλ---<1,21φφ-=2121λλλλ---=)1)(1(121λλ++-<1,即为平稳域。
3、MA模型的可逆性:22516154--+-=t t t t x εεε⇒,125162<=θ125454251612<=+-=+θθ,1253654251612<-=--=-θθ ⇒可逆4、ARMA 模型(1) AR 模型:model:t p t p t t t x x x x εφφφφ++++=---....22110性质:均值pφφφμ---= (110),中心化后为0方差:AR(p):)(B x tt Φ=ε=∑=-pi t i iBk 11ελ=∑∑=∞=p i j tjiiB k 10)(ελ=∑∑∞==-00j pi jt j i ik ελ=∑∞=-0j jt jG ε;Green 函数:∑==pj jii j k G 0λ⇒∑=-='==jk k j k j j G G G 10.....2,1,,1φ, 0k ='>='≤φφφ时,;时,p k p k k k ; AR(p)的自协方差函数:p k p k k r r r --++=φφ....11AR(1)的方差:2121)(φσε-=tx Var ,AR(1)的自协方差函数:0111r r r k k k φφ==-,21201φσε-=r AR(1)的自相关系数:kk 1φρ= AR(2)的方差:22121220)1)(1)(1(1εσφφφφφφ-+--+-=r AR(2)的自协方差函数:22121220)1)(1)(1(1εσφφφφφφ-+--+-=r ,20111φφ-=r r ,2211--+=k k k r r r φφ,k≥2 ; AR(2)的自相关系数:10=ρ,2111φφρ-=,2,2211≥+=--k k k k ρφρφρ(2)MA 模型:model:q t q t t t t x ------+=εθεθεθεμ....2211性质:常数均值μ=t Ex ,常数方差2221)...1()(εσθθq t x Var +++=MA(1)的自相关系数:10=ρ,21111θθρ+-=,2,0≥=k k ρMA(2)的自相关系数:10=ρ,222121111θθθθθρ+++-=,2221221θθθρ++-=,3,0≥=k k ρ(3)ARMA模型model:qt q t t t p t p t t x x x --------++++=εθεθεθεφφφ.......2211110性质:均值pt Ex φφφ---= (110),自协方差函数:∑∞=+=02)(i ki i G G k r εσ自相关系数:∑∑∞=∞=+==02)0()(i jj kj jk GGG r k r ρ;(4)AR (p )序列预测:)(ˆ...)1(ˆ)(ˆ1p l x l x l xx t p t t lt -++-==+φφ 预测方差:Green 函数:021120110,,1G G G G G G φφφ+===22121)...1()]([εσ-+++=L t G G l e Var ;(5) MA (p )序列预测:;,)(ˆ1q l l xqi i l t i t ≤-=∑=-+εθμ ;,)(ˆq l l xt >=μ预测方差:;,)...1()]([22121q l l e Var l t ≤+++=-εσθθ ;,)...1()]([2221q l l e Var q t >+++=εσθθ5、非平稳时间序列的确定分析:移动平均法:nx x x x nt t t t--+++=...~1 ;简单指数平滑:)10(,)1(...)1(~1<<-++-+=--ααααααn t n t t t x x x x ;Wold 分解定理:对于任何一个离散平稳过程{t x },都可以分解为两个相关的额平稳序列之和,其中一个为确定性的{t V },另一个是随机性的{t ε}。
时间序列是指一系列按照时间顺序排列的数据点,这些数据点可以是任何类型的变量,如温度、股票价格、销售量等。
时间序列分析是一种统计方法,用于揭示时间数据中的趋势、季节性和周期性等特征,以及预测未来的趋势和变化。
时间序列分析的步骤可以分为以下几个方面:1.数据收集:首先,需要收集时间序列数据,这些数据可以来自于各种渠道,如传感器、数据库、网站等。
确保数据的完整性和准确性非常重要。
2.数据清洗:在进行时间序列分析之前,需要对数据进行清洗和预处理。
这包括处理缺失值、异常值和噪声等。
同时,还可以进行平滑处理,如移动平均、指数平滑等。
3.数据可视化:通过绘制时间序列图,可以更直观地了解数据的趋势和季节性。
常用的可视化工具包括Matplotlib和Seaborn等。
通过观察图形,可以初步判断是否存在趋势、季节性和周期性等特征。
