大学物理期末知识点总结
- 格式:docx
- 大小:13.92 KB
- 文档页数:2
1. 静电平衡下导体的性质:1处于静电平衡下的导体,表面上任意一点。
电场强度方向与该点处导体表面垂直。
2处于静电平衡状态的带电导体,未被抵消的净电荷只能分布在导体的表面上。
3处于静电平衡的孤立导体,其表面上电荷密度的大小与表面的曲率有关。
2.简述楞次定律: 闭合回路中,感应电流的方向总是使得它自身所产生的磁通量反抗引起感应电流的磁通量的变化。
3.自感:导体回路中由于自身感应电流的变化,而在自身回路中产生感应电动势的现象。
4.互感:由于某一个导体回路中的电流发生变化,而在邻近导体回路内产生感应电动势的现象。
5.电偶极子:两个大小相等的异号点电荷+q 和-q 。
相距为l,如果要计算电场强度的各场点相对这一对电荷的距离r 比l 大很多(r>>l )这样一对点电荷称为电偶极子。
6.狭义相对论两个基本假设:1在所有惯性系中,一切物理学定律都相同,即具有相同的数学表达形式(相对性原理) 2在所有惯性系中,真空中光沿各个方向传播速率都等于同一个常量C,与光源和观察者的运动状态无关。
(光速不变原理) 7磁介质的分类:1顺介质:μr>1,即以磁介质为磁芯时。
测得的磁感应强度B 大于无磁芯真空中的磁感应强度B 。
顺磁质产生的附加磁场中的B ’与原来磁场的0B 同方向。
2抗磁质:μr<1,即以磁介质为磁芯时测得的磁感应强度B 小于无磁芯时真空中的磁感应强度0B ,抗磁质产生的附加磁场中的B ’与原来磁场的0B 方向相反。
3铁磁质:μr>>1,即B>>0B ,铁磁质产生的附加磁感应强度0B 方向也相同。
8.简述霍尔效应:将一块通有电流I 的金属导体或半导体,放在磁感应强度为B 的匀强磁场中,使磁场方向与电流方向垂直,则在垂直于磁场和电流方向上的a 和b 两个面之间将会出现电势差b U a ,这一现象称为霍尔效应。
9.两束光相干的条件频率相同,光矢量振动方向平行,相位差恒定的光波相遇。
大物大一期末知识点大物大一期末考试是大学物理课程中的重要部分,掌握好期末考试的知识点非常重要。
下面将从力学、热学、光学和电磁学四个方面总结大物大一期末考试的知识点。
一、力学1. 牛顿定律:牛顿第一定律、牛顿第二定律和牛顿第三定律的概念和应用。
2. 力的合成与分解:力的合成与分解的原理和计算方法。
3. 动量与动量守恒:动量的概念、动量与作用力的关系、动量守恒定律的概念和应用。
4. 力学能量:功与功率的概念、机械能守恒定律的概念和应用。
5. 万有引力与运动的规律:质点的万有引力、行星运动的定性和定量规律。
二、热学1. 温度与热量:温度的测量与传递、热量的概念和单位。
2. 理想气体:理想气体的状态方程、理想气体的温度和分子运动。
3. 热力学第一定律:热力学第一定律的概念、热机效率和功率的计算。
4. 理想气体的定容定压定温过程:理想气体的定容过程、定压过程和定温过程的特点和计算。
三、光学1. 光的传播:光的直线传播和光的反射规律。
2. 光的折射:光的折射定律、光的反射和折射的应用。
3. 光的波动性:光的波长、光的干涉和光的衍射的概念和现象。
4. 光的光学仪器:凸透镜的成像规律、放大镜和显微镜的原理和图像特点。
四、电磁学1. 电场与电势:电场的概念、电场强度和电势的计算和性质。
2. 电容与电容器:电容的概念、电容器的结构和电容的计算。
3. 电流和电阻:电流的概念、欧姆定律、电阻的概念和计算、串联和并联电阻的计算。
4. 磁场与电磁感应:磁场的概念、电磁感应定律和法拉第电磁感应定律的应用。
以上是大物大一期末考试的主要知识点概述,希望对你有所帮助。
在复习期间,还需要进行大量的习题训练,加深对知识点的理解和掌握。
祝你顺利通过大物大一期末考试!。
