曲轴位置传感器
- 格式:doc
- 大小:61.00 KB
- 文档页数:12
简述曲轴与凸轮轴位置传感器的作用(一)曲轴与凸轮轴位置传感器的作用什么是曲轴与凸轮轴位置传感器?•曲轴位置传感器(Crankshaft Position Sensor)是一种用于发动机系统的传感器,能够感知曲轴的旋转速度和位置。
•凸轮轴位置传感器(Camshaft Position Sensor)是一种用于发动机系统的传感器,用于检测凸轮轴的旋转速度和位置。
曲轴位置传感器的作用1.检测点火时机:曲轴位置传感器通过感知曲轴的旋转位置,可以帮助发动机控制单元(ECU)确定适当的点火时机。
这有助于提高燃烧效率,减少燃油消耗和排放。
2.燃油喷射控制:曲轴位置传感器还能帮助ECU确定燃油喷射系统的工作时机,确保适量的燃油喷射进入汽缸。
这有助于保持发动机的稳定运行和燃烧效率。
3.发动机诊断:曲轴位置传感器可以提供准确的曲轴位置信息,以便ECU监测发动机的运行状况。
当发现任何异常或故障时,ECU可以通过曲轴位置传感器的数据进行故障诊断,并触发相关的故障代码。
凸轮轴位置传感器的作用1.提供凸轮轴的位置信息:凸轮轴位置传感器可以感知凸轮轴的旋转位置,为ECU提供关键的引擎工作时序信息。
这对于发动机正常运行至关重要。
2.辅助点火时机调整:凸轮轴位置传感器可以帮助ECU进行点火时机的调整。
通过监测凸轮轴的位置,ECU可以根据发动机要求合理地控制点火时机,以提供最佳的燃烧效果。
3.VVT系统控制:某些发动机配备了可变气门正时(VVT)系统,用于根据驾驶条件和发动机负载调整气门正时。
凸轮轴位置传感器可以提供准确的凸轮轴位置信息,以供VVT系统控制。
结论曲轴位置传感器和凸轮轴位置传感器在发动机系统中起着至关重要的作用。
它们提供准确的旋转位置和时序信息,帮助ECU控制点火时机、燃油喷射和各种发动机系统的工作。
同时,它们也为发动机的故障诊断和系统监测提供了重要数据。
因此,这两种位置传感器的正常运行对于发动机的性能和可靠性至关重要。
曲轴位置传感器原理
曲轴位置传感器是一种用于测量发动机曲轴位置的装置。
其原理是利用磁场感应或光学原理来检测曲轴的旋转角度和速度。
以下是几种常见的曲轴位置传感器原理:
1. 磁电感应原理:曲轴上安装有一个磁铁,而传感器附近有一个磁场感应装置,当曲轴旋转时,磁铁的位置变化会导致磁场感应装置的输出信号的改变,从而实现对曲轴位置的测量。
2. 霍尔效应原理:曲轴上安装有一个或多个磁铁,传感器附近有一个或多个霍尔传感器,这些传感器可以检测到磁场的变化。
当曲轴旋转时,磁铁的位置变化会导致霍尔传感器的输出信号的改变,从而实现对曲轴位置的测量。
3. 光学原理:曲轴上安装有一个齿轮或光栅,传感器附近有一个光源和光电二极管。
当曲轴旋转时,齿轮或光栅会使光束被挡住或透过,从而改变光电二极管的接收光强度,通过测量光电二极管的输出电压或电流变化来实现对曲轴位置的测量。
总之,曲轴位置传感器通过检测曲轴上的磁场、光学或光栅等物理量的变化来测量曲轴的位置和速度。
这些传感器可以将测量结果发送给控制系统,以实现精确的发动机控制和监测。
曲轴位置传感器故障原因曲轴位置传感器故障的原因可以有很多,以下是一些可能的原因:1. 传感器损坏:曲轴位置传感器可能会因为长时间使用、磨损或固定螺丝松动等原因而损坏。
2. 电气问题:传感器与电路之间的连接可能会出现故障,例如导线接触不良、插头脱落等。
3. 粘性污染:在汽车使用过程中,曲轴位置传感器可能会被发动机内的油脂、灰尘或其他污染物污染,导致传感器无法正常工作。
4. 传感器线圈短路:线圈短路可能会导致传感器输出信号不稳定或干扰。
5. 曲轴飞轮问题:如果曲轴飞轮损坏或偏移,可能会导致传感器不能正确读取曲轴位置。
6. 控制单元问题:如果车辆的电子控制单元(ECU)出现故障,可能无法正确读取传感器的信号。
7. 供电问题:传感器的供电电压不稳定或供电线路受损可能会导致传感器无法正常工作。