4.数据分解:时间序列数据通常包含趋势、季节性和随机性三个组成部分。
为了更好地分析这些组成部分,可以使用分解方法,如加法模型和乘法模型。
分解后,可以更准确地对各个部分进行分析和预测。
5.时间序列模型:选择合适的时间序列模型对数据进行建模和预测。
常用的时间序列模型包括ARIMA模型、指数平滑模型和季节性自回归移动平均模型等。
根据数据的特点,选择最适合的模型。
6.模型评估:使用一些评估指标,如均方根误差(RMSE)和平均绝对百分比误差(MAPE),对模型进行评估。
通过评估指标,可以判断模型的拟合程度和预测准确性。
7.模型预测:根据已建立的模型,可以对未来的时间序列数据进行预测。
预测结果可以用于制定决策和规划。
时间序列分析在各个领域都有广泛的应用,如经济学、金融学、气象学、运输规划等。
通过对时间序列数据的分析和预测,可以帮助人们更好地理解数据的变化规律,做出科学的决策。
总结起来,时间序列分析是一种揭示和预测时间数据特征的统计方法。
通过数据收集、清洗、可视化、分解、建模和预测等步骤,可以深入了解时间序列数据的趋势、季节性和周期性等特征,为决策和规划提供科学依据。
一、单项选择题(每题2分,共20分) P61关于严平稳与(宽)平稳的关系;弱平稳的定义:对于随机时间序列y t ,如果其期望值、方差以及自协方差均不随时间t 的变化而变化,则称y t 为弱平稳随机变量,即y t 必须满足以下条件: 对于所有时间t ,有 (i )E (yt )=μ为不变的常数;(ii ) Var (yt )=σ²为不变的常数;(iii ) γj =E[y t -μ][y t-j -μ],j=0,±1,,2,… (j 为相隔的阶数)(μ=0,cov (y t ,y t-j )=0,Var (yt )=σ²时为白噪音过程,常用的平稳过程。
) 从以上定义可以看到,凡是弱平稳变量,都会有一个恒定不变的均值和方差,并且自协方差只与y t 和y t-j 之间的之后期数j 有关,而与时间t 没有任何关系。
严平稳过程的定义:如果对于任何j 1,,j 2,...,j k ,随机变量的集合(y t ,y t+j1,,y t+j2,…,y t+jk )只依赖于不同期之间的间隔距离(j 1,j 2,…,j k ),而不依赖于时间t ,那么这样的集合称为严格平稳过程或简称为严平稳过程,对应的随机变量称为严平稳随机变量。
P46 t X 的k 阶差分是;△kX t =△k-1X t -△k-1X t-1,△ 表示差分符号。
滞后算子;P54对于AR : L p y t =y t-p ,对于MA :L pεt =εt-pAR (p )模型即自回归部分的特征根—平稳性;确定好差分方程的阶数,则其特征方程为:λp-α1λp-1-α2λp-2-…-αp =0,若所有的特征根的│λ│<1则平稳补充:逆特征方程为:1-α1z1-α2z²-…-αp zp=0,若所有的逆特征根│z│>1,则平稳。
注意:特征根和逆特征方程的根互为倒数。
如:p57作业3: y t =1.2y t-1-0.2y t-2+εt ,为二阶差分,其特征方程为:λ2-1.2λ+0.2=0,解得λ1=1,λ2=0.2,由于λ1=1,所以不平稳。
时间分析知识点总结一、时间序列的概念时间序列是指按照时间顺序排列的一组随机变量观测值,通常用来描述某一现象、变量或者经济指标在不同时间点上的取值。
时间序列数据通常具有以下特点:趋势性、季节性、周期性和随机性。
1. 趋势性:时间序列数据在长期内呈现出的总体变化方向,可以是增长趋势,也可以是下降趋势。
2. 季节性:时间序列数据在短期内呈现出的重复性变动模式,通常是由季节因素导致的,比如节假日、气候等因素。
3. 周期性:时间序列数据在中长期内呈现出的周期性波动,可以是周期性的震荡或者波动。
4. 随机性:时间序列数据中除了上述几种规律性变动之外的不规则波动。
时间序列数据是时间分析的研究对象,对其进行分析可以揭示其内在的规律和趋势,为决策和预测提供依据。
二、时间序列分析方法时间序列分析主要包括描述性分析、平稳性分析、自相关性分析和预测分析等方法。
1. 描述性分析描述性分析是对时间序列数据进行可视化分析,主要包括绘制时间序列图、直方图和散点图等,以便观察其随时间的变化规律和分布特征。
2. 平稳性分析平稳性是时间序列数据分析中非常重要的概念,指的是时间序列数据在不同时间点上的统计特性不发生显著的变化。
常用方法包括观察时间序列图来判断其平稳性,以及进行单位根检验等。
3. 自相关性分析自相关性是指时间序列数据中各个时刻的观测值之间的相关关系。
自相关性分析主要包括自相关图的绘制和计算自相关系数等方法,以判断时间序列数据中是否存在自相关性,以及自相关性的程度。
