必修5-2(等差等比数列)
- 格式:doc
- 大小:458.50 KB
- 文档页数:6
数学数列部分知识点梳理一数列的概念1)数列的前n 项和与通项的公式①n n a a a S +++= 21; ⎩⎨⎧≥-==-)2()1(11n S S n S a n n n2)数列的分类:①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1.③摆动数列:例如: .,1,1,1,1,1 ---④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >. 一、等差数列 1)通项公式d n a a n )1(1-+=,1a 为首项,d 为公差。
前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=. 2)等差中项:b a A +=2。
3)等差数列的判定方法:⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.4)等差数列的性质:⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n )(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列; ⑹当项数为)(2+∈N n n ,则nn a aS S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇. (7)设是等差数列,则(是常数)是公差为的等差数列;(8)设,,,则有;(9)是等差数列的前项和,则;(10)其他衍生等差数列:若已知等差数列,公差为,前项和为,则①.为等差数列,公差为;②.(即)为等差数列,公差;③.(即)为等差数列,公差为.二、等比数列 1)通项公式:11-=n n q a a ,1a 为首项,q 为公比 。
2.4等比数列(2)教学目标:1、 能够应用等比数列的定义及通项公式,理解等比中项概念;2、 类比等差数列的性质推到等比数列的性质;3、 提升学生对数学知识的正迁移能力,增强学生的数学素养.教学重点:1.等比中项的理解与应用2.等比数列性质探究与应用.教学难点:灵活应用等比数列定义、通项公式及性质解决相关问题.教学过程:一、复习回顾等比数列定义,等比数列通项公式.(板书)二、讲授新课第一环节:类比等差中项,探究等比中项 .问题1:(1)若在2,8中插入一个数A ,使2,A ,8成等差数列,则A = .变式1.若在2,8中插入一个数G ,使2,G ,8成等比数列,则G = .变式2.若在-2, 4中插入一个数M ,能否使-2,M ,4成等比数列呢?归纳小结:1.等差中项:若a ,A ,b 成等差数列⇔A =a +b 2,A 为等差中项. 2.等比中项:(板书)如果在a 、b 中插入一个数G ,使a 、G 、b 成等比数列,则G 是a 、b 的等比中项。
ab G ab G Gb a G ±=⇒=⇒=2(注意两解且同号两项才有等比中项) 练习:完成教材课后练习P预设:学生在推导过程中,部分同学会忽略对等比中项的存在性的讨论,在等比中项存在时漏掉符号为负的那一项.(有利于培养学生的严谨性和批判性)问题2()()()(){}()213n 51937519283746n b b b b n n {a }.1 a a a2 a =3a =a =3 a a =a a =a a =a a 4{b }a a a a 5{a }{lg }. A.1ka ⋅⋅⋅⋅已知无穷数列 是等比数列,那么下列说法中正确个数的有( )是 和 的等比中项;若 ,6,则 12;;若是等差数列,则 是 和 的等比中项,并且 也是等比数列;若数列 的每项都是正数,则数列 为等差数列 B.2 C.3 D.4师问:同学们观察第(3)你发现什么规律了吗?类比等差数列{a n }中,若m +n =p +q ,则a m +a n =a p +a q ,在等比数列{a n }中,若m +n =p +q ,则,m n p q a a a a ,,之间又有怎样的关系呢?并说理.分析:由通项公式可得:a m =a 1q m -1,a n =a 1q n -1,a p =a 1q p -1,a q =a 1·q q -1不难发现:a m ·a n =a 12q m +n -2,a p ·a q =a 12q p +q -2归纳小结:若m +n =p +q ,则a m ·a n =a p ·a q (板书)师问:同学们观察第(4)你发现什么规律了吗?