直接空冷机组防冻技术.
- 格式:pdf
- 大小:4.90 MB
- 文档页数:19
冬季空冷岛防冻措施及基本概念冬季空冷岛防冻措施及基本概念冬季空冷岛防冻措施及基本概念一、直接空冷抽汽供热机组冬季防冻的概念1.防冻保护措施的目的:为了防止冬季运行时空冷系统过冷或冰,避免翅片管束内结冰,杜绝管束冻结损坏设备;2.防冻期:当环境温度低于+2℃时,从严格意义上空冷系统已进入冬季运行期。
机组在遇有启动和停机操作时,必须提前了解并监视环境气象条件的变化,机组在冬季运行期间,汽轮机的背压控制值以两个低压缸背压较低值进行控制;3.凝结水过冷度:根据直接空冷系统冬季运行的特点,与原有的(湿冷机组)凝结水“过冷度”概念不同,直接空冷凝结水过冷度定义为:汽轮机低压缸排汽压力对应的饱和温度与各列下联箱的凝结水平均温度的差值。
在冬季防冻期间,过冷度作为重要参数进行监控;4.供热期机组负荷:因供热期抽汽供热量较大,而随着环境温度的下降,供热抽汽量增大的同时空冷岛防冻工作将更加严峻,所以在供热期机组负荷将以汽轮机进汽量参考,例如:70%额定负荷(231MW)应以额定主蒸汽量的70%来参考,即710T/h,以此来进行供热、防冻的参考基本依据。
5.空冷岛进汽量:凝结水流量与排汽装置补水流量之差即为空冷岛进汽量,或直接参考空冷岛凝结水回水流量。
6.管束弹性变形:指换热管束发生弯曲变形,经过调整管束可以自由恢复;7.管束变形:指管束发生永久弯曲,已无法恢复。
此种情况原因较多,主要原因是空冷岛设计、安装过程中存在不合理,导致个别管束膨胀、收缩受阻或通流面积不够造成,运行中加强测温工作,及时提前发现后作为重点监视调整对象,利用运行调节手段控制管束表面温度,降低管束温差减少管束变形概率;8.换热面过冷:指空冷换热管束外表面温度低于排汽温度,但还在0℃以上。
此时预示着管束冰冻前兆,若不及时采取措施,管束将很快发生冰冻;9.管束冰冻:指空冷换热管束外表面温度低于0℃,此时换热管束内部已经发生结冰现象,积冰没有阻断管束通流面。
330MW机组直接空冷岛运行防冻调整措施为了满足直接空冷机组冬季安全、经济运行的要求,通过分析风机电耗率和机组背压之间的关系,结合机组历史运行数据、空冷岛温度分布规律、防冻控制方法,给出了防冻控制方法,并制订了兼顾机组节能运行的优化控制策略。
该控制策略在330MW直接空冷机组上实施后,机组冬季运行背压平均可降低1kPa,在满足机组防冻安全的基础上实现了经济运行。
标签:330MW直接空冷机组;背压;风机;防冻;节能我厂2×330MW循环流化床机组采用直接空冷凝汽式汽轮机,额定背压为14.5KPa。
ACC(空冷)系统共有6列空冷凝汽器,位于空冷岛34米平台,由东向西排列分别为60、40、20、10、30、50列,其中10和20列为启动列,每列有3个顺流单元和2个逆流单元(2、4单元)。
空冷风机转速可通过变频器在0~50Hz无级调速,当环境温度≥20℃时投超频可达55Hz。
1 前言目前,直接空冷机组因具有良好的节水性在我国北方地区得到了广泛的应用。
直接空冷系统采用机械强制通风,将环境空气作为冷却介质,利用换热翅片管束使管内的水蒸气与管外的空气发生热交换,将汽轮机内做完功的乏汽冷却至液态水,实现热功转换中冷端散热的目的。
直接空冷机组运行几年后,大型冷端换热器——空冷岛的性能会逐渐下降,空冷岛翅片管冬季防冻、春秋季节防大风、夏季换热效果差等问题也逐渐显现。
另外,我国北方地区火电机组常面临调峰任务重、发电负荷不足等问题,开展空冷机组冷端优化运行工作非常重要。
2 空冷机组防冻研究现状我国北方冬季气温很低,像内蒙古薛家湾冬季最低温度可达到-25℃,空冷岛低温区域很容易发生冻结现象。
国内外关于空冷岛节能运行的文献有很多,但研究空冷机组防冻机理的文献较少。
虽然对直接空冷机组冷端防冻的机理进行了一定程度的研究,但是兼顾冷端防冻与节能功能的自动调节方案很少。
本文针对神华准能矸石发电有限责任公司的2台330MW汽轮发电机组每年冬季都会面临空冷系统运行防冻比较困难的问题进行了研究。
300MW直接空冷机组冬季启动防冻结策略发布时间:2022-08-28T09:21:23.911Z 来源:《中国电业与能源》2022年8期作者:张博[导读] 针对辽宁调兵山煤矸石电厂300MW直接空冷1号机组,在冬季启停机、正常运行及事故情况下由于蒸汽隔离阀不严等原因空冷凝汽器易出现冻结现象,张博辽宁大唐国际沈东热电有限责任公司辽宁沈阳 110000摘要:针对辽宁调兵山煤矸石电厂300MW直接空冷1号机组,在冬季启停机、正常运行及事故情况下由于蒸汽隔离阀不严等原因空冷凝汽器易出现冻结现象,从空冷系统进汽量、机组背压、空冷岛上风速、风向的变化、机组结构特性等几方面进行分析,并提出了采取的防冻措施。
关键词:空冷机组冬季冻结原因分析防冻策略引言:最近几年,直接空冷机组得到广泛应用。
辽宁调兵山煤矸石电厂即为亚临界、一次中间再热、单轴、双缸双排汽、直接空冷凝汽式300MW机组。
空冷系统结构布置分为:六列每列五台风机单元布置,单台机组共30个风机单元,其中每列的3号风机为混流单元,另外4台为顺流单元.空冷岛整体列数排列顺序为(从固定端排列):MAG10-MAG20-MAG30-MAG40-MAG50-MAG60;其中MAG30和 MAG40列为启动列(说明:在蒸汽分配管和凝结水疏水管道没有安装任何电动阀门装置),其它四列为运行列(在上条所述的管道上都设计安装有电动阀门装置),除此之外还设计一个抽真空旁路电动阀,安装于排汽主管道与抽真空母管之间(作用是在机组启动前快速建立真空)。