大学物理上期末知识点总结关键信息:1、力学部分知识点质点运动学牛顿运动定律动量守恒定律和能量守恒定律刚体定轴转动2、热学部分知识点气体动理论热力学基础3、电磁学部分知识点静电场恒定磁场电磁感应电磁场和电磁波11 力学部分111 质点运动学位置矢量、位移、速度、加速度的定义和计算。
运动方程的表达式和求解。
曲线运动中的切向加速度和法向加速度。
相对运动的概念和计算。
112 牛顿运动定律牛顿第一定律、第二定律、第三定律的内容和应用。
常见力的分析,如重力、弹力、摩擦力等。
牛顿定律在质点和质点系中的应用。
113 动量守恒定律和能量守恒定律动量、冲量的定义和计算。
动量守恒定律的条件和应用。
功、功率的计算。
动能定理、势能的概念和计算。
机械能守恒定律的条件和应用。
114 刚体定轴转动刚体定轴转动的运动学描述,如角速度、角加速度等。
转动惯量的计算和影响因素。
刚体定轴转动定律的应用。
力矩的功、转动动能、机械能守恒在刚体定轴转动中的应用。
12 热学部分121 气体动理论理想气体的微观模型和假设。
理想气体压强和温度的微观解释。
能量均分定理和理想气体内能的计算。
麦克斯韦速率分布律。
122 热力学基础热力学第一定律的内容和应用。
热力学过程,如等容、等压、等温、绝热过程的特点和计算。
循环过程和热机效率。
热力学第二定律的两种表述和微观意义。
13 电磁学部分131 静电场库仑定律、电场强度的定义和计算。
电场强度的叠加原理。
电通量、高斯定理的应用。
静电场的环路定理、电势的定义和计算。
等势面、电场强度与电势的关系。
132 恒定磁场毕奥萨伐尔定律、磁感应强度的定义和计算。
磁感应强度的叠加原理。
磁通量、安培环路定理的应用。
安培力、洛伦兹力的计算。
133 电磁感应法拉第电磁感应定律的应用。
动生电动势和感生电动势的计算。
自感和互感的概念和计算。
磁场能量的计算。
134 电磁场和电磁波位移电流的概念。
麦克斯韦方程组的积分形式和微分形式。
电磁波的产生和传播特性。
大学物理期末备考要点一、力学1. 牛顿运动定律a. 第一定律:惯性定律b. 第二定律:力的大小与加速度的关系c. 第三定律:作用力与反作用力2. 动能与动量a. 动能定理b. 质点系的动量定理c. 动量守恒定律3. 万有引力与重力a. 万有引力定律b. 重力加速度c. 重力势能d. 行星运动4. 平衡与静力学a. 平衡条件b. 杠杆原理c. 原则与应用5. 力学中的摩擦a. 特点与原因b. 静摩擦力与滑动摩擦力c. 摩擦力的计算与应用二、热学1. 热与温度a. 热量的传递方式b. 温标与温度转换2. 热力学第一定律a. 能量守恒定律b. 内能变化与热交换c. 等容、等压、等温过程3. 热力学第二定律a. 热机与卡诺定理b. 极限温度与热机效率c. 热力学不可逆性4. 热力学第三定律a. 绝对零度的定义与测量b. 熵及其性质c. 热力学函数及其应用5. 气体状态方程a. 状态方程的表示与转换b. 理想气体状态方程c. 一般气体状态方程三、电磁学1. 静电学a. 电荷与电场b. 电场强度c. 高斯定理d. 电势与电势能e. 电容与电容器2. 电流与电阻a. 电流的定义与测量b. 电阻与电阻器c. 欧姆定律d. 串、并联电路3. 磁场与电磁感应a. 磁场的产生与性质b. 电流产生的磁场c. 安培环路定理d. 磁感应强度e. 法拉第电磁感应定理4. 电磁波与光学a. 电磁波的性质与传播b. 光的传播与反射c. 光的折射与色散d. 几何光学5. 电磁波谱a. 可见光与光学仪器b. 红外线与微波c. 紫外线与X射线d. γ射线与辐射治疗四、量子物理1. 微观粒子的波粒二象性a. 波粒二象性的实验证据b. 普朗克常数与光子能量c. 德布罗意假设与波长2. 波函数与薛定谔方程a. 