学生发现:在等比数列中,若项数成等差数列,则对应的项仍然成等比数列. 归纳小结:234,,,m m m m km a a a a a ⋅⋅⋅⋅⋅⋅ ,,成等比数列问题3n 115{}(1) 2 , 3 ,(2) 6 , 2 ,n n a a q a q a a q a ====已知数列 是首相 ,公比 为的等比数列,若 求 ;若 求 ;同学们思考:在等比数列中,已知1a q 首相,公比我们可以得到通项公式n a ,如果给出m a q ,公比,又如何表示通项公式n a ?归纳小结:通项公式的变形:11=n n m n m a a q a q --=⋅⋅(板书)师问:类比等差数列()11n a a n d =+-,可以看成是以n 为自变量n a 为因变量的一次函数,它的几何意义是该一次函数图像上的点,那么对于等比数列,已知1a q 首相,公比,变量n a 与变量n 是否存在函数关系?若存在属于哪个类型函数?归纳小结:(板书)当数列}a {n 为指数型函数当{}01n q q a >≠数列为指数且时,型函数;当q=1时,数列}a {n 为常数列;当q<0时,数列}a {n 为摆动数列.思考题1 {}{}44n n a b a b 等差数列与等比数列的首项和第8项为正且相等,试比较与的大小.归纳小结:构建两个函数,为借助函数图像解题奠定了基础,体现了函数思想在数列中的运用。
1.本章是通过对一般数列的研究,转入对两类特殊数列──等差数列、等比数列的通项公式及前n项求和公式的研究的。
教科书首先通过三角形数、正方形数的实例引入数列的概念,然后将数列作为一种特殊函数,介绍了数列的几种简单表示法(列表、图象、通项公式)。
作为最基本的递推关系──等差数列,是从现实生活中的一些实例引入的,然后由定义入手,探索发现等差数列的通项公式。
等差数列的前n项和公式是通过的高斯算法推广到一般等差数列的前n项和的算法。
与等差数列呈现方式类似,等比数列的定义是通过细胞分裂个数、计算机病毒感染、银行中的福利,以及我国古代关于“一尺之棰,日取其半,万世不竭”问题的研究探索发现得出的,然后类比等差数列的通项公式,探索发现等比数列的通项公式,接着通过实例引入等比数列的前n项求和,并用错位相减法探索发现等比数列前n项求和公式。
最后,通过“九连环”问题的阅读与思考以及“购房中的数学”的探究与发现,进一步感受数列与现实生活中的联系和具体应用。
2.人们对数列的研究有的源于现实生产、生活的需要,有的出自对数的喜爱。
教科书从三角形数、正方形数入手,指出数列实际就是按照一定顺序排列着的一列数。
随后,又从函数的角度,将数列看成是定义在正整数集或其有限子集上的函数。
通过数列的列表、图象、通项公式的简单表示法,进一步体会数列是型,借助数列的相关知识解决问题的思想。
三、编写中考虑的几个问题1.体现“现实问题情境——数学模型——应用于现实问题”的特点数列作为一种特殊函数,是反映自然规律的基本数学模型。
教科书通过日常生活中大量实际问题(存款利息、放射性物质的衰变等)的分析,建立起等差数列与等比数列这两种数列模型。
通过探索和掌握等差数列与等比数列的一些基本数量关系,进一步感受这两种数列模型的广泛应用,并利用它们解决了一些实际问题。
教科书的这一编写特点,可由下面图示清楚表明:数列:三角形数、正方形数数列概念数列的三种表示回归到实际问题(希尔宾斯基三角形、斐波那契数列、银行存款等)等差数列:4个生活实例等差数列概念等差数列通项公式等差数列基本数量关系的探究(出租车收费问题等)前100个自然数的高斯求解等差数列的前n项和公式等差数列数量关系的探究及实际应用(校园网问题)等比数列:细胞分裂、古代“一尺之棰”问题、计算机病毒、银行复利的实例等比数列概念等比数列的通项公式等比数列基本数量关系的探究及实际应用(放射性物质衰变、程序框图等)诺贝尔奖金发放金额问题等比数列前n项和公式等比数列基本数量关系探究及实际应用(商场计算机销售问题、九连环的智力游戏、购房中的数学等)教科书的这种内容呈现方式,一方面可以使学生感受数列是反映现实生活的数学模型,体会数学是来源于现实生活,并应用于现实生活的,数学不仅仅是形式的演绎推导,数学是丰富多彩而不是枯燥无味的;另一方面,这种通过具体问题的探索和分析建立数学模型、以及应用于解决实际问题的过程,有助于学生对客观事物中蕴涵的数学模式进行思考和做出判断,提高数学地提出、分析、解决问题的能力,提高学生的基本数学素养,为后续的学习奠定良好的数学基础。