空冷系统热控测点设计:共设计3个排汽压力(绝压)、3个排汽温度、3个爆破膜装置、6个抽气压力(每列抽真空管道各设计1个)、6个抽气温度(每列抽真空管道各设计1个)、12个凝结水温度(每列左右侧疏水集管各一个)、凝结水汇总管温度1个;环境仪表共分为:3个环境温度、1个大气压仪表、1个风速仪、1个风向仪表。
由于调兵山地处北方寒冷地区,并且由于空冷系统进汽隔离阀不严及机组结构特性等原因,致使直接空冷机组在启机时空冷凝汽器管束易发生局部冻结事故,直接影响机组安全运行。
2014年第5期内蒙古石油化工476oO M W直接空冷机组防冻措施尹侠(内蒙古达拉特发电厂。
内蒙古达拉特旗014300)摘要:针对我国北方冬季环境温度低,直接空冷机组凝结水易发生结冻现象,根据达拉特电厂四期直接空冷机组的特点,提出了机组在运行中、低负荷、启、停机时的具体的防冻措施。
关键词:防冻;空冷机组;凝汽器;冬季中图分类号:T K269文献标识码:A文章编号:1006—7981(2014)05一0047一02由于全世界水源的持续紧张,空冷机组建设速度空前。
我国北方冬季环境温度平均在一20℃左右,直接空冷机组在启、停过程或低负荷运行时,空冷系统易发生集水联箱、管路、阀门结冻现象,直接影响机组的安全稳定运行。
内蒙古达拉特电厂四期#7、8机组为上海汽轮机厂生产的N600—16.7/538/538型亚临界一次中间再热机组,冷却方式为直接空冷,其空冷系统的冬季防冻问题十分关键,我们在实际工作中对空冷系统的防冻措施进行了深入的研究,并采取了一系列有效的措施。
1系统概况直接空冷机组是将汽轮机做功后的排汽分别排人两个排汽装置,然后蒸汽通过两根D N5532(变径为6020)管道流向空冷凝汽器,每个管道分支成4个D N3020的立管,蒸汽分配管沿着每列顶部布置,蒸汽从此分配管进入顺流冷凝管柬顶部的翅片管。
其中80%的蒸汽在顺流管束的管道向下流的过程中被冷凝,冷凝水和残留的蒸汽收集在沿着“A”型拱顶底部设置的蒸汽/冷凝水的大联箱中,剩余约20%蒸汽进入底部与蒸汽/冷凝水连箱连接的逆流管束的翅片管中,逆流蒸汽和不凝结气体向上流而冷凝水向下流至蒸汽/冷凝水联箱。
不凝结气体在逆流冷凝管束的顶部附近聚集,由布置在逆流管束顶部的真空泵抽空气管抽出,以除去冷凝器中的不凝结气体。
蒸汽/冷凝水联箱中收集的冷凝水在重力作用下排至两台除氧器。
每一台除氧器由两个同心的除氧头组成,外侧的除氧头用于对从半个A C C过来的凝结水进行除氧和再热,内侧用于对补水进行除氧和再热:除氧后的凝结水和补水通过D N650管道分别叫到每一个T E B后,由凝结水泵经加热器、除氧器,再由给水泵打至锅炉。
300MW直接空冷供热机组的防冻措施火电厂直接空冷供热机组冬季运行中凝汽器进汽量较少,尤其是启停机过程以及供热运行状态下空冷防冻措施就显得尤为重要。
通过对设备结构的不断改进、防冻措施的广泛应用,极大地减少了冬季供热机组空冷散热片冻裂现象的发生。
本文就阐述了直接空冷系统冻结的原因及可以采取的防范措施。
标签:直接空冷;供热机组;冻结机理;防冻措施直接空冷系统的空冷凝汽器布置在环境大气中,其本身的性能和安全受环境因素的影响比较大,尤其在我国北方寒冷的冬季环境温度低于0℃,极易发生冻结。
轻者会使空冷凝汽器传热性能大大降低,热耗增加,重者管束被冰块堵塞、真空下降,被迫停机,甚至会出现冻裂翅片管或使翅片管变形,造成永久损害,因此对寒冷地区的直接空冷系统的防冻很有必要。
一、案例简述国电内蒙古东胜热电有限公司1号、2号机组为哈尔滨汽轮机厂设计制造的300MW亚临界、中间再热、单轴、双缸双排汽直接空冷凝汽式供热机组,空冷部分采用烟台龙源公司冷却技术。
1号机组于2007年1月完成168h试运,投人商业运营,于2008年10月开始进行采暖抽汽供热。
由于鄂尔多斯市市位于中国北方蒙西地区,冬季气温低于0℃,最低气温低于零下30℃,直接空冷凝汽器布置在室外环境中,冬季供热时,汽机五段抽汽供热抽汽量多数情况下在300t/h 以上,凝汽器进汽量比较少,这些原因导致空冷容易冻结,必须考虑空冷的防冻问题。
二、直接空冷供热机组冻结机理分析在机组处于空负荷或低负荷运行时,蒸汽流量很小,实际运行中发现,即使加上旁路系统的蒸汽流量也不能达到空冷凝汽器全部投入时的设计流量。
由于蒸汽流量很小,当蒸汽由空冷凝汽器进汽联箱进入冷却管束后,在由上而下的流动过程中,冷却管束中的蒸汽与外界冷空气进行热交换后不断凝结。
由于环境温度远远低于水的冰点温度,其凝结水在自身重力的作用下沿管壁向下流动的过程中,其过冷度不断增加,当到达冷却管束的下部(冷却管束与凝结水联箱接口处)时达到结冰点即产生冻结现象。
600mw直接空冷机组冬季运行防冻要点第27卷第2期2006年2月电力建设Electric Power Constructi onVol .27 No .2Feb,2006电源技术?600M W 直接空冷机组冬季运行防冻要点田亚钊,晋杰(国电电力大同发电有限责任公司,山西省大同市,037043)[摘要] 600M W 直接空冷机组在冬季运行有其特殊性,目前仍在经验积累和探索中。
根据已有的运行可以总结出应注意的几点:空冷凝汽器散热管束表面温差,凝结水的过冷度和其在运行中的控制,汽轮机冬季运行的最低背压,真空抽气口温度和运行机组冬季最低负荷的确定。