波函数的本质与物理意义b. 波函数的概率解释与测量c. 薛定谔方程及其应用3. 稳定原子结构a. 氢原子能级与能量b. 多电子原子的壳层结构c. 系统的波函数与能量4. 分子结构与化学键a. 原子、分子与化学键的关系b. 电子云模型与共价键c. 键的强度与化学键理论5. 核物理与放射性a. 原子核的组成与性质b. 放射性衰变与半衰期c. 核反应与核能的利用五、相对论与宇宙学1. 狭义相对论a. 狭义相对论的基本原理b. 时间与空间的相对性c. 相对论动力学与质能关系2. 广义相对论a. 弯曲时空与引力b. 爱因斯坦场方程c. 引力透镜效应与黑洞3. 宇宙的结构与演化a. 宇宙学原理与宇宙模型b. 宇宙的膨胀与暗能量c. 大爆炸理论与宇宙学红移以上为大学物理期末备考的要点,涵盖了力学、热学、电磁学、量子物理、相对论与宇宙学的基本知识。
B r ∆A rB ryr ∆第一章 运动学一. 描述运动的物理量 1. 位矢、位移和路程由坐标原点到质点所在位置的矢量r 称为位矢 位矢r xi yj =+,大小 2r r x y ==+运动方程()r r t =运动方程的分量形式()()x x t y y t =⎧⎪⎨=⎪⎩位移是描述质点的位置变化的物理量△t 时间内由起点指向终点的矢量B A r r r xi yj =-=∆+∆△,2r x =∆+△路程是△t 时间内质点运动轨迹长度s ∆是标量。
明确r ∆、r ∆、s ∆的含义(∆≠∆≠∆r r s ) 2. 速度(描述物体运动快慢和方向的物理量)平均速度xyr x y i j ij t t t瞬时速度(速度) t 0r drv limt dt∆→∆==∆(速度方向是曲线切线方向) 瞬时速度:j v i v j dt dy i dt dx dt r d v y x +=+==,瞬时速率:2222yx v v dt dy dt dx dt r d v +=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛== ds drdt dt= 速度的大小称速率。
3. 加速度(是描述速度变化快慢的物理量)平均加速度va t ∆=∆ 瞬时加速度(加速度) 220limt d d r a t dt dt υυ→∆===∆△ a 方向指向曲线凹向j dty d i dt x d j dt dv i dt dv dt v d a y x2222+=+== 2222222222⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=dt y d dt x d dt dv dt dv a a a y x y x二.抛体运动运动方程矢量式为 2012r v t gt =+分量式为 020cos ()1sin ()2αα==-⎧⎪⎨⎪⎩水平分运动为匀速直线运动竖直分运动为匀变速直线运动x v t y v t gt 三.圆周运动(包括一般曲线运动) 1.线量:线位移s 、线速度dsv dt= 切向加速度t dva dt=(速率随时间变化率) 法向加速度2n v a R=(速度方向随时间变化率)。
大学物理期末必备知识在物理学的学习过程中,期末考试是对学生们学习成果的一次全面检验。
为了顺利通过这一考试,学生们需要掌握一些必备的物理知识。
本文将为大家总结大学物理期末必备知识,帮助大家高效备考。
第一章:力学在力学中,学生们需要掌握以下几个重要概念:力、质量、加速度、牛顿三定律等。
1. 力:力是物体之间相互作用时产生的影响物体运动的物理量。
常见的力有重力、弹力、摩擦力等。
学生们需要了解不同力的概念、性质和计算方法。
2. 质量:质量是物体内在的特性,是衡量物体惯性的物理量。
学生们需要理解质量的基本概念和单位,并能够运用相关的公式进行计算。