高中数学等差数列说课稿〔通用8篇〕高中数学等差数列说课稿〔通用8篇〕高中数学等差数列说课稿篇1一、教材分析^p1、教材的地位和作用:《等差数列》是人教版新课标教材《数学》必修5第二章第二节的内容。
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。
而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的根底上,对数列的知识进一步深化和拓广。
同时等差数列也为今后学习等比数列提供了学习比照的根据。
2、教学目的根据教学大纲的要求和学生的实际程度,确定了本次课的教学目的a知识与技能:理解并掌握等差数列的概念;理解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。
培养学生观察、分析^p 、归纳、推理的才能;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移才能;通过阶梯性练习,进步学生分析^p 问题和解决问题的才能。
b.过程与方法:在教学过程中我采用讨论式、启发式的方法使学生深化的理解不完全归纳法。
c.情感态度与价值观:通过对等差数列的研究,培养学生主动探究、勇于发现的求知精神;养成细心观察、认真分析^p 、擅长总结的良好思维习惯。
3、教学重点和难点重点:①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
难点:①等差数列的通项公式的推导②用数学思想解决实际问题二、学情教法分析^p :对于高一学生,知识经历已较为丰富,具备了一定的抽象思维才能和演绎推理才能,所以我本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学理论活动,以独立考虑和互相交流的形式,在教师的指导下发现、分析^p 和解决问题。
学生在初中时只是简单的接触过等差数列,详细的公式还不会用,因些在公式应用上加强学生的理解三、学法分析^p :在引导分析^p 时,留出学生的考虑空间,让学生去联想、探究,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。
§2.4 等比数列第1课时等比数列的概念与通项公式一、教学内容《等比数列》是普通高中课程标准试验教科书《数学》必修5第二章《数列》第四节,内容较多,设置了两个课时,第1课时为等比数列的概念及通项公式.等比数列在我们的学习和生活中有着广泛的实际应用,例如:物理、化学、生物等均有涉及,通过该内容的学习,能够培养学生的多种数学能力。
而且它在教材中起着承前启后的作用,一方面,等比数列是一种特殊的数列,与等差数列既有区别,也有联系,另一方面,它又对进一步学习数列及其应用等内容作准备,且等比数列又是高考的考点之一。
所以本节内容比较重要,地位较突出.二、教学目标1.知识与技能:①通过学习,能说出等比数列的概念,并会使用符号语言表示;②初步掌握等比数列的通项公式及其推导过程和方法;③运用等比数列的通项公式解决一些简单的有关问题.2.过程与方法:通过慨念、公式和例题的教学,渗透类比思想、方程思想、函数思想以及从特殊到—般等数学思想,培养学生观察、比较、概括、归纳等数学能力及思想方法,增强应用意识.3.情感、态度与价值观:通过对等比数列概念的归纳,培养学生科学严谨的思维习惯以及合作探究的精神,体会类比思想.三、教学重难点1.重点:等比数列、等比中项的概念的形成,通项公式的推导及运用.2.难点:等比数列通项公式推导方法的获取.四、学情分析高一学生已经初步形成了自己的学习习惯,好奇心强,有着自主的探究能力和思考辨别能力.但通过考试成绩的分析可以看出,学生基础薄弱,知识的引入及理解都应多加强调,在教学中,需要多设计问题,化难为易,循序渐进,以问题串为载体引导学生分析问题,解决问题.五、教法与学法教法:1.直观演示法:利用多媒体课件直观的展示数列,便于学生观察,发现数列特征.2.活动探究法:引导学生通过创设生活情境获取知识,以学生为主体,使学生的独立探索性得到充分的发挥,培养学生的自学能力、思维能力、活动组织能力.3.集体讨论法:针对学生提出的问题,组织学生进行集体和分组讨论,促使学生在学习中解决问题,培养学生的团结协作的精神.