[关键词] 直接空冷防冻过冷度最小负荷中图分类号:TK247文献标识码:B文章编号:1000-7229(2006)02-0004-03Key Points of Antifreeze Operati on in W inter for 600M W D irect A ir -cooling UnitsT ian Yazhao,J in J ie(Guodian Power Dat ong Power Generati on L td .Co .,Dat ong City Shanxi Pr ovince,037043)[Abstract] 600M W direct air -cooling units have the s pecial features in winter operati on,whose experiences are under accumulati on and in 2quisiti on .According t o the existing operati on several decisi on points of attenti on can be summarized as f oll ows:surface te mperature difference on theair cooling condenser dissi pati on p i p ing bundles,excessive coldness of condensate and its contr ol during operati on;m ini m um back p ressure of the turbine during winter operati on;te mperature at the vacuum extracti on outlet and m ini m um l oad of the operating unit during the winter .[Keywords] direct air -cooling;antifreeze;excessive coldness;m ini m um l oad 国电电力大同发电有限责任公司安装2台亚临界600M W 直接空冷机组,由哈尔滨汽轮机有限公司生产(NZK600-16.7/538/538型汽轮机),直接空冷系统由德国GE A 能源技术有限公司整岛供货。
300MW直接空冷机组空冷岛的防冻措施摘要:通过对300MW直接空冷机组在冬季启动及运行中防止空冷管束冻结措施的不断实践和经验总结,探索出了针对直接空冷机组冬季启动和运行工况的防冻经验。
关键词:直接空冷系统;空冷管束;冬季防冻一、概述某电厂汽轮机是上海汽轮机厂生产的NZK300-16.67/538/538型亚临界参数、一次中间再热、双缸、双排汽、单轴、直接空冷凝汽式汽轮机。
机组空冷部分采用SPX空气冷却技术,为单排管换热,ACC共有6列、每列5个、共计30个冷却单元,装配有300个管束和30台轴流风机。
其中,顺流冷却单元24个,逆流冷却单元6个。
汽轮机低压缸排汽经过蒸汽管道流向冷凝器,由蒸汽分配管道向冷凝器分配蒸汽。
在顺流管束中约80%的蒸汽在顺流管束管道向下流动过程中被冷凝。
没有冷却的剩余蒸汽(约20%)经过凝结水收集管道进入逆流管束。
在逆流管束中,最后一部分蒸汽被冷却,不凝结气体由真空泵向上抽出。
凝结水则反方向汇流到凝结水管路至排汽装置。
二、空冷系统空冷系统包括空冷凝汽器管束、凝结水收集联箱、蒸汽分配管、排汽管道、空冷小管道(凝结水管道、抽真空管道、清洗管道、补充水管道)以及保证空冷凝汽器能够安装和安全运行的钢结构部分包括管束侧梁及其支撑、管束下部的密封板、水平单轨梁、冷却单元间的隔墙及门,风机桥架,平台至风机桥架间的踏步,两列空冷凝汽器之间的联络步道、小爬梯,踏板等。
如图1所示。
空冷设备主要有散热器、轴流风机等。
散热器由若干组镀锌椭圆钢管外套矩形钢翅片的翅管组成,空冷凝汽器典型结构如图2。
汽轮机排汽缸排出的乏汽经过管道引至空冷器的乏汽分配联箱,然后由乏汽分配联箱再分配到各个顺流区的翅管中,冷空气由轴流风机从空冷塔底部吸上来,在翅管外部流过来冷却管内的乏汽,热空气从空冷塔顶部排向环境,从而使乏汽凝结成凝结水,然后由凝结水管道回收至凝结水箱,没有完全凝结的乏汽继续流经逆流区翅管继续冷却回收。
图1空冷系统简图三、机组冬季空冷系统的防冻措施(一)、冬季空冷冷态启动前的检查(1)空冷岛在冬季启动必须在“ACC投入”,且自动模式下进行(当环境温度连续5min≤-3℃时,即为空冷岛进入冬季启动模式)。
直接空冷机组冬季防冻与安全运行能力分析摘要:大型直接空冷机组在冬季启动以及低负荷运行阶段的防冻问题尤为突出。
文章总结了机组空冷凝汽器冬季运行措施及注意事项。
关键词直接空冷防冻安全运行1.空冷系统概述华能上安电厂安装2台超临界直流600MW直接空冷机组,空冷岛由空冷凝汽器、空冷风机、凝汽器抽真空系统及空冷散热器清洗系统等组成。
汽轮机排汽在空冷凝汽器中的流程为汽轮机排汽--各排空冷凝汽器配汽管--各排顺流段空冷凝汽散热管束( 凝结)--各排空冷凝汽器凝结水汇流集( 部分乏汽和不凝结气体) --各排逆流段空冷凝汽散热管束( 凝结) --各排逆流段凝汽器顶部真空抽口( 极少部分乏汽和不凝结气体)--水环真空泵—排至大气(图1)。