8. 温度问题:曲轴位置传感器的工作温度范围可能受到限制,如果温度过高或过低,传感器可能会出现故障。
9. 润滑问题:如果传感器附近的润滑油不足或质量不佳,可能会导致传感器故障。
需要注意的是,以上原因仅仅是一些常见的故障原因,具体情况还要根据具体车辆和传感器进行综合分析。
曲轴位置传感器故障可能由以下原因引起:1. 传感器损坏:传感器可能由于长时间的使用或者外部原因损坏,比如脱落、磨损、断线等。
2. 电气问题:传感器的供电电路或者接地存在问题,比如电压过高或过低、接触不良或者短路等。
3. 传感器信号线故障:传感器信号线可能被挤压、损坏或者短路,导致传感器无法正常工作。
4. 磁性故障:曲轴传感器通过感应磁场来测量曲轴位置,如果曲轴传感器周围存在磁性故障,比如磁铁脱落、磁铁表面受损等,可能导致传感器无法正常感应。
5. 曲轴故障:如果曲轴本身存在问题,比如损坏、磨损或者偏差,可能会导致传感器测量结果不准确或者无法正常工作。
以上仅列举了一些常见的曲轴位置传感器故障原因,具体原因还需要根据具体情况进行进一步的诊断。
曲轴位置传感器的检测与故障案例一、曲轴位置传感器的基本介绍曲轴位置传感器是一种用于测量发动机曲轴转速和位置的重要传感器。
它通常由霍尔元件和磁铁组成,通过检测曲轴上的齿轮或凸轮的位置来确定曲轴的转速和位置信息。
曲轴位置传感器的正常工作对于发动机的运行和性能至关重要。
二、曲轴位置传感器的检测方法1. 检查传感器的电气连接:首先,断开传感器的电源,使用万用表测量传感器的电气连接是否正常。
检查传感器的电源线、接地线和信号线是否有断裂、短路或接触不良等问题。
2. 检查传感器的内部元件:将传感器拆解,检查内部的霍尔元件是否损坏或腐蚀。
如果发现损坏或腐蚀的情况,需要更换传感器。
3. 检查传感器的磁铁:使用磁力计或磁力感应器测量传感器的磁铁是否正常。
如果磁铁磁力不足或磁铁损坏,需要更换传感器。
4. 检查传感器的工作电压:使用示波器测量传感器的工作电压是否在正常范围内。
如果工作电压异常,可能是由于供电系统故障或传感器本身故障导致,需要进一步排查。
5. 检查传感器的输出信号:使用示波器或多用途检测仪测量传感器的输出信号是否在正常范围内。
正常情况下,传感器的输出信号应该随着发动机转速的变化而变化。
三、曲轴位置传感器的故障案例1. 传感器损坏:传感器的霍尔元件损坏或腐蚀,导致无法正常检测曲轴位置。
这种情况下,需要更换传感器。
2. 传感器线路故障:传感器的电源线、接地线或信号线出现断路、短路或接触不良等问题,导致传感器无法正常工作。
这种情况下,需要修复或更换传感器的线路。
3. 磁铁损坏:传感器的磁铁磁力不足或磁铁损坏,导致无法正常检测曲轴位置。
这种情况下,需要更换传感器。
4. 供电系统故障:传感器的工作电压异常,可能是由于供电系统故障导致。
这种情况下,需要检查供电系统的电压稳定性和电源线路是否正常。
5. 传感器输出信号异常:传感器的输出信号不稳定或超出正常范围,可能是由于传感器本身故障或其他系统故障导致。
这种情况下,需要进一步排查其他系统的故障。
曲轴位置传感器工作原理
曲轴位置传感器是一种用于检测发动机曲轴位置的设备,工作原理如下:
1. 传感器结构:曲轴位置传感器通常由一个磁场传感器和一个金属曲轴齿轮组成。
磁场传感器的作用是感应金属齿轮的旋转运动。
2. 磁感应原理:金属齿轮固定在发动机曲轴上,当曲轴旋转时,金属齿轮也会随之旋转。
磁场传感器的磁感应元件会感应到金属齿轮的旋转,并生成相应的电信号。
3. 电信号处理:磁感应元件生成的电信号会被转换成数字信号,并通过车辆的电气系统传输给发动机控制单元(ECU)。
4. 曲轴位置计算:通过接收到的传感器信号,ECU能够计算
出曲轴的具体位置。
这个位置信息是发动机控制的基础,用于控制喷油、点火等操作。