学法:等差数列的概念及通项公式启发我们,使用类比的方法,学习等比数列的概念,通项公式的两种推导方法.六、教学用具多媒体,三角板,彩色粉笔,电子笔七、授课类型新授课八、教学过程(一)课前复习1.等差数列的概念2.通项公式.(二)新授课1.课堂探究1课本48页4个实例.①细胞分裂个数构成的数列②“一尺之锤,日取其半,万世不竭”,将“一尺之锤”看成单位“1”,得到的数列③计算机每轮感染的数量构成的数列④银行存款中,每一年的本利和得到的数列思考:类比等差数列的定义,这4个数列项与项之间都有什么共同特征?试将共同特征用语言叙述出来,并用符号表示.【师生活动】教师引导学生从生活中的实例出发,借助等差数列的概念进行类比推理.【设计意图】以学生熟悉的等差数列的概念为背景,通过思考,引导学生进行分析,使学生形成“等比数列是后一项与前一项的比是同一常数的数列”的感知,从而流畅自然的引出等比数列的概念.2.等比数列的概念一般地,如果一个数列从第..2.项起..,每一项与它的前一项的比.等于同一常数....,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,用字母q )0(≠q 来表示.用数学符号表示为:}{n a 是等比数列⇔),2,0(1+-∈≥≠=N n n q q a a n n 且 【师生活动】在上一个环节的基础上,教师引导学生给出等比数列的概念.【设计意图】流畅的引出等比数列的概念,使学生理解等比数列.3.对概念的再认识(1)公比是否能等于0? 等比数列中有为0的项吗?(2)公比为1的数列是什么数列?(3)既是等差数列又是等比数列的数列存在吗?(4)公比q>0的等比数列有什么特征?公比q<0的等比数列有什么特征?【师生活动】教师引导学生,观察等比数列中的各项的要求.【设计意图】使学生很自然的对等差、等比数列的异同点进行初步认知. 例1.判断下列数列是否为等比数列?若是,找出公比;若不是,请说明理由.① 1, 4, 16, 32.② 0, 2, 4, 6, 8.③ 1,-10,100,-1000,10000.④ 81, 27, 9, 3, 1.⑤ a a a a a ,,,,【师生活动】学生根据等比数列的概念进行判断.【设计意图】1.让学生体会等比数列中公比可正可负,可以大于1,也可以小于1.2.让学生体会等比数列中不能出现0.3.体会非零常数列既是等差数列,又是等比数列.4.课堂探究2 等比数列的通项公式)(11+-∈=N n q a a n n方法:累乘法【师生活动】教师引导学生回顾等差数列的通项公式推导过程,引导学生类比推导等比数列的通项公式.【设计意图】培养学生小组合作,类比推理的学习能力.5.对通项公式的再认识① 等比数列通项公式11-=n n q a a 中,是公比的...1-n 次方... ② 写出通项公式需已知的量是首项..与公比..,它们均不为...0.【师生活动】教师引导学生从等比数列的定义,通项公式的形式,推导过程,对通项公式进行再认识.【设计意图】熟练掌握等比数列的通项公式以及常用变形式.(三)练习导学案上的练习题九、课堂小结1.等比数列的概念2.等比数列的通项公式及推导方法 11-=n n q a a3.本节课所运用的数学思想方法十、课后作业练习册2.4.1等比数列的概念和通项公式十一、板书设计十二、教学反思(附页)。
普通高中课程标准实验教科书数学(人教A版)必修 5等差数列(第1课时)1、设计思想:数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。
而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。
同时等差数列也为今后学习等比数列提供了“联想”、“类比”的思想方法。
2、教材分析:【教学目标】1.知识与技能(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:(2)账务等差数列的通项公式及其推导过程:(3)会应用等差数列通项公式解决简单问题。
2.过程与方法在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。
3.情感、态度与价值观通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。
在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。