3. 加速度:加速度是物体在单位时间内速度变化的量,揭示了物体运动状态的改变。
学生们需要熟悉加速度的计算方法,并能够应用到不同的物理问题中。
4. 牛顿三定律:牛顿三定律是力学的基石,描述了物体运动的基本规律。
学生们需要了解三定律的内容和适用条件,并能够应用到实际问题中解决物理计算和分析。
第二章:热学热学是物理学的一个重要分支,研究物体温度、热量传递和热力学等内容。
在期末考试中,学生们需要掌握以下几个重要概念:温度和热量、热传导、热容和热力学循环等。
1. 温度和热量:温度是物体热平衡状态下的物理量,热量是物体内部粒子运动引起的能量传递。
学生们需要理解温度和热量的概念,以及它们的计量单位和测量方法。
2. 热传导:热传导是指物质内部热量通过传导方式传递的过程。
学生们需要了解热传导的基本原理和计算方法,并能够应用到物理问题中。
3. 热容:热容是物体对热量变化的敏感性程度,用于描述物体的热状态变化。
学生们需要了解热容的概念和计算方法,并能够应用到热力学计算中。
4. 热力学循环:热力学循环是指在一定条件下,物质经历一系列热力学过程的循环。
学生们需要了解热力学循环的基本原理和性质,并能够分析和计算循环过程中的热量和功。
第三章:电磁学电磁学是物理学的另一个重要分支,研究电荷、电场、电流和电磁场等内容。
大学物理知识点总结一、物体的内能1.分子的动能物体内所有分子的动能的平均值叫做分子的平均动能.温度升高,分子热运动的平均动能越大.温度越低,分子热运动的平均动能越小.温度是物体分子热运动的平均动能的标志.2.分子势能由分子间的相互作用和相对位置决定的能量叫分子势能.分子力做正功,分子势能减少,分子力做负功,分子势能增加。
在平衡位置时(r=r0),分子势能最小.分子势能的大小跟物体的体积有关系.3.物体的内能(1)物体中所有分子做热运动的动能和分子势能的总和,叫做物体的内能.(2)分子平均动能与温度的关系由于分子热运动的无规则性,所以各个分子热运动动能不同,但所有分子热运动动能的平均值只与温度相关,温度是分子平均动能的标志,温度相同,则分子热运动的平均动能相同,对确定的物体来说,总的分子动能随温度单调增加。
(3)分子势能与体积的关系分子势能与分子力相关:分子力做正功,分子势能减小;分子力做负功,分子势能增加。
而分子力与分子间距有关,分子间距的变化则又影响着大量分子所组成的宏观物体的体积。
这就在分子势能与物体体积间建立起某种联系。
因此分子势能分子势能跟体积有关系,由于分子热运动的平均动能跟温度有关系,分子势能跟体积有关系,所以物体的内能跟物的温度和体积都有关系:温度升高时,分子的平均动能增加,因而物体内能增加;体积变化时,分子势能发生变化,因而物体的内能发生变化.此外, 物体的内能还跟物体的质量和物态有关。
二.改变物体内能的两种方式1.做功可以改变物体的内能.2.热传递也做功可以改变物体的内能.能够改变物体内能的物理过程有两种:做功和热传递.注意:做功和热传递对改变物体的内能是等效的.但是在本质上有区别:做功涉及到其它形式的能与内能相互转化的过程,而热传递则只涉及到内能在不同物体间的转移。
[P7.]南京市金陵中学06-07学年度第一次模拟1.下列有关热现象的叙述中正确的是(A)A.布朗运动反映了液体分子的无规则运动B.物体的内能增加,一定要吸收热量C.凡是不违背能量守恒定律的实验构想,都是能够实现的D.物体的温度为0℃时,物体分子的平均动能为零[P8.] 07届1月武汉市调研考试2.恒温的水池中,有一气泡缓慢上升,在此过程中,气泡的体积会逐渐增大,不考虑气泡内气体分子势能的变化,则下列说法中正确的是( A D )A.气泡内的气体对外界做功B.气泡内的气体内能增加C.气泡内的气体与外界没有热传递D.气泡内气体分子的平均动能保持不变[P9.] 2022年广东卷10、图7为焦耳实验装置图,用绝热性能良好的材料将容器包好,重物下落带动叶片搅拌容器里的水,引起水温升高。