汽轮机的排汽有约70%- 80%的乏汽在顺流式凝汽器中被冷却,形成凝结水,剩余的蒸汽随后在逆流式凝汽器中被冷却。
在逆流管束的顶部设有抽真空系统,能够比较畅通地将系统中空气和不凝结气体抽出。
每组空冷凝汽器下部设置1台轴流变频调速冷却风机,使空气流过散热器管束外表面将排汽凝结成水,流回到排汽装置水箱。
图(1)2.空冷岛冬季运行面临的问题与调整空冷岛冬季运行期间最主要的任务是在夜间低负荷和启动过程中空冷岛散热管束的防冻问题。
冬季空冷岛温度低的原因有机组负荷低和空冷散热器负荷分配不均匀以及不凝结气体漏入形成气穴。
2.1.机组负荷低机组在冬季启动并网过程中,由于蒸汽流量低造成空冷岛热负荷低。
根据道尔顿定律,理想气体混合物的总压力为各气体分压力之和。
蒸汽在系统内分压力越高,对应的饱和温度越高。
在空冷岛进汽前关闭1、2、7、8排对应的蒸汽分配阀,凝结水管道隔离阀。
减小空冷岛冷却面积,以增加其他排热负荷冬季启动过程中,空冷岛进汽后在满足下列条件时方可启动该排风机。
进汽列的管束下联箱凝结水温度大于35℃且凝结水的平均温度比环境温度大 5℃时。
各排逆流散热器抽空气口温度均≥15℃,且真空抽汽温度无“过冷”报警信号。
直接空冷系统防冻技术措施为了防止空冷系统冬季运行时过冷或冻结,避免翅片管束内结冰,甚至大面积冻结损坏设备,特制定此空冷系统冬季防冻技术措施。
1.机组启动过程防冻1.1机组启、停尽量选择白天气温高时进行,冬季启动尽量安排在白天11:00以后启动,但在17:00前机组负荷必须带至空冷岛最小防冻流量对应的负荷以上。
1.2锅炉点火前,将机组主蒸汽、再热蒸汽系统疏水、辅汽联箱疏水、轴封母管疏水至排汽装置门关闭。
1.3将10、20、50、60排空冷系统的抽空气门、蒸汽分配门关闭。
1.5在空冷系统投运前两小时投入空冷凝汽器进汽蝶阀、凝结水及抽空气管道伴热带和齿轮箱电加热,确保阀门开关灵活。
空冷系统停运前一小时投入空冷凝汽器进汽隔离阀伴热带,待停机后4h停运伴热带。
1.4当机组启动抽真空时,为防止散热片里形成气塞,在真空系统的排汽压力未达到预抽真空值前,应杜绝一切蒸汽进入排汽装置。
1.5锅炉点火后,主蒸汽采用开炉侧的空气门、PCV阀及炉侧疏水系统的方法进行升温、升压,锅炉在升温升压同时控制炉膛出口烟温<5 40℃,防止再热器损坏。
当主蒸汽流量达到空冷凝汽器的最小防冻流量时(且当冬季环境温度在-5度以内时,锅炉主汽压力达1.5MPa,温度200℃时,或当冬季环境温度在-5度到-10℃时,锅炉主汽压力达2.0MPa,温度200℃时,方可投入旁路系统运行),汽机逐渐开大高、低旁(高旁开度大于60%,低旁尽量保持全开,低旁出口温度控制在80℃左右),保证空冷凝汽器最小防冻进汽量的供给。
空冷凝汽器30、40排开始进汽,检查三级减温水投入正常,关闭炉侧的空气门、PCV 阀,同时开启机组主蒸汽、再热蒸汽系统疏水、轴封母管疏水。
1.6锅炉点火后,锅炉应在保证安全的前提下,尽快增加燃烧率以满足空冷系统的要求,保证空冷凝汽器不发生冻结。
1.7随着主控制器PID输出的不断增加,运行人员注意检查逆、顺流风机应根据ACC自动控制曲线的顺序依次启动。
直接空冷系统防冻措施当环境温度小于1℃时,直接空冷系统便进入冬季运行。由于空冷岛散热面积大,冬季防冻工作非常重要,机组在启、停、正常运行和事故情况下防冻措施各不相同,现总结如下:一、机组启动时空冷系统的防冻措施1.冬季启动分析及锅炉注意事项1.1.1空冷机组,冬季启动要特别重视锅炉上水系统和空冷系统局部冻结堵塞问题。冬季环境温度低,如果排汽凝结放热量小于其管线对环境的散热量,排汽就在未到达空冷散热片时就已全部凝结成水,不能实现正常的汽水循环流动。具体现象表现为:在起初的一段时间内排汽压力偏低,严重时可达到3~4KPa,凝结水过冷度大;一定时间后,由于大量凝结水不断集聚储藏于排汽管道中,排汽装置水位偏低,凝结水系统回收水量低,汽水流量严重不平衡,除氧器或排汽装置补水量不正常增加;排汽管道积水严重时,可能阻塞空冷设备汽水工质的正常凝结和流动过程,造成低压排汽压力与空冷散热片内压力偏差大,汽水工质失去热自拔能力,排汽管线和散热片中出现涌水现象,局部出现水击现象和积水冰冻现象;处理不得当,可能因管道机械负载大和冲击振动以及大面积冰冻而造成设备损坏。1.1.2冬季启动初期,空冷防冻措施中规定:空冷开始进汽后,空冷进汽量必须在30分钟内达到其额定汽量(680 t/h)的20%(大约135t/h)。1.1.3 启动初期,由于空冷不能进汽,低旁关闭,再热器处于无蒸汽流状态,因此必须注意过、再热器的保护。启动点火过程中,要特别注意炉膛出口烟温探针指示温度≯538℃,打开锅炉主汽5%疏水。1.1.4 由于空冷最低进汽量的限制,因此可能因机组启动状态不同,汽压和汽温会不匹配:机组冷态启动时可能出现汽压低、汽温高,蒸汽流量小的现象,难以同时满足汽机冲车和空冷岛进汽量的要求,因此锅炉必须尽量压低火焰中心,汽压低于6MPa以前,锅炉尽量保持过热器排汽阀开启,汽机尽量开大高旁,提高循环速度。必须有意识的限制升温速度;温态或热态时,可能会出现汽压高、汽温低的现象,因此锅炉可以适当抬高火焰中心,汽压高于6MPa以后,汽机1尽量开大旁路。1.1.5 针对各受热面、汽包金属温度较低、个别管子可能有积水结冰现象,锅炉上水、点火及升温升压期间必须严密监视、严格控制金属温升速度;在蒸汽未达到阀门规定的关闭参数前,必须认真检查各管路畅通;如启动过程不顺利,无法排除管路结冰可能时,必须加强检查并采取管道疏水等方法。