【教学重点】①等差数列的概念;②等差数列的通项公式【教学难点】①理解等差数列“等差”的特点及通项公式的含义;②等差数列的通项公式的推导过程.3、学情分析我所教学的学生是我校高一(382)班的学生(实验班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展.【设计思路】1.教法①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.2.学法引导学生首先从三个现实问题(姚明罚球问题、运动鞋尺码问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.【教学过程】一:创设情境,引入新课1.姚明刚进NBA一周训练罚球的个数6000,6500,7000,7500,8000,8500,90002.运动鞋的尺码组成一个什么数列?教师:以上二个问题中的数蕴涵着三列数.学生:1:6000,6500,7000,7500,8000,8500,9000,….2:35,36,37,38,39,40,41,42(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.二:观察归纳,形成定义①6000,6500,7000,7500,8000,8500,9000,….②35,36,37,38,39,40,41,42思考1上述数列有什么共同特点?思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?思考3你能将上述的文字语言转换成数学符号语言吗?教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.)三:举一反三,巩固定义1.判定下列数列是否为等差数列?若是,指出公差d.(1)1,1,1,1,1;(2)1,0,1,0,1;(3)2,1,0,1,2;(4)4,7,10,13,16.教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0 .(设计意图:强化学生对等差数列“等差”特征的理解和应用).2思考4:设数列{a n}的通项公式为a n=3n+1,该数列是等差数列吗?为什么?(设计意图:强化等差数列的证明定义法)四:利用定义,导出通项1.已知等差数列:8,5,2,…,求第200项?2.已知一个等差数列{a n}的首项是a1,公差是d,如何求出它的任意项a n呢?教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)五:应用通项,解决问题1判断100是不是等差数列2,9,16,…的项?如果是,是第几项?2在等差数列{a n}中,已知a5=10,a12=31,求a1,d和a n.3求等差数列3,7,11,…的第4项和第10项教师:给出问题,让学生自己操练,教师巡视学生答题情况.学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式(设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)六:反馈练习:教材13页练习1七:归纳总结:1.一个定义:等差数列的定义及定义表达式2.一个公式:等差数列的通项公式3.二个应用:定义和通项公式的应用教师:让学生思考整理,找几个代表发言,最后教师给出补充(设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)【设计反思】本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.。
高中数学必修5教案等比数列第2课时第一篇:高中数学必修5教案等比数列第2课时等比数列第2课时授课类型:新授课●教学目标知识与技能:灵活应用等比数列的定义及通项公式;深刻理解等比中项概念;熟悉等比数列的有关性质,并系统了解判断数列是否成等比数列的方法过程与方法:通过自主探究、合作交流获得对等比数列的性质的认识。
情感态度与价值观:充分感受数列是反映现实生活的模型,体会数学是来源于现实生活,并应用于现实生活的,数学是丰富多彩的而不是枯燥无味的,提高学习的兴趣。