大学物理期末考点总结物理1复习要点[第一章质点运动学] 1、怎样由运动学方程r xi yj =+求a x 、a y 、a n 、 a t 和轨迹方程?2、已知质点作一维运动的加速度a ,如何求其运动学方程?[第三章功和能] 质点系动量守恒、机械能守恒以及动能守恒的条件各是什么?[第五章刚体定轴转动] 1、怎样由刚体定轴转动定律(/M J β=合)导出动量矩守恒定律?守恒条件是什么?2、举3个生活中常见的角动量守恒例子。
[第六章简谐振动] 1、用三个数学方程表述质点作简谐振动的特点。
找出至少四个与位移的变化频率ν或周期T 相同的物理量。
为什么振动动能和振动势能的变化频率是?2ν2、如何用旋转矢量法求振动初相位?[第七章热力学基础] 1、理解并熟练掌握理想气体的状态方程(克拉泊龙方程)RT PV ν=的意义及应用,能由该方程求出未知参量如压强P 、体积V 或温度T ;三个参量中,能否只有一个变化而另外两个不变?2、用文字和数学语言表述热力学第一定律,说明如何求定律中的各物理量以及为什么第一类永动机不可能实现?3、理解热力学第二定律的两种表述,为什么说两者的本质是一样的?说明第二类永动机不可能实现的原因。
4、热机效率是如何定义的?理想卡诺热机效率与什么有关?应该怎样提高热机效率?[第八章气体动理论] 熟记并理解能量按自由度均分定理。
在温度为T 的平衡态,被视为理想刚性的单原子气体分子、双原子气体分子和多原子气体分子的自由度、平均平动动能、平均转动动能和平均动能各是多少?[第十二章机械波] 什么是波函数?能否由波函数])(cos[?ω+±=ux t A y 直接看出波速的方向?试述求波函数的方法或几个主要步骤。
[第十三章波动光学基础] 怎样从普通光源获得相干光源?如何推导双缝干涉、劈尖干涉和牛顿环干涉图样的公式和规律?如何研究单缝衍射和光栅衍射条纹的规律?白光照射光栅,不同色的光衍射条纹为何会发生重叠现象?。
期末大学物理重点总结导言:物理作为自然科学的一门学科,研究物质、能量和它们之间相互作用的规律。
在大学物理课程中,我们学习了力学、热学、电磁学和光学等基础内容。
本文将对这些重点内容进行总结,以期帮助同学们复习和理解。
第一部分:力学力学是物理学中最基础、最重要的一门学科,它主要研究物体的运动和受力情况。
1. 牛顿力学牛顿力学是力学的基础,包括牛顿三定律、动量和能量守恒定律等。
1.1 牛顿三定律牛顿第一定律:一个物体如果没有外力作用,将保持静止或匀速直线运动状态。
牛顿第二定律:一个物体受到的力等于其质量乘以加速度。
牛顿第三定律:任何两个物体之间的相互作用力大小相等、方向相反。
1.2 动量守恒系统总动量等于系统内各个物体的动量之和,即动量守恒。
1.3 能量守恒系统总机械能等于系统内各个物体的机械能之和,即机械能守恒。
2. 牛顿引力定律牛顿引力定律是描述物体之间引力作用的定律。
2.1 引力公式任意两个物体之间的引力等于它们质量的乘积与它们距离的平方成反比。
2.2 万有引力定律任意两个物体之间的引力与它们的质量有关,而与距离平方成反比。
第二部分:热学热学是研究物体热现象和能量转换的学科。
1. 温度和热量物体的温度是反映物体热现象的物理量,热量是能量的一种表现形式。
2. 热传导、热辐射和热对流热传导是指热量通过物体内部由高温区传递到低温区,热辐射是指物体通过辐射的方式传递热量,热对流是指热量通过流体的对流传递。
3. 理想气体状态方程理想气体状态方程描述了理想气体的状态,即PV=nRT,其中P为气体的压强,V为体积,n为物质的量,R为气体常数,T为温度。