冬季环境温度低于4℃时,锅炉上水时间可适当延长,但要防止启动时间太长,管道容器结冰;上水温度控制在40~50℃左右,并严密监视上水管道膨胀和汽包壁温变化情况;锅炉上水后立即开始水冷壁底部排污,汽包见水后应适当开启连续排污门,汽包压力在0.2Mpa 以前必须始终保持一定的给水量,定排联箱和定排底部放水门开启,以防水流停滞而冻结。1.1.6针对屏式受热面内集水较多,点火启动时,必须控制好初投燃料量,进行充分暖炉,将集水蒸干后锅炉方可继续升压。1.1.7 冬季停运时间较长的电机在送电投运前,必须测量绝缘合格,特别是室外设备。1.1.8当汽包压力达到0.7Mpa,逐步开大高旁。汽包压力达到1.0Mpa后,利用高旁控制再热器升压率不大于0.05Mpa/分,维持再热汽压在0.4Mpa以下,关闭高过入口集箱疏水门,保持高温再热器出口空气门开启。1.1.9在锅炉主汽流量低于 135t/h前,维持以上状态,利用炉膛出口烟温探针,监测烟气指示温度≯538℃。1.1.10 主汽压力未达到6Mpa时,必须逐渐开大高旁,以尽量增加锅炉蒸发量,限制蒸汽升温率。当锅炉主汽流量达到135t/h后,再热汽压超过0.4Mpa后,关闭高再出口空气门,当再热汽压达到1.0 Mpa时,蒸汽温度接近汽机冲转参数而锅炉蒸发量不足135t/h时,必须进一步压低火焰中心。1.1.11在锅炉主汽流量达到135t/h后,逐渐开启低旁,并开大高旁。将排外疏水倒入排汽装置。关闭过热器环型集箱疏水,同时增加燃料,在25分钟内,将锅炉蒸发量增加至175t/h,控制各受热面金属不超温,过、再热汽升温率、升压率符合冷态启动曲线要求。控制各受热面金属不超温,过、再热汽升温率、升压率符合冷态启动曲线要求(为了满足空冷进汽量,不得已时可考虑适当偏离过、2再热汽升温率、升压率及冷态启动曲线要求)。1.1.12 低旁开启后,达到冲车条件时汽轮机冲转。机组未并网前,维持锅炉蒸发量17% BMCR(190t/h),并网后,应尽快增加负荷至20%(225t/h)以上。1.1.13 机组在短时间内不具备并网加负荷条件时,必须维持锅炉蒸发量在17% BMCR(190t/h)以上,并保持高低压旁路开启;如锅炉蒸发量低于13% BMCR(146t/h)且30分钟内不能恢复,必须关小高旁,降低再热汽压力至1.0Mpa以下,关闭低旁,停止向空冷排汽。1.1.14 当汽轮机的进汽量大于7O%额定进汽量时.采暖供热可以投入运行。环境温度越低,采暖抽汽量越大,进入空冷岛的蒸汽量越少,对空冷岛的防冻更加困难。但由于供热负荷仍为执行,现暂时执行在启动后负荷低于50%时(165MW),严禁向热网供汽。2.冬季冷态启动方法:1.2.1 接到机组启动命令后,空冷选择“手动运行”模式,检查关闭到排汽装置扩容器的全部疏水。我公司现没有主汽和再热器管道的排地沟或排空疏水,希望以后安装。1.2.2 冬季启停机过程中应设专人对空冷岛各排散热器下联箱及散热器管束进行就地温度实测,有异常时应增加检查和测量次数。(我公司冬季工况首次启动应有专人在空冷检查,现正常运行时冬季要求2小时巡检一次)1.2.3检查开启汽轮机主汽管道、再热管道对空排汽(对空排汽炉侧根据情况)和疏水门。1.2.4 检查开启其它排地沟疏水门,用门的开度控制排汽量。1.2.5锅炉上水过程中,应投入空冷抽真空系统,开启抽真空旁路门,开始建立真空。1.2.6 锅炉上水结束后,当排汽压力低于30KPa时,开启空冷各列抽空气阀,关闭抽真空旁路阀锅炉开始点火,在此阶段禁止开启低旁。1.2.7 关闭空冷岛各排散热器进汽蝶阀及凝结水回水阀,各蝶阀要求处于手动位置。1.2.8机组启动时根据真空及凝结水疏水管温度逐列投入空冷,投入次序为10-20-30-40-50-60列,已投入的列凝结水温度均大于35℃时方可投入下一列,并投入启动列逆流风机、顺流风机。顺流风机按5,1,4,2的顺序启动。投完一列后再投下一列。(因现在#1机60列蒸汽隔离阀不严所以现暂时按30-40-50-60-10-20的顺序依次解列各列空冷运行,#2机50列、60列蒸汽隔离阀故障所以现暂时按30-40-50-60-的顺序依次解列各列空冷运行)1.2.9在锅炉主汽流量达到135t/h,将主、再热汽排外疏水倒入排汽装置。开启低旁约10%,旁路初始的进汽量应控制在10%额定进汽量左右,对空冷进行加热,当各凝结水温度及抽汽温度都大于35℃时,再逐渐开大低旁直至100%,同时用高旁维持再热汽压为1.0MPa。1.2.10排汽流量可由给水流量估算,当空冷散热器凝结水温度高于35℃时,相应的空冷风机启动后。维持真空在40-45 Kpa,就地检查散热器管束表面温度均应上升且无较大偏差,否则停运风机。1.2.11旁路系统投入后,控制低旁减温器后温度在100-150℃,在保证空冷岛进汽温度小于121℃情况下,尽量提高空冷岛进汽温度。1.2.12低旁开启后,蒸汽参数合格,锅炉运行稳定,汽轮机开始冲车;从低旁开始开启至汽轮机开始冲车,时间应控制在15分钟之内,以防止空冷系统因进汽量小冻结堵塞。1.2.13 当空冷从计时进汽到30分钟期间,锅炉应加强燃烧,保证空冷进汽量的供给。1.2.14 机组并列后,根据汽缸金属温度尽快带至最小防冻流量所对应的负荷。二.