●教学重点等比中项的理解与应用●教学难点灵活应用等比数列定义、通项公式、性质解决一些相关问题●教学过程Ⅰ.课题导入首先回忆一下上一节课所学主要内容:1.等比数列:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q表示(q≠an0),即:=q(q≠0)an-12.等比数列的通项公式:an=a1⋅q3.{an}成等比数列⇔列的必要非充分条件4.既是等差又是等比数列的数列:非零常数列Ⅱ.讲授新课1.等比中项:如果在a与b中间插入一个数G,使a,G,b成等比数列,那么称这个数G为a与b的等比中项.即G=±ab(a,b同号)如果在a与b中间插入一个数G,使a,G,b成等比数列,则n-1(a1⋅q≠0),an=am⋅qn-m(am⋅q≠0)an+1+=q(n∈N,q≠0)“an≠0”是数列{an}成等比数anGb=⇒G2=ab⇒G=±ab,aG反之,若G=ab,则≠0)[范例讲解] 课本P58例4 证明:设数列{an}的首项是a1,公比为q1;{bn}的首项为b1,公比为q2,那么数列{an⋅bn}的第n项与第n+1项分别为:2Gb2=,即a,G,b成等比数列。
∴a,G,b成等比数列⇔G=ab(a·baGa1⋅q1n-1⋅b1⋅q2与a1⋅q1⋅b1⋅q2即为a1b1(q1q2)n-1与a1b1(q1q2)nn-1nnan+1⋅bn+1a1b1(q1q2)nΘ==q1q2.n-1an⋅bna1 b1(q1q2)它是一个与n无关的常数,所以{an⋅bn}是一个以q1q2为公比的等比数列拓展探究:对于例4中的等比数列{an}与{bn},数列{an}也一定是等比数列吗? bnana,则cn+1=n+1 bnbn+1探究:设数列{an}与{bn}的公比分别为q1和q2,令cn=∴cn+1bn+1abqa==(n+1)γ(n+1)=1,所以,数列{n}也一定是等比数列。
1.等比数列:一般地,如果一个数列从 起,每一项与它的前一项的
比等于 那么这个数列就叫做等比数列.这个常数叫做等比数列的 ;公比通常用字母q 表示(q ≠0),即:1
-n n a a =q (q ≠0). 注:1︒“从第二项起”与“前一项”之比为常数(q)
{n a }成等比数列⇔n
n a a 1+=q (+∈N n ,q ≠0) 2︒ 隐含:任一项00≠≠q a n 且
3︒ q= 1时,{a n }为常数列.
2.等比数列的通项公式
① 111(0)n n a a q
a q -=⋅⋅≠ ②1(0)n m n m a a q a q -=⋅⋅≠
③变式:(,)n n m m
a q n m N a +-=∈; 3.既是等差又是等比数列的数列:非零常数列.
4.等比中项的定义:如果a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项.且 2
G ac =
思考:若 2G ac =则G 是a 与b 的等比中项,对吗?
5.等比数列的递增和递减性.
在等比数列{a n }中
12n n n a a ++或一个等比数列的第3项与第。
《等比数列》开场白:尊敬的各位考官,上午好,今天我说课的题目是《等比数列》。
下面我将从说教材、说学情、说教法、说学法、说教学过程、说板书设计这六个方面进行说课。
一、说教材本节课是人教版高中《必修5》第二章第二节第一课时的内容,是在学生已经系统地学习了一种常用数列,即等差数列的概念、通项公式和前n项和公式的基础上,开始学习另一种常用数列。
教材通过日常生活中的实例,讲解等比数列的定义与通项,不仅是本章的重点和难点,也是高中阶段培养学生逻辑推理的重要载体之一。
结合对教材的分析,在新课标的指导下我确定如下教学三维目标:知识与技能目标:理解并掌握等比数列的定义和通项公式,并加以初步应用。
过程与方法目标:通过概念、公式和例题的教学,渗透类比思想、方程思想、函数思想以及从特殊到—般等数学思想,着重培养学生观察、比较、概括、归纳、演绎等方面的思维能力,并进—步培养运算能力,分析问题和解决问题的能力,增强应用意识。
情感态度与价值观目标:在传授知识培养能力的同时,培养学生勇于探求,敢于创新的精神,同时帮助学生树立克服困难的信心,培养学生良好的学习习惯意志品质。
根据学生的认知水平和身心发展特点,我确定本节课教学重点:等比数列的定义及通项公式。
教学难点:灵活应用定义式及通项公式解决相关问题。
二、说学情为了更好的完成教学目标,做到有的放矢,我需要对学生情况有清晰明了的把握,接下来我说下学情:高中的学生,具有较强的逻辑思维能力,对新知识接受的也比较快,但本节课推导过程有一定难度,因此本节采用低起点,由浅到深,由易到难逐步推进,热情地启发学生的思维,让学生在欢愉的气氛中获取知识和运用知识的能力。