4. 预测分析预测分析是时间序列分析的核心内容,目的是根据过去的数据来预测未来的变动趋势。
常用的预测方法包括移动平均法、指数平滑法、自回归移动平均模型(ARMA)和季节性自回归整合移动平均模型(SARIMA)等。
三、趋势分析趋势分析是时间序列分析中的重要内容,用来研究时间序列数据中长期趋势的变化。
常用的趋势分析方法包括线性趋势分析、指数平滑法和多项式拟合法等。
1. 线性趋势分析线性趋势分析是通过拟合直线来描述时间序列数据的变化趋势,通常采用最小二乘法来估计趋势线的斜率和截距。
一.时间序列分析的相关概念♦随机过程:若对于每一个特定的t ∈T ,X(t)是一个随机变量,则称这一族无穷多个随机变量{X(t),t ∈T}是一个随机过程。
♦纯随机过程:随机过程X(t)(t=1,2,…),如果是由一个不相关的随机变量序列构成的,即对于所有s ≠t ,随机变量X t 和X s 的协方差均为零,则称其为纯随机过程。
♦♦♦♦独立增量随机过程:任意两相邻时刻上的随机变量之差是相互独立的,则称其为独立增量随机过程。
二阶矩过程:若随机过程{X(t),t ∈T},对每个t ∈T ,X(t)的均值和方差存在,则称其为二阶矩过程。
正态过程:若{X(t)}的有限维分布都是正态分布,则称{X(t)}为正态随机过程。
平稳过程(严平稳):如果对于时间t 的任意n 个值t 1,t 2,…,t n 和任意实数 ,随机过程X(t)的n 维分布函数满足关系式F n (x 1,x 2,…,x n ; t 1,t 2,…,t n ) = F n (x 1,x 2,…,x n ; t 1+ε,t 2+ε,…,t n+ε),则称X(t)为平稳过程。
即是统计特性不随时间的平移而变化的过程。
♦宽平稳:若随机过程{X(t),t ∈T}的均值和协方差存在,且满足①EX t ∈a,∀t ∈T ;②E[X t+τ-a][X t -a]=R(τ),∀t,t+τ∈T ,则称{X(t),t ∈T}为宽平稳随机过程,R(τ)为X(t)的协方差函数。
♦非平稳随机过程:不具有平稳性的过程就是非平稳过程。
即序列均值或协方差与时间有关时,就可以认为是非平稳的。
♦♦自相关:指时间序列观察资料互相之间的依存关系。
动态性(记忆性):指系统现在的行为与其历史行为的相关性。
如果某输入对系统后继n 个时刻的行为都有影响,就说该系统具有n 阶动态性。
二.刻画时间序列统计特性的各种数字特征的定义、性质等♦均值函数其中,F t (x)为随机序列X t 的分布密度函数。
经济学研究中时间序列分析的技术要点总结时间序列分析是经济学研究中的重要工具之一,它能够帮助我们理解经济现象的演变规律和趋势,并对未来的走势进行预测。
本文将对时间序列分析的技术要点进行总结和归纳,帮助读者更好地理解并应用这一分析方法。
1. 数据的平稳性测试与处理平稳性是进行时间序列分析的前提条件之一,它指的是在时间维度上的均值和方差不发生明显变化。
为了确保数据的平稳性,需要进行平稳性测试,常用的方法包括ADF检验、单位根检验等。
如果数据不平稳,需要通过差分、对数化、季节性调整等方法进行处理,使其变成平稳序列。
2. 自相关与偏自相关分析自相关(Autocorrelation)分析是确定序列中自身相互依赖关系的方法,用于寻找数据之间的线性关系。
自相关函数(ACF)和偏自相关函数(PACF)是常用的自相关分析工具,可以通过绘制相关函数图形来判断序列的相关性。
ACF表示当前观测值与前几个滞后观测值之间的相关性,而PACF则表示当前观测值与之前滞后值之间的相关性,PACF可以帮助我们确定时间序列模型的阶数。
3. 白噪声检验白噪声是指随机序列,其中各个观测值之间没有任何相关性。
在时间序列分析中,我们通常认为残差序列应该是白噪声。
为了验证残差序列的白噪声特性,可以进行白噪声检验,常用的方法有Ljung-Box检验和ARCH检验。
如果残差序列不是白噪声,说明模型存在缺陷,需要进一步进行修正。
4. ARMA模型选择ARMA模型(AutoRegressive Moving Average Model)是指自回归移动平均模型,它是根据时间序列的自相关性和偏自相关性构建的。
在选择ARMA模型时,需要分析序列的ACF和PACF图,根据截尾性和拖尾性来确定AR和MA的阶数。
通常采用信息准则,如AIC (Akaike Information Criterion)和BIC(Bayesian Information Criterion)来评估模型的拟合优度和复杂度,选择最优的模型。
时间序列知识点总结时间序列的特征在进行时间序列分析之前,需要先了解时间序列数据的特征。
时间序列数据通常包括趋势、季节性、周期性和随机性等几个方面的特征。
趋势是时间序列数据长期变化的倾向,可以分为上升趋势、下降趋势和水平趋势。