第三部分:电磁学电磁学是研究带电粒子相互作用的学科。
1. 静电学静电学研究带电粒子的电场和电势。
1.1 库仑定律库仑定律描述了两个电荷之间的电力相互作用,即Coulomb定律。
1.2 电场和电势电场是描述电荷对其他电荷施加力的物理量,电势是电荷所在位置的势能。
2. 电磁感应电磁感应是研究磁场和电场相互作用的学科。
大学物理期末知识点总结
一光的这是定律
1.折射光线与入射光线和法线在同一平面内。
2.折射光线与入射光线分居法线两侧。
3.当光从空气斜射入其他介质中时,折射角小于入射角。
4.当光从其他介质中斜射入空气时,折射角大于入射角。
5.当入射角增大时,折射角也随着增大。
6.当光线垂直射向介质表面时,传播方向不改变。
二,绝对折射率
绝对折射率光从真空射入介质发生折射时,入射角i与折射角r的正弦之比n叫做介质的“绝对折射率”,简称“折射率”。
它表示光在介质中传播时,介质对光的一种特征。
公式n=sin i/sin r=c/v
三,用双缝干涉测量光的波长实验原理
1.光通过双缝干涉仪上的单缝和双缝后,得到振动情况完全相同的光,它们在双缝后面的空间互相叠加会发生干涉现象。
如果用单色光照射,在屏上会得到明暗相间的条纹;如果用白光射,可在屏上观察到彩色条纹。
2.本实验要测单色光的波长,单色光通过双缝干涉后产生明暗相同的等间距直条纹,条纹的间距与相干光源的波长有关。
设双缝宽d,双缝到屏的距离为L,相干光源的波长为λ,则产生干涉图样中相邻两条亮(或暗)条纹之间的距离△x,由此得;λ=L△x /d,因此只要测得d,L,△x即可测得波长。
相干光源的产生用“一分为二”的方法,用单缝取单色光,再通过双缝,单色光由滤光片获得。
△x的测量可用测量头完成,测量头由目镜,划板,手轮等构成,通过测量头可清晰看到干涉条纹,分划板上中间有刻线,以此为标准,并根据手轮的读数可求得△x,由于△x较小,可测出几条亮(或暗)条纹的间距a,则相邻两条闻之间的距离△x=a/n
四、光的衍射、偏振
光的衍射现象:光离开直线路径绕到障碍物阴影里去的现象叫光的衍射。
衍射时产生的明暗条纹或光环叫衍射图样。
衍射条纹的形成是来自单缝或圆孔上不同位置的光,在光屏处叠加后光波加强或者削弱而形成。
单色光衍射时:中央为较宽的明条纹,两边为不同等间距的明、暗相间的条纹;
白光衍射时:中央为较宽的白色亮纹,两边为彩色条纹。
光产生明显衍射的条件:障碍物或孔的尺寸比波长小,或者跟波长差不多。
光的偏振(polarization of light)振动方向对于传播方向的不对称性叫做偏振,它是横波区别于其他纵波的一个最明显的标志。
光波电矢量振动的空间分布对于光的传播方向失去对称性的现象叫做光的偏振。
只有横波才能产生偏振现象,
五、全反射
全反射:光由光密(即光在此介质中的折射率大的)媒质射到光疏(即光在此介质中折射率小的)媒质的界面时,全部被反射回原媒质内的现象
公式为n=sin90`/sinc=1/sinc sinc=1/n (c为临界角)
当光射到两种介质界面,只产生反射而不产生折射的现象.当光由光密介质射向光疏介质时,折射角将大于入射角.当入射角增大到某一数值时,折射角将达到90°,这时在光疏介质中将不出现折射光线,只要入射角大于上述数值时,均不再存在折射现象,这就是全反射.所以产生全反全反射
射的条件是:①光必须由光密介质射向光疏介质.②入射角必须大于临界角(C).所谓光密介质和光疏介质是相对的,两物质相比,折射率较小的,就为光疏介质,折射率较大的,就为光密介质。
例如,水折射率大于空气,所以相对于空气而言,水就是光密介质,而玻璃的折射率比水大,所以相对于玻璃而言,水就是光疏介质。
临界角是折射角为90度时对应的入射角(只有光线从光密介质进入光疏介质且入射角大于临界角时,才会发生全反射)。