机组停机及事故情况下时空冷系统的防冻措施2.1机组在停机过程中,将空冷退出自动调整,手动均匀降低各列风机转速,维持凝结水温度在35℃以上,无法维持时,集合当前真空情况按照60-50-40-30-20-10的顺序依次解列各列空冷运行。(因现在#1机40列、60列蒸汽隔离阀不严所以现暂时按50-30-60-40-20-10的顺序依次解列各列空冷运行,#2机50列、60列蒸汽隔离阀不严所以现暂时按40-30-60-50-20-10的顺序依次解列各列空冷运行)2.2 负荷解至100MW以下,主汽流量小于135 t/h,可以开启高、低旁向空冷系统充汽,但要控制低旁减温器后温度在100-150℃,在保证空冷岛进汽温度小于121℃情况下进行。降低再热汽压力至1.0Mpa以下。高、低旁开启时注意保持真空不低于-65Kpa。谨防旁路开度过大造成排汽安全门动作。(注意需要开启高低旁时,注意高排温度,防止高排温度高跳机,和退出高排压比保护)2.3 机组负荷到零后,立即关闭所有至排汽装置的疏水,将疏水倒至室外或排地沟。(主汽、再热汽疏水,辅汽联箱疏水,轴封系统疏水等)。2.4汽轮机打闸后立即关闭高、低旁路系统。检查关闭所有列的蒸汽隔离阀。2.5破坏真空,确认进汽蝶阀在完全关闭状态。必须用专用测温仪器就地测量门后温度。以确认门关闭,并严密。2.6 冬季启停机时,尽量安排在白天气温高时进行。2.7 每班定期检查空冷凝汽器进汽蝶阀、凝结水管道及仪表伴热带的投入情况。进汽蝶阀伴热带在蝶阀关闭时投入,蝶阀开启后退出,凝结水管道伴热带在凝结水管道内温度低于25℃时投入,高于35℃时退出。抽汽管道伴热带根据现场情况要求投入。2.7机组因故甩负荷到零:冬季机组因故甩负荷,立即将空冷切手动控制,停止所有空冷风机,将3、4、5、6列进汽蝶阀及相应的凝结水门、抽空气门关闭。适度开启旁路门,进行空冷岛防冻,注意进入排汽装置的蒸汽不超温,超压,排汽安全门不动作。旁路开启后应注意锅炉侧参数,若机组能立即带负荷,要迅速接带,按启动措施投入各列空冷运行。若机组要较长时间不能带负荷,要保证空冷的最小流量。认真检查30、40、50、60列进汽蝶阀及凝结水门是否关严,发现不严或空冷结冰或温度过低,无法提高进入空冷的蒸汽流量时,达到停机要求时,要迅速打闸停机。将疏水倒至室外或排地沟。2.8机组因故打闸:要立即将空冷切手动控制,迅速停止所有空冷风机,关闭各列进汽蝶阀和凝结水门,检查旁路门关闭,将进入排汽装置的疏水倒至室外或排地沟。切断一切可以进入空冷的汽源。机组重新启动按冬季启动方式进行。2.9 锅炉灭火:冬季锅炉灭火,主汽流量会很快下降,此时空冷岛会很快结冰,所以锅炉灭火要迅速解列30、40、50、60列空冷运行,只留启动列来维持机组带初负荷运行,根据空冷参数逐步投入各列空冷。如果炉跳机不投,尽量少开或不开旁路,以防止主汽参数下降过快造成停机。锅炉灭火时疏水可以正常排入排汽装置。一旦打闸,要迅速将疏水倒至室外或排地沟。三、空冷系统正常运行时的防冻措施由于我厂空冷散热面积达82万多平米,冬季机组正常运行的防冻工作也很艰巨。结合空冷经济运行考虑,进入冬季空冷系统应投入自动运行。自动控制逻辑见3.5条,进入严冬空冷系统除采取强制防冻措施外还要在外部加装防冻装置。具体措施如下:3.1 进入严冻,停用#1、2号空冷岛的周边共30台风机,用苫布将风机口封住,避免冷风对流。#1号空冷60列蒸汽隔离阀管道变形,#2号空冷60列蒸汽隔离阀未调整严密。隔离3.2空冷岛凝结水管道需进行保温,空冷岛上温度及压力表管加伴热。3.3空冷岛正常运行期间,尽量保持同排中各风机的频率相同,低负荷时尽可能保持各排风机多投、低频运行。3.4 机组正常运行时,应尽量控制机组负荷高于空冷岛在不同环境温度下机组运行的最低负荷(见附表)。附表:空冷岛在不同环境温度下应保证的最小进汽量和运行中最低负荷:(6列散热器全部投入时)现因负荷紧张达不到这个条件,且我公司机组还属于供热机组,排汽量不能保障。3.5 空冷投自动控制进行初冬的防冻,控制逻辑如下:机组冬季保护、回暖程序3.5.1顺流凝汽器冬季保护的触发条件:a) 逆流凝汽器的冬季保护未触发。b) 本列的任一个凝结水温度<25℃延时20秒。c) 环境温度<1℃。3.5.2顺流凝汽器冬季保护的动作过程:触发动作列逆流风机被闭锁在当时的转速不变,触发动作列顺流风机以额定转速7%/min的速度下降,若温度不回升,转速一直降到0%的额定转速;只有当本列的凝结水温度回升且达到32℃时,顺流风机转速才停止下降(否则将使顺流风机降到最低转速,直至断开停转)。3.5.3逆流凝汽器冬季保护的触发条件:a) 顺流凝汽器保护未触发。b) 抽气温度<25℃延时20秒。c) 环境温度<1℃。3.5.4逆流凝汽器冬季保护的动作过程:触发动作列的顺流风机将被闭锁在当时的运行转速不变,触发动作列逆流风机以额定转速7%/min的速度下降,直至逆流风机转速降到0%的额定转速;此时顺流风机保持当前转速不变;3.5.5逆流凝汽器的回暖循环条件:当环境温度<-2℃时,逆流风机的回暖循环将被启动。动作过程:a)第一排的逆流管束风机以10%的额定速度减速下降直到全停,并停止10分钟;然后以10%的额定速度升速至降速前的转速。延时10分钟后,下一排逆流风机以同样的方式动作回暖。直至第六排也停运进行加暖后完成一个循环;如果环境温度仍低于-2℃,则此回暖循环继续进行。只要环境温度>2℃时,回暖程序立即结束。