趋势可以通过线性趋势、非线性趋势等形式进行建模。
季节性是时间序列数据在一年内重复出现的短期周期性变化。
例如,零售业的销售额在每年的圣诞节期间通常会有显著增长,这就是季节性的表现。
周期性是时间序列数据在非固定时间段内重复出现的周期性变化。
例如,房地产市场可能会出现10年一个周期的波动。
随机性是无法被趋势、季节性和周期性所解释的时间序列数据的波动。
随机性也被称为噪声,它可以通过模型的残差项来描述。
时间序列的模型时间序列分析的目标是从历史数据中找出模式,并据此预测未来的走势。
在时间序列分析中,最常用的模型有自回归移动平均模型(ARMA模型)、自回归积分移动平均模型(ARIMA模型)和指数平滑模型等。
ARMA模型是一种描述时间序列数据的随机过程,它包括自回归和移动平均两种成分,可以用来描述时间序列数据的趋势和随机波动。
ARIMA模型是在ARMA模型的基础上引入差分运算,用来处理非平稳的时间序列数据。
ARIMA模型包括自回归阶数p、差分阶数d和移动平均阶数q三个参数,可以较为灵活地适应不同时间序列的特征。
指数平滑模型是一种通过加权移动平均的方式对时间序列数据进行平滑处理,并据此预测未来的走势。
指数平滑模型有简单指数平滑、双指数平滑和三指数平滑等不同形式。
时间序列的预测时间序列分析的一个重要应用就是预测未来的走势。
对于经济金融领域来说,预测未来的通货膨胀率、利率和股票价格等具有重要的实际意义。
时间序列预测的方法主要包括基于统计模型的方法和基于机器学习的方法。
基于统计模型的方法是通过建立ARMA模型、ARIMA模型或指数平滑模型等,然后根据模型对未来的走势进行估计。
这种方法的优点是模型比较简单,容易理解和解释。
时间序列分析要点总结课时分配表目录第一章绪论第一节时间序列分析的一般问题第二节时间序列的建立第三节确定性时间序列分析方法概述第四节随机时间序列分析的几个基本概念第二章平稳时间序列模型第一节一阶自回归模型第二节一般自回归模型第三节移动平均模型第四节自回归移动平均模型第三章ARMA模型的特征第一节格林函数和平稳性第二节逆函数和可逆性第三节自协方差函数第四节自谱第四章平稳时间序列模型的建立第一节模型识别第二节模型定阶第三节模型参数估计第四节模型的适应性检验第五章平稳时间序列预测第一节正交投影预测(几何预测法)第二节条件期望预测第三节指数平滑预测―ARMA模型特例第六章非平稳时间序列分析第一节非平稳性的检验第二节平稳化方法第三节齐次非平稳序列模型第四节非平稳时间序列的组合模型第七章季节时间序列分析方法第一节简单随机时序模型第二节乘积季节模型第三节季节时序模型的建立第四节X-11方法简介第八章传递函数模型第一节模型简介第二节传递函数模型的识别第三节传递函数模型的拟合及检验第一章绪论【教学目的与要求】了解时间序列的含义、主要分类及建立,了解时间序列分析的作用,以及确定性时间序列分析方法和随机时间序列的几个基本概念。
【教学重点与难点】随机时间序列的几个基本概念。
【教学方法】基本理论与实际问题相结合【教学内容】§1.1 时间序列分析的一般问题●课程的性质、研究意义及可行性首先提及时间序列分析的含义:根据经济指标的时间序列资料,较精确地找出经济系统的内在统计特征和发展规律性,尽可能多地从中提取出我们所需要的准确信息。
用来实现上述目的的整个方法称为时间序列分析。
它是一种根据动态数据揭示系统动态结构和规律的统计方法,是统计学科的一种分支。
其基本思想是根据系统的有限长度的运行记录(观察数据),建立能够比较精确地反映时间序列中所包含的动态依存关系的数学模型,并借以对系统的未来行为进行预报。
有必要提到计量经济学:社会经济现象往往受许多因素的影响,计量经济学是通过建立系统内经济变量结构式的因果模型,定量分析经济变量之间的随机因果关系而揭示经济系统的内部规律性,从而进行分析和预测。
1.1时间序列定义:时间序列是指将某种现象某一个统计指标在不同时间上的各个数值,按时间先后顺序排列而形成的序列.构成要素:现象所属的时间,反映现象发展水平的指标数值.要素一:时间t;要素二:指标数值。
1.2时间序列的成分:一个时间序列中往往由几种成分组成,通常假定是四种独立的成分——趋势T、循环C、季节S和不规则I。
T 趋势通常是长期因素影响的结果,如人口总量的变化、方法的变化等。
C任何时间间隔超过一年的,环绕趋势线的上、下波动,都可归结为时间序列的循环成分。
S许多时间序列往往显示出在一年内有规则的运动,这通常由季节因素引起,因此称为季节成分。
目前,可以称之为“季节性的周期”,年或者季节或者月份。
I时间序列的不规则成分是剩余的因素,它用来说明在分离了趋势、循环和季节成分后,时间序列值的偏差。