三、说教法遵循“教为主导,学为主体,练为主线”的教育思想,我所采用的教学方法主要是启发引导探究法,并以讨论法,讲授法相佐通过提问题激发学生求知欲,使学生主动参与,积极解决问题。
四、说学法与此同时,引导学生通过自学——类比——归纳——练习的方式,自主探究,促使学生更深入地去学习数学,乐于探究数学。
教师姓名学生姓名填写时间年级高二学科数学上课时间阶段基础(√)提高(√)强化(√)课时计划第()次课共()次课教学目标1、等差等比数列的概念与性质2、等差等比数列的通项公式与求和公式教学重难点通项与求和公式及性质教学过程一、前测一、选择题1.已知等比数列}{na的公比为正数,且3a·9a=225a,2a=1,则1a=A.21B.22C. 2D.22.已知为等差数列,,则等于A. -1B. 1C. 3D.73.公差不为零的等差数列{}na的前n项和为nS.若4a是37a a与的等比中项,832S=,则10S等于A. 18B. 24C. 60D. 904.设nS是等差数列{}n a的前n项和,已知23a=,611a=,则7S等于( )A.13 B.35 C.49 D. 635.等差数列{}na的前n项和为nS,且3S =6,1a=4,则公差d等于A.1 B53C.- 2 D 36.已知{}n a为等差数列,且7a-24a=-1,3a=0,则公差d=A.-2B.-12C.12D.27.等差数列{na}的公差不为零,首项1a=1,2a是1a和5a的等比中项,则数列的前10项之和是A. 90B. 100C. 145D. 1908.等差数列{}n a 的前n 项和为n S ,已知2110m m m a a a -++-=,2138m S -=,则m =A.38B.20C.10D.99.设{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A .2744nn +B .2533nn +C .2324nn +D .2n n +二、知识回顾1、数列中n a 与n S 之间的关系:11,(1),(2).n n n S n a S S n -=⎧=⎨-≥⎩注意通项能否合并。
2、等差数列: ⑴定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即n a -1-n a =d ,(n ≥2,n ∈N +), 那么这个数列就叫做等差数列。
⑵等差中项:若三数a A b 、、成等差数列2a b A +⇔=⑶通项公式:1(1)()n m a a n d a n m d =+-=+- 或(n a pn q p q =+、是常数). ⑷前n 项和公式:()()11122n n n n n a a S na d -+=+=⑸常用性质:①若()+∈ +=+N q p n m q p n m ,,,,则q p n m a a a a +=+; ②下标为等差数列的项() ,,,2m k m k k a a a ++,仍组成等差数列; ③数列{}b a n +λ(b ,λ为常数)仍为等差数列;④若{}n a 、{}n b 是等差数列,则{}n ka 、{}n n ka pb + (k 、p 是非零常数)、*{}(,)p nq a p q N +∈、,…也成等差数列。
⑤单调性:{}n a 的公差为d ,则:ⅰ)⇔>0d {}n a 为递增数列; ⅱ)⇔<0d {}n a 为递减数列; ⅲ)⇔=0d {}n a 为常数列;⑥数列{n a }为等差数列n a pn q ⇔=+(p,q 是常数)⑦若等差数列{}n a 的前n 项和n S ,则k S 、k k S S -2、k k S S 23-… 是等差数列。
3、等比数列⑴定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。
⑵等比中项:若三数a b 、G 、成等比数列2,G ab ⇒=(a b 同号)。
反之不一定成立。