总的来说,曲轴位置传感器通过感应金属齿轮的旋转运动来检测曲轴的位置,并将信号转换成数字信号传输给发动机控制单元,从而实现对发动机的精确控制。
曲轴位置传感器是内燃机中的一个重要部件,它的作用是监测发动机曲轴的位置和转速,并将这些信息反馈给发动机控制单元(ECU)。
它可以帮助引擎更准确地注入燃料和控制点火时机,从而提高发动机的效率和性能。
然而,如果曲轴位置传感器出现故障,就会导致引擎的性能下降,甚至无法正常运转。
及时发现并排除曲轴位置传感器故障至关重要。
针对曲轴位置传感器故障的排除步骤,我们可以从简单到复杂来逐步排查,以确保能够找到故障的根源并进行修复。
1. 检查传感器连接:检查传感器的电气连接是否牢固。
断开电源后,检查传感器插座和电缆连接,确保没有松动或生锈的现象。
还可以利用万用表检查传感器的连接是否正常,检测传感器是否出现断路或短路的情况。
2. 清洁传感器表面:传感器安装在引擎上,可能会受到灰尘、油污和其他杂质的影响。
清洁传感器表面是非常必要的。
可以使用一些专门的清洁剂或者酒精进行清洁,确保传感器能够正常感知曲轴的位置。
3. 检查传感器工作状态:可以借助车载诊断仪或者OBD扫描工具来检查曲轴位置传感器的工作状态。
通过这些工具,可以读取传感器的输出信号,从而判断传感器是否正常工作。
4. 替换传感器:如果经过上述步骤排查后发现传感器仍然存在问题,那么可能需要考虑更换一个新的曲轴位置传感器。
在更换传感器之前,需要确保选用的传感器与原装配的型号相匹配,并严格按照安装要求进行更换。
5. 检查曲轴和齿轮:在排除传感器本身故障之后,还需要检查曲轴和齿轮的状态。
曲轴和齿轮的损坏或者异物堵塞都有可能影响传感器的工作。
在排查故障时,也需要对这些部件进行仔细检查。
在排除曲轴位置传感器故障时,需要耐心和细心。
如果自己无法找到故障原因,可以寻求专业的汽车维修技师来帮助排查和修复。
曲轴位置传感器的故障可能会导致发动机性能下降,甚至直接影响行车安全,因此我们应该重视曲轴位置传感器的维护和排查工作。
以上就是针对曲轴位置传感器故障排除的一些基本步骤,希望对您有所帮助。
曲轴位置传感器的工作原理曲轴位置传感器是汽车发动机中的重要部件之一,它可以检测曲轴的旋转位置和速度,从而控制发动机的点火时间和燃油喷射量。
本文将详细介绍曲轴位置传感器的工作原理及其应用。
(1)霍尔元件霍尔元件是曲轴位置传感器的核心部件,它可以将磁场转换为电信号,从而检测曲轴的旋转位置和速度。
霍尔元件通常由多个磁敏电阻、磁敏二极管或磁敏场效应管组成,具有高精度、高灵敏度和高可靠性等特点。
(2)磁性齿轮磁性齿轮是一种具有一定数量的磁性齿的齿轮,通常与曲轴相连。
当曲轴旋转时,磁性齿轮也会旋转,从而产生交替的南北极磁场。
曲轴位置传感器通过检测磁场的变化来确定曲轴的旋转位置和速度。
(3)信号处理器信号处理器是曲轴位置传感器的控制单元,它负责接收、处理和解码霍尔元件输出的电信号,并将其转换为可供发动机控制单元使用的数字信号。
信号处理器通常采用数字电路或微处理器实现,具有高速度、高可靠性和低成本等特点。
曲轴位置传感器的工作原理基于霍尔效应,即在外加磁场的作用下,金属或半导体中电子的自旋和电荷运动会发生变化,从而产生电势差。
当磁性齿轮旋转时,会产生交替的南北极磁场,从而使得霍尔元件输出的电信号发生变化。
通过检测这些信号的变化,曲轴位置传感器可以确定曲轴的旋转位置和速度。
(1)当曲轴转动时,磁性齿轮也会转动,从而使得磁场发生变化;(2)霍尔元件会检测到这些变化,并将其转换为电信号;(3)信号处理器会接收、处理和解码霍尔元件输出的电信号,从而确定曲轴的旋转位置和速度;(4)根据曲轴位置和速度的信息,发动机控制单元可以控制点火时间和燃油喷射量。
曲轴位置传感器广泛应用于汽车发动机系统中,它可以有效控制点火时间和燃油喷射量,从而提高发动机的性能和效率。
曲轴位置传感器还可以用于发动机运行状态的监测和诊断,可以及时发现和解决发动机故障,保证汽车的安全和稳定性。