不规则成分是由那些影响时间序列的短期的、不可预期的和不重复出现的因素引起的。
它是随机的、无法预测的。
四个组成部分与观测值的关系可以用乘法模型或者加法模型或者综合。
1.3预测方法的选择与评估方法P216三种预测方法:移动平均法、加权移动平均法和指数平滑法。
因为每一种方法的都是要“消除”由时间序列的不规则成分所引起的随机波动,所以它们被称为平滑方法。
平滑方法对稳定的时间序列——即没有明显的趋势、循环和季节影响的时间序列——是合适的,这时平滑方法很适应时间序列的水平变化。
但当有明显的趋势、循环和季节变差时,平滑方法将不能很好地起作用。
移动平均法使用时间序列中最近几个时期数据值的平均数作为下一个时期的预测值。
移动平均数的计算公式如下:指数平滑法模型:式中Ft+1——t+1期时间序列的预测值;Yt——t期时间序列的实际值;Ft——t期时间序列的预测值;α——平滑常数(0≤α≤1)。
均方误差是常用的(MSE)标准误差定义为各测量值误差的平方和的平均值的平方根。
设n个测量值的误差为ε1、ε2……εn,则这组测量值的标准误差σ等于:数理统计中均方误差是指参数估计值与参数真值之差平方的期望值,记为MSE。
1.时间序列定义,一组数,连起来,分析有用信息,预测,控制(时间序列分析)2.时间序列构成要素,时间,指标值,时间是广义时间概念,但必须是递增的量,X轴从小到大递增(温度)3.时间学列分析方法:确定性,随机性。
观察值序列(了解),给一组数,对随机序列实现,在本质意义上能替代随机序列,现实中叶只能得到观察值序列4.时间序列分类,平稳序列,非平稳序列平稳:统计序列不随时间变化,特性,在常数值平衡上下波动非平稳:特性随时间不断变化时间序列预处理:对平稳性进行分析5.基本思想,有限长度,建立数学模型,对系统未来进行预测(了解)6.分析方法,季节性波动,长期趋势,循环变化(了解大意)7.随机型波动分析,混沌,有一定规律,分析其中规律8.确定性事件序列分析方法,描述性:直观,画图,时序图(稳定性预处理)9.统计时序分析,频域分析,分解成若干不同频率等时域分析,原理,目的,根据惯性用统计语言描述,相关关系,统计规律,拟合数学模型10. 时间序列分析步骤,了解区别11. 时间序列分析的目的和意义,预报分析,控制分析,诊断分析,~1.统计特征量,如何计算,平稳序列判别条件,白噪声序列,线性平稳序列,时间序列预处理,平稳性和随机性,检验2.统计量:均值,协方差,概率分布,联合概率分布—观察值序列,解释,一个随机变量的分布函数决定了所有特征。
自协方差函数,自相关系数。
3.平稳的时间序列,定义,随机特征不随时间变化而变化,为什么要进行平稳和非平稳。
严平稳和宽平稳(实际中一般用宽平稳代替),定义,关系,不能互推。
习题,平稳性判别,条件4.平稳时间序列统计性质,常数均值,延迟5.白噪声序列,条件,两个重要性质(纯随机性,方差相等),白噪声序列和独立同分布序列区别与联系(了解)6.时间序列的迟运算,时间序列预处理,平稳性检验,纯随机性检验7.时序图检验,平稳,均值方差为常数,常数值附近随机波动,波动范围有界,检验原则8.自相关图检验,画出自相关系数,判断原则,短期相关性,随着延迟增加,平稳序列的自相关系数会很快衰减到零(转九十度看图)9.纯随机性检验,白噪声序列定义,两个条件,纯随机性表明序列之间没有任何记忆,关系,1.差分运算,减一下2.延迟算子,指针向后延迟一定步,看清楚是用延迟算子还是直接用差分运算就好3.其次线性差分方程,特解,通解,不相等的实数根,相等的实数根4.AR MR 模型,具体英文表达式,。
时间序列重点1.(一)根据时间序列的散点图、自相关函数和偏自相关函数图以ADF单位根检验其方差、趋势及其季节性变化规律,对序列的平稳性进行识别。
一般来讲,经济运行的时间序列都不是平稳序列。
(二)对非平稳序列进行平稳化处理。
如果数据序列是非平稳的,并存在一定的增长或下降趋势,则需要对数据进行差分处理,如果数据存在异方差,则需对数据进行技术处理,直到处理后的数据的自相关函数值和偏相关函数值无显著地异于零。
(三)根据时间序列模型的识别规则,建立相应的模型。
若平稳序列的偏相关函数是截尾的,而自相关函数是拖尾的,可断定序列适合AR模型;若平稳序列的偏相关函数是拖尾的,而自相关函数是截尾的,则可断定序列适合MA模型;若平稳序列的偏相关函数和自相关函数均是拖尾的,则序列适合ARMA模型。
(四)进行参数估计,检验是否具有统计意义。
(五)进行假设检验,诊断残差序列是否为白噪声。
(六)利用已通过检验的模型进行预测分析。
平稳序列的时序图应该显示出序列始终围绕一个常数值波动,且波动的范围不大。
如果观察序列的时序图显示出该序列有明显的趋势或周期,那它通常不是平稳序列。