⑶通项公式:11n n m n m a a q a q --==⑷前n 项和公式:()11111nn n a q a a q S qq--==--⑸常用性质①若()+∈ +=+N q p n m q p n m ,,,,则m n p q a a a a ⋅=⋅;② ,,,2m k m k k a a a ++为等比数列,公比为k q (下标成等差数列,则对应的项成等比数列)③数列{}n a λ(λ为不等于零的常数)仍是公比为q 的等比数列;正项等比数列{}n a ;则{}lg n a 是公差为lg q 的等差数列; ④若{}n a 是等比数列,则{}{}2n n ca a ,, 1na⎧⎫⎨⎬⎩⎭, {}()rna r Z ∈是等比数列,公比依次是21.rq q qq,,,⑤单调性:110,10,01a q a q >><<<或{}n a ⇒为递增数列;{}110,010,1n a q a q a ><<<>⇒或为递减数列; {}1n q a =⇒为常数列;{}0n q a <⇒为摆动数列;⑥既是等差数列又是等比数列的数列是常数列。
⑦若等比数列{}n a 的前n 项和n S ,则k S 、k k S S -2、k k S S 23-… 是等比数列. 三、题型训练 二、填空题10.设等差数列{}n a 的前n 项和为n S ,若972S =,则249a a a ++= 11.设等比数列{}n a 的公比12q =,前n 项和为n S ,则44S a = .12.若数列{}n a 满足:111,2()n n a a a n N *+==∈,则5a = ;前8项的和8S = .(用数字作答)13.设等比数列{n a }的前n 项和为n s 。
若3614,1s s a ==,则4a = 14.设等差数列{}n a 的前n 项和为n S ,若535a a =则95S S =15.等差数列{}n a 的前n 项和为n S ,且53655,S S -=则4a = 三、解答题16.设n S 为数列{}n a 的前n 项和,2n S kn n =+,*n N ∈,其中k 是常数.(I ) 求1a 及n a ;(II )若对于任意的*m N ∈,m a ,2m a ,4m a 成等比数列,求k 的值.17.设数列{}n a 的通项公式为(,0)n a pn q n N P *=+∈>. 数列{}n b 定义如下:对于正整数m ,m b 是使得不等式n a m ≥成立的所有n 中的最小值. (Ⅰ)若11,23p q ==-,求3b ;(Ⅱ)若2,1p q ==-,求数列{}m b 的前2m 项和公式;(Ⅲ)是否存在p 和q ,使得32()m b m m N *=+∈?如果存在,求p 和q 的取值范围;如果不存在,请说明理由.18.等比数列{n a }的前n 项和为n S , 已知对任意的n N +∈ ,点(,)n n S ,均在函数(0xy b r b =+>且1,,b b r ≠均为常数)的图像上.(1)求r 的值; (11)当b=2时,记 1()4n nn b n N a ++=∈ 求数列{}n b 的前n 项和n T19.已知等差数列{n a }中,,0,166473=+-=a a a a 求{n a }前n 项和n s .20.已知数列{} 的前n 项和,数列{}的前n 项和(Ⅰ)求数列{}与{}的通项公式;(Ⅱ)设,证明:当且仅当n ≥3时,<21.数列{}n a 的通项222(cos sin)33n n n a n ππ=-,其前n 项和为n S .(1) 求n S ; (2) 3,4n n nS b n =⋅求数列{n b }的前n 项和n T .课后作业:22.已知等差数列}{n a 的公差d 不为0,设121-+++=n n n q a q a a S*1121,0,)1(N n q qa q a a T n n n n ∈≠-++-=--(Ⅰ)若15,1,131===S a q ,求数列}{n a 的通项公式;(Ⅱ)若3211,,,S S S d a 且=成等比数列,求q 的值。
(Ⅲ)若*2222,1)1(2)1(1,1N n qq dq T q S q q nn n ∈--=+--±≠)证明(23.设数列{}n a 的前n 项和为,n S 已知11,a =142n n S a +=+ (I )设12n n n b a a +=-,证明数列{}n b 是等比数列 (II )求数列{}n a 的通项公式。
24.等比数列{n a }的前n 项和为n s ,已知1S ,3S ,2S 成等差数列 (1)求{n a }的公比q ;(2)求1a -3a =3,求n s 25.已知数列{}n a 满足, *11212,,2n n n a a a a a n N ++=∈’+2==.()I 令1nn n b a a +=-,证明:{}n b 是等比数列;(Ⅱ)求{}n a 的通项公式。
教学反思:。