b)当环境温度低时,且逆流风机已停止运行,叶片处于静止状态后,可手动将逆流风机置于反转,利用热空气加热空空冷散热器,在此期间应特别注意真空和环境温度的变化;当环境温度上升加热结束后,应将风机停运,叶片静止后,方可投入风机的自动运行。注:#1号空冷06列,#2号空冷05列在风机停用后最好不参与自动控制。且回暖逻辑已改,可任意进行某一列回暖不需要启动这列所有风机,但回暖时要最少启动一台相邻侧风机。3.6进入严冬,如果空冷投自动不能维持凝结水及抽汽温度在15℃以上时,空冷防冻退出自动,手动进行控制。机组正常运行时,调节风机转速,使各排散热器下联箱凝结水温度均高于35℃(最低不得小于25℃)且各排散热器凝结水过冷度均小于5℃。3.7 运行中空冷散热器凝结水的任一温度降至25℃以下,应及时查找原因,温度继续降低至15℃以下时,降低该列风机转速,使真空降低3KPa,若30min内温度不上升,则增开一台真空泵运行,当空冷散热器凝结水温度上升至20℃且空冷岛进汽温度与空冷散热器凝结水温度之差小于6℃时停运一台真空泵。3.8空冷任何一列抽气口温度低于15℃时,停运该列的逆流风机,10min后,若抽气口温度继续下降,启动逆流风机反转,温度有明显回升时停止反转。3.9机组正常运行时,每隔4h将各列逆流风机依次停运20min,然后以反转10min。逆流风机不得相邻两列同时反转。隔排可以最多两列同时反转,反转结束停运10min后按正转方式启动风机并将频率调整到与该列其他风机相同。3.10机组正常运行时,调节空冷风机转速,维持机组真空-75~-70 Kpa,并监视凝结水温度不超过59℃,否则适当提高机组真空。3.11冬季运行期间,每两小时实测各列散热器及联箱表面温度一次,并做好空冷岛巡检记录,要求记录各散热器最低温度值,发现投运散热器最低温度低于0℃时,及时汇报。降低该散热器对应的风机转速或停止风机运行。当风机转速低于12HZ时,按5-1-4-2的顺序停运该列风机。3.12每班就地实测环境温度一次,发现差异大时及时通知热工校对,以免影响空冷自动运行。每两小时实测各空冷凝结水回水管和空气管外表面温度一次,发现各列温度偏差大时,及时查找原因。进行调整。3.13冬季运行期间,加强对凝结水箱、除氧器的补水量及水位的监视,发现排汽装置水位下降,补水量异常增大时,应分析空冷散热器以及凝结水管道是否冻结。并检查排汽装置水位是否异常升高。发现异常及时调整风机运行方式。3.14 如蒸汽分配阀能够关严,可以在严冬时解列#1号空冷30列或50列,#2号空冷30列或40列运行。以保证其它列更有效的防冻。(因为这几列阀门相对严密)3.15空冷岛运行期间,关闭空冷岛各排散热器端部小门及同一排中各冷却单元隔离门。防止冷风进入和窜流。3.16 低负荷时要求滑压运行,一个是提高经济性,另一个是增大排汽量空冷防冻。。
直接空冷防冻措施一、锅炉点火前、后的防冻措施1、当测量的环境温度(3取3)持续低于-3℃超过五分钟时,启动防冻保护。
当测量的环境温度(3取3)持续高于+3℃超过五分钟时,防冻保护解除。
2、在任何情况下,必须保证空冷岛各排散热端部两门以及单元廊道内各单元之间的通道门在关闭位置。
3、在空冷系统投运前两小时、停运前一小时投入空冷凝汽器各阀门电加热,确保阀门开关灵活。
待空冷系统投运后四小时停运电加热。
4、凝结水过冷度:汽轮机低压缸排汽压力对应的饱和温度与各排凝结水联箱的凝结水平均温度的差值。
在冬季防冻期间,过冷度作为安全指标进行监控。
5、抽空气过冷度:汽轮机低压缸排汽压力对应的饱和温度与各排抽空气平均温度的差值。
6、冬季启机锅炉点火前,开启炉侧主、再热蒸汽系统疏水、排空气门,以及5%启动旁路,严禁开启机侧主蒸汽管道疏水。
7、机组送轴封后启动三台水环真空泵开始抽真空,当机组背压降至6kPa时抽真空旁路阀自动关闭(真空建立),停止C真空泵运(正常情况可再停止一台真空泵运行),利用ACC逆流区抽真空系统继续降低机组背压,空冷顺控模式自动投入,空冷各风机1、2、7、8进汽电动隔离阀、抽空气电动阀、排凝结水电动阀以及各排的控制器、背压控制器自动投自动(逻辑保证)。
8、点火后,锅炉采用5%启动旁路疏水的方法进行升温、升压。
根据锅炉再热器的干烧能力特性确定汽机在冲车前打开低旁向空冷岛进汽的时间和参数,以保证空冷凝汽器的最小防冻流量。
最小防冻流量以30kPa的饱和蒸汽计算为:9、根据给水流量估计主蒸汽流量达到空冷凝汽器的最小防冻流量时投运高、低压旁路,关闭锅炉5%启动旁路,开启主蒸汽管道疏水。
10、投入低压旁路前必须将机组背压降低到6kPa,同时高、低压旁路的投入操作必须缓慢进行。
11、机组旁路投运后至机组冲车前,将排汽背压设定为25kPa左右,以提高凝结水温度。
锅炉应加强燃烧,汽机逐渐开大高、低压旁路,保证空冷凝汽器最小防冻进汽量的供给,并控制低旁减温后温度在80~100℃范围,在保证空冷岛进汽温度<100℃(防止蒸汽过热度大使列管变形)情况下,尽量提高空冷岛进汽温度。
直接空冷系统防冻措施1 概述1.1环境温度低于+3℃空冷系统进入冬季运行期。
机组遇有重大操作时,必须提前了解并监视环境气象条件的变化。
1.2在任何情况下,必须保证空冷岛各街散热单元端部小门以及各冷却单元的隔离门在关闭位置。
1.3在环境温度低于+3℃时,任何情况不允许运行机组背压低于10KPa。
1.4冬季遇有大风降温或风力较大的气象情况,运行人员应适当增加机组负荷或提高运行背压等手段,防止大风、降温、再加上散热器热量分布不均发生管束冻坏事故。