从折线图可以看出原序列可能存在线性增长趋势,所以在eviews中输入命令:series sha1=d(sha,1),生成一阶差分序列sha1,并绘制该序列的折线图,如下图3-3::series sha2=d(sha,2),即生成二阶差分生序列sha2,按照同样的方法绘制该序列的折线图并做单位根检验,认为sha2序列是也平稳的,并且比sha1序列更加平稳。
因此用序列sha2建模更好。
42.980282,相应的P-值分别为0.928247和0.072552,均大于显著性水平,所以要接受原假设,认为剩余序列是白噪声序列,两个模型都通过了检验。
α但根据AIC准则,由表3-8和3-9知ARMA(2,1)的AIC=9.202282,ARMA(4,3)的AIC=9.302502,所以我们选择ARMA(2,1)模型对sha2序列进行建模。
1. 时域分析方法的基本思想:事件的发展通常都具有一定的惯性,这种惯性用统计的语言来描述就是序列值之间存在着一定的相关关系,这种相关关系通常具有某种统计规律。
寻找出序列值之间相关关系的统计规律,并拟合出适当的数学模型来描述这种规律,进而利用这个拟合模型预测序列未来的走势,这是时域分析方法的基本思想。
2. 白噪声序列的统计性质:均值为0,方差为常数,自协方差(自相关系数)为0。
即不同时期没有记忆性,不相关的序列。
3. ADF 检验的原理及检验的类型:通过构建p 阶自回归模型,检验其是否存在为1的特征根,如果有,说明该序列不平稳。
检验三种类型:有漂移项的,有漂移项和趋势的,和既无漂移项又无趋势的。
4. 对于一个非平稳序列,一般应选择怎样的差分方法使其平稳:序列蕴含着显著的线性趋势,一阶差分就可以实现趋势平稳序列蕴含着曲线趋势,通常低阶(二阶或三阶)差分就可以提取出曲线趋势的影响;对于蕴含着固定周期的序列进行步长为周期长度的差分运算,通常可以较好地提取周期信息。
5. 平稳时间序列的统计性质:常数均值,常数方差,自协方差函数和自相关函数只依赖于时间的平移长度而与时间的起止点无关。
6. DF 检验的原理及检验的类型:通过构建一阶自回归模型,检验其是否存在为1的特征根,如果有,说明该序列不平稳。
检验三种类型:有漂移项的,有漂移项和趋势的,和既无漂移项又无趋势的。
7. 常用的判断时间序列是否平稳的方法有:时序图检验,自相关图检验,单位根检验8. 求随机游走模型的方差解:t t t x x :),,(ARIMA ε+=-1010模型递推得 其方差是随着时间递增的。
不平稳。
9. 纯随机性检验(白噪声检验)的原假设: 备择假设: 检验统计量:10. AR(1)模型平稳的充要条件: 11. AR(2)模型平稳的充要条件:其特征根方程: 平稳域: 12. 2110ε-σ=ε+ε+ε+=t )x (Var )x (Var t t t 11012ε+ε+ε+=ε+ε+=--- t t t t t t x )x (x 1,0:210≥∀====m H m ρρρ m k m H k ≤≥∀≠,1,0:1ρ至少存在某个)m (~ˆn Q m k k 212χρ=∑=()为白噪声序列为非白噪声序列,否则则拒绝原假设,原序列若m Q 2χ>{}1-1|<<=φφφφλ,特征根方程0212=--φλφλ1,1,112212<-<+<φφφφφ()j j j t j t t t t G B B x x B AR 10111)(111)1(ϕεφεφεφ=⇒⇒-=⇒=-∑∞=)(模型格林函数推导(格林)函数为Green G G x Var j j j t ,)(202εσ∑∞==13. 对一个非平稳时间序列建型,论述其建模步骤,常用方法及基本思想.一、首先进行平稳性的检验(时序图检验,相关图检验和单位根检验),如果不平稳,要选用适当的方法使其平稳(差分方式的选择),平稳之后再判断是否是白噪声。
一.导 论1. 计量经济学和时间序列分析的区别与联系2. 时间序列分析的概念:时间序列分析(T i m e s e r i e s a n a l y s i s ) 是一种根据动态数据揭示系统动态结构和规律性的统计方法,是统计学的一个分支。
3. 时间序列分析的研究对象:时间序列数据 4. 时间序列分析的基本思想:样本推断根据系统的有限长度的运行记录(样本数据),建立能够比较精确地反映时间序列中所包含的动态依存关系的数学模型,并借以对系统的未来发展进行预报(时间序列预测)。
二.时间序列分析基础 1、随机过程(1)含义:在数学上,随机过程被定义为一组随机变量。
(2)特征:① 从顺序角度来看:随机过程是随机变量的集合;随机变量是随时间产生的,在任意时刻t ,总有随机变量X t 与之相对应;事物发展没有必然变化规律。
② 从数学角度看:不可用时间t 的函数确定的描述。
③ 从试验角度来看:不可重复。
(3)重要的随机过程 ①白噪声过程②随机游走过程:x t = x t -1 + u t 如果u t 为白噪声过程,则称x t 为随机游走过程。
(4)随机过程的平稳性随机过程的统计特征不随时间的推移而发生变化。
严平稳:随机过程中随机变量的任意子集的联合分布函数与时间无关。
宽平稳:∞<=+2),(k k t t x x Cov σ∞<=2)(σt x Var∞<=μ)(t x E直观的看,平稳的数据可以看作是一条围绕其均值上下波动的曲线。
(5)随机过程与时间序列:随机过程的一次实现称为时间序列随机过程的实现: 由随机变量组成的一个有序序列称为随机过程,记为{},t Y t T ∈,简记为Y t 。
其中,每一个元素Y t 都是随机变量。
将每一个元素的样本点按序排列,称为随机过程的一个实现,即时间序列数据,亦即样本。
2、差分方程的展开式子差分方程:变量当期值定义为它的前期和一个当期的随机扰动因素的函数。
1t t t y y αε-=+一阶差分方程:的展开式010122120120123232301231210121000()t t t t t t tt t i t ii t t y y y y y y y y y y yy y y y y αεαεααεεααεεαεααεαεεαεααεαεεααεε-----==+=+=++=++=+=+++=+=++++=+∑如果是给定的,则因此若给定初始值,就可以由的序列来表示。
3、动态乘数和脉冲响应函数1, =,0, 1, 2t t t t j ty y y j αεε-+=+∂=∂对于而言动态乘数可以定义为动态乘数t j jty αε+∂=∂一阶差分方程的动态乘数:将不同时期跨度j 的动态乘数按j 从小到大的顺序摆放在一起,形成一个路径,就成为了脉冲响应函数。
4、滞后算子表达式的运用L 在这里不仅仅是一个符号,它代表了一种运算过程。
122t t -t -y =y y ααε++1t22t t t y =Ly L y ααε++1t2(1)2t L L y ααε--=1t2()(12L L L ααα=--1)2()2t t y L L y ααε=++1t滞后算子多项式()t L y αε=t滞后算子运算还符合标准的“结合律”与“交换律”等如下运算法则:5.时间序列分析的基本步骤三、EViews 软件的基本操作1、两个概念:对象和工作文件(1)EViews的核心是对象(Object)对象是指有一定关系的信息或算子捆绑在一起供使用的单元,用EViews工作就是使用不同的对象。
(2)对象都放置在对象集合中,其中工作文件(workfile)是最重要对象集合。
2、不同类型数据的导入方法(看p p t)3、E V i e w s软件的基本操作命令创建工作文件:create TJXY a 1952 2000或:workfile TJXY a 1952 2000生成变量序列:series xdata x yseries z = x + yseries fit = Eq1.@coef(1) + Eq1.@coef(2) * xgenr 变量名 = 表达式3.E V i e w s软件的基本操作命令常用的运算命令:D(X): X的一阶差分D(X,n): X的n阶差分LOG(X):自然对数DLOG(X):自然对数增量LOG(X)-LOG(X(-1))EXP(X) :指数函数ABS(X) :绝对值SQR(X) :平方根函数RND:生成0、1间的随机数NRND:生成标准正态分布随机数。
四、时间序列模型选取1.时间序列的相关检验:平稳性检验和随机性检验时间序列的平稳性检验1.A R M A模型的结构和统计特征yt = φ yt-1+ ut自回归过程的统计特征移动平均过程的统计特征2. A R M A 模型的识别3. A R M A 模型的参数估计4. A R M A 模型的诊断检验5. A R M A 模型的预测 5.A R M A 模型的建模步骤 1、数据处理 (1)数据导入a. 通过键盘输入数据;b. 通过Copy ,Paste 命令把Excel 或Lotus 数据复制为EViews 数据;c. 利用Import 功能键直接把其他数据文件变换为EViews 数据文件;d. 通过函数公式生成新的序列;e. 生成时间变量、虚拟变量和移动平均序列。
(2)数据检验(平稳性检验) a. 观察时序图b. 利用ADF 检验,判断序列的平稳性 2、模型识别对于平稳序列,观察其自相关、偏自相关函数图,初步判定模型形式。
ACF PACF 模型识别 拖尾截尾AR 模型11t t t y c εθε-=++截尾拖尾MA模型拖尾拖尾ARMA模型2、模型识别 ARMA(p, q),p=?,q=?反复试验 (p, q)组合法:试取一组(p, q)进行拟合估计(一般取(偏)自相关数明显非零的延时期数k做p或q),然后检验其残差是否为白噪声,若非白噪声仍有自相关性,则换一组(p, q)继续试验。