1.5根据空冷系统的运行特点,进入冬季后空冷系统的启、停及正常运行应均在“自动”模式下进行,无特殊情况不得切至“手动”模式运行。
1.6在空冷系统投运前两小时投入空冷凝汽器进汽隔离阀电源,确保阀门开关灵活。
待停机后四小时方可停运该阀门电源。
1.7空冷风机的电加热器应长期投入且工作正常,风机启动前齿轮箱油温不允许低于0℃,否则禁止启动该风机。
1.8空冷补水管道电伴热应长期投入。
1.9空冷水冲洗管道应放尽存水。
1.10机组开、停机尽量安排在白天气温高时进行,并且尽量缩短小流量蒸汽进入空冷系统的时间。
2 机组启动过程中规定2.1冬季开机时,必须确认空冷岛各街的蒸汽隔离阀在关闭状态,各街凝结水温度、抽气温度测点无大的偏差。
2.2开启主蒸汽及再热蒸汽管道疏水前必须确认空冷凝汽器已经抽起真空且旁路已经开启。
2.3锅炉启动点火前汽轮机应先抽真空,严禁抽真空前,汽包有压力时开启主蒸汽及再热蒸汽管道疏水。
2.4点火后,锅炉采用5%启动疏水、向空排汽的方法进行升温、升压,在保证安全的前提下,尽快增加燃烧率以满足空冷系统的要求。
高、低旁在炉侧压力达到1.5MPa、温度在200℃以上,烟温探针所测温度小于540℃时开启,低旁尽量开大,高旁保持开度在50%左右。
低压旁路投运后将机组背压逐渐升高到25~30kPa,应尽快匀速增加低旁流量到空冷岛要求的最小进汽量,并控制低旁减温后温度在100~150℃范围,在保证空冷岛进汽温度<80℃情况下,尽量提高空冷岛进汽温度。
华电宁夏灵武发电公司直接空冷系统防冻措施编制: 亓振雷审核: 路克东批准: 张怀平2007年10月华电灵武公司直接空冷系统防冻措施1. 综述:1) 环境温度低于+2℃空冷系统进入冬季运行期,必须严格执行本措施。
2) 在任何情况下,必须保证空冷岛各排散热器端部小门以及各冷却单元的隔离门在关闭位置。
3) 机组在冬季运行期间,汽轮机的背压控制值以两个低压缸背压较低值进行控制。
同时,在环境温度低于+3℃时,不允许运行机组背压低于9.0KPa。
4) 凝结水过冷度:根据直接空冷系统冬季运行的特点,凝结水过冷度定义为汽轮机低压缸排汽压力对应的饱和温度与各排下联箱的凝结水平均温度的差值。
5) 散热管束表面温差:根据直接空冷系统结构的特点和实际运行情况,散热管束表面温差有以下三种情况,即空冷岛配汽联箱对应的八个排由于热力和流量不均所造成的凝结水温度偏差、对应于各排南北两侧管束表面由于热力和流量不均所造成的温度偏差和对应于各排南侧或北侧相邻管束间由于热力和流量不均所造成的温度偏差。
冬季各值在运行检查时必须对上述现象予以重视并严肃对待。
6) 凝结水联箱连续实测温度:巡检人员到空冷岛就地用便携式测温仪对各排散热器南北两侧下联箱内侧下部表面温度进行的沿本排第一冷却单元到第七冷却单元的全部凝结水流道,实际测量后得到的结果。
7) “真空抽气管过冷”:汽轮机排汽温度与真空抽气温度偏差>15℃时,发出“真空抽气管过冷”报警。
2. 启动和停机过程中应遵守如下规定:1) 环境温度≤+2℃时,直接空冷机组启动必须采用高、中压缸联合启动的方式。
2) 冬季启动时,必须确认空冷岛 10、20、70、80排的隔离阀在关闭状态。
3) 锅炉点火前,严禁在汽包有压力时开启主蒸汽及再热蒸汽管道疏水。
主蒸汽及再热蒸汽管道疏水前必须确认空冷凝汽器已经抽起真空且背压低于50kPa。
4) 点火后应根据锅炉再热器的干烧能力特性确定汽机在冲转前打开低旁向空冷岛进汽的时间和参数。
直接空冷系统防寒防冻原理及解决方法摘要:本文介绍了大型火力发电厂直接空冷系统防寒防冻原理及解决办法关键词:直接空冷;防寒防冻;超临界1 背景我国是一个严重缺水的国家,水资源分布极不均衡。
在我国北方大部分地区,水资源紧缺严重制约着北方地区的经济发展,尤其是电力行业。
目前水冷机组冷端效率高,应用十分普遍,但在高效率的同时也存在着电厂选址的局限性,所以发展直接空冷机组能够改变原有的“以水定电”的格局,对我国调整现有能源结构,发展富煤缺水地区电力行业有着深远的意义。
直接空冷技术早在上世纪80年代末期开始应用于国内化工、电力领域,但在大型火力发电机组应用起步较晚,2008年7月,华电灵武电厂投运标志着直接空冷技术正式应用于大型火力发电机组中。
2013年底,某厂4×660MW大型直接空冷项目正式动工建设,笔者时任该厂发电运行部汽机主管,全程主持、参与直接空冷系统的基建、调试、运营工作。
该厂超临界直接空冷系统(ACC)通过向大气释放热量对汽机排汽进行冷凝,直接空冷系统每台机组由8列8排共64个空冷单元组成,每列由3个逆流单元与5个顺流单元组成。
大多数蒸汽在顺流单元凝结,少部分蒸汽在逆流单元中凝结,凝结水向下流入联箱汇集进入排气装置继续进行汽水循环,不凝结气体在逆流单元顶部汇集,由水环式真空泵抽出。
本文针对直接空冷系统冬季易冻结特点,对空冷岛翅片管束冻结原理进行了研究,得出了造成空冷系统结冻的主要原因,通过对原因的分析在运行中进行调整与改造,大大降低了空冷岛翅片冻结的风险。
2 直接空冷系统管束冻结原理2.1 单排管空冷管束的换热特点:单排管截面结构及汽水分布如图2-1所示,在单排管截面结构中,蒸汽分布在管束上方,由于凝结作用的影响,凝结水分布在管束的下方,若出现过冷现象,在水底部过冷度最高的区域会出现冻结现象。
2.2 冬季管束内蒸汽流动过程如下:如图2-2(a)所示,在顺流管束内,蒸汽和凝结的水经空气换热同时向下流动,随着流动进程蒸汽越来越少,而凝结的水不断增多。