残差序列自相关函数法:首先用AR(1)拟合序列{yt},再考察其残差序列的样本自相关函数,若q1步截尾,则模型为ARMA(1,q1);否则,再用AR(2)拟合序列{yt},考察其残差序列的样本自相关函数,若q2步截尾,则模型为ARMA(2,q2);否则,再继续增大p,重复上述的做法,直至残差序列的样本自相关函数截尾为止。
3、模型的参数估计点击“Quick”——“Estimate Equation”在“Equation Specification”空白栏中键入:AR(p): Y C AR(p)MA(q): Y C MA(q)ARMA(p, q): Y C AR(p) MA(q)4、模型的适用性检验残差检验——白噪声?点击“View”—“Residual test”5、模型的应用——预测点击“Forecast”六、非平稳时间序列模型1.非平稳序列的类别如果时间序列不满足平稳性定义中的一条或几条,则是非平稳的时间序列。
(1)均值非平稳过程(2)方差和自协方差非平稳过程2.两种主要的非平稳趋势时间趋势依其内在属性,分为:确定性时间趋势和随机性时间趋势若一个时间序列的趋势完全可以预测而且保持不变,我们称为确定性趋势; 若这个时间序列的趋势不能预测,则称之为随机性趋势。
3. 确定性趋势模型的建立确定性趋势模型,是指模型中含有明确的时间t 变量,从而使得某一时序变量随着时间而明确地向上增长。
(1)先拟合出均值函数ut 的具体形式;(2)对残差序列yt={xt-ut}按平稳过程进行分析和建模。
4. 随机趋势模型的建立A R I M A 模型——适用于差分平稳序列的拟合 ① 判断序列的非平稳性; ② 识别差分阶数;③ 对差分序列建立ARMA 模型; ④ 对原序列建立ARIMA 模型。
七、向量自回归模型 1. V A R 模型的基本结构2. V A R 模型的特点V A R 模型不以严格的经济理论为依据。
V A R 模型对参数不施加零约束,不删除无显著性的参数。
()0t t tt y c u L ϕεε=++均值非平稳模型的一般式:表示均值为的平稳随机变量V A R 模型的解释变量中不含t 期变量,所有与联立方程组模型有关的问题均不存在。
V A R 模型需估计的参数较多。
待估参数个数=变量个数2*滞后期数 当样本容量较小时,多数参数估计的精度较差,故需大样本,一般n >50。
V A R 模型要求每个变量都满足平稳性要求。
注意: “V A R ”需大写,以区别金融风险管理中的V a R 。
3. V A R 模型的构建步骤 确定模型的变量确定模型的最大滞后阶数p 模型的参数估计 模型的适用性检验4. V A R 模型的适用性检验 : 检验V A R 系统的稳定性5. s V A R 模型的基本结构结构VAR 模型(Structural VAR ,SVAR),实际是VAR 模型的结构式,即在模型中包含变量间的当期关系。
n 个变量,p 阶结构向量自回归模型SVAR(p):tp t p t t t u y Γy Γy Γy C ++++=--- 221106. S V A R 模型的构建步骤 1、实施约束2、估计无约束VAR模型3、估计SVAR 模型 八、协整与误差修正模型1、长期均衡和协整的概念及其关系根据经济理论:如果经济变量间确实存在着长期均衡关系,这种均衡关系意味着经济系统不存在破坏均衡的内在机制,如果变量在某时期受到干扰后偏离其长期均衡点,则均衡机制将会在下一期进行调整以使其重新回到均衡状态。
t 也被称为非均衡误差(disequilibrium error ),它是变量X 与Y 的一个线性组合:如果X 与Y 间的长期均衡关系正确,该式表述的非均衡误差应是一平稳时间序列,并且具有零期望值,即是具有0均值的I(0)序列。
对于非稳定的时间序列X 和Y ,如果它们之间的线性组合是平稳的——则称变量X 与Y 之间存在协整关系(cointegrated )。
如果序列{X1t , X2t , … , Xkt}都是d =(1 ,2 , … ,k),使得Zt=XT ~ I(d-b), 其中,b>0,XT=(X1t , X 2t , … ,Xkt)T ,则认为序列{X1t , X2t , … , Xkt}是(d ,b)阶协整,记为Xt~ CI(d ,b)cointegrated vector )。
注意:如果两个变量都是单整变量,只有当它们的单整阶数相同时,才可能协整;如果它们的单整阶数不相同,就不可能协整。
3个以上的变量,如果具有不同的t t t X Y 10ααμ--=单整阶数,有可能经过线性组合构成低阶单整变量。