曲轴位置传感器的性能直接影响到发动机的工作效率和环保性能。
在实际应用中,曲轴位置传感器要求具有高度的精度、可靠性和稳定性,能够适应不同环境和工况条件下的工作要求。
简述曲轴位置传感器的作用及工作原理曲轴位置传感器也被称为曲轴传感器或者曲轴传感器,是一种用于检测发动机曲轴位置的传感器。
它在现代化的汽车发动机中起着非常重要的作用,通过准确地测量曲轴的位置来协助发动机控制系统实时监测发动机的状态,从而确保发动机能够正常运行。
曲轴位置传感器的工作原理是基于霍尔效应或者磁阻效应,通过测量曲轴上的特定标记或者齿轮的位置,来确定曲轴的旋转位置和速度。
在这篇文章中,我们将详细地介绍曲轴位置传感器的作用和工作原理。
曲轴位置传感器的作用:1.监测曲轴位置:曲轴位置传感器能够准确地监测曲轴的位置和速度,从而让发动机控制系统可以根据这些信息来精确地控制燃油喷射和点火时机,以确保发动机的正常运行。
2.改善燃油经济性:曲轴位置传感器可以帮助发动机控制系统实时地调整燃油喷射和点火时机,从而提高燃油经济性和减少排放。
3.提高发动机性能:通过准确地控制燃油喷射和点火时机,曲轴位置传感器可以提高发动机的性能和响应速度。
工作原理:曲轴位置传感器的工作原理主要是基于霍尔效应或者磁阻效应。
在现代发动机中,霍尔效应比较常见。
1.霍尔效应:霍尔效应是指当导体处于磁场中时,导体内部的电子受到力的作用而发生的现象。
曲轴位置传感器通常包括一个霍尔元件,当这个元件受到磁场的影响时,会产生电压信号。
发动机的曲轴通常附有一个齿轮或者标记,当齿轮或者标记经过传感器时,会改变传感器所受到的磁场,从而产生电压信号。
通过测量这些电压信号的变化,就能够确定曲轴的位置和速度。
这种方法的优点是测量准确度高,响应速度快,适用范围广。
2.磁阻效应:磁阻效应是指当导体处于磁场中时,导体内部的电阻发生变化的现象。
磁阻式传感器通常通过测量磁场的强度来确定曲轴的位置和速度。
当曲轴上的齿轮或者标记经过传感器时,会改变传感器所受到的磁场,从而产生电阻的变化。
通过测量这些电阻的变化,就能够确定曲轴的位置和速度。
这种方法的优点是简单易用,成本低,适用于一些简单的应用场景。
曲轴位置传感器曲轴位置传感器曲轴位置传感器是发动机电子控制系统中最主要的传感器之一,它提供点火时刻(点火提前角)、确认曲轴位置的信号,用于检测活塞上止点、曲轴转角及发动机转速。
曲轴位置传感器所采用的结构随车型不同而不同,可分为磁脉冲式、光电式和霍尔式三大类。
它通常安装在曲轴前端、凸轮轴前端、飞轮上或分电器内。
一、磁脉冲式曲轴位置传感器的检测1、磁脉冲式曲轴位置传感器的结构和工作原理(1)日产公司磁脉冲式曲轴位置传感器该曲轴位置传感器安装在曲轴前端的皮带轮之后,如图1所示。
在皮带轮后端设置一个带有细齿的薄圆齿盘(用以产生信号,称为信号盘),它和曲轴皮带轮一起装在曲轴上,随曲轴一起旋转。
在信号盘的外缘,沿着圆周每隔4°有个齿。
共有90个齿,并且每隔120°布置1个凸缘,共3个。
安装在信号盘边沿的传感器盒是产生电信号信号发生器。
信号发生器内有3个在永久磁铁上绕有感应线圈的磁头,其中磁头②产生120°信号,磁头①和磁头③共同产生曲轴1°转角信号。
磁头②对着信号盘的120°凸缘,磁头①和磁头③对着信号盘的齿圈,彼此相隔了曲轴转角安装。
信号发生器内有信号放大和整形电路,外部有四孔连接器,孔“1”为120°信号输出线,孔“2”为信号放大与整形电路的电源线,孔“3”为1°信号输出线,孔“4”为接地线。
通过该连接器将曲轴位置传感器中产生的信号输送到ECU。
发动机转动时,信号盘的齿和凸缘引起通过感应线圈的磁场发生变化,从而在感应线圈里产生交变的电动势,经滤波整形后,即变成脉冲信号(如图2所示)。
发动机旋转一圈,磁头②上产生3个120°脉冲信号,磁头①和③各产生90个脉冲信号(交替产生)。
由于磁头①和磁头③相隔3°曲轴转角安装,而它们又都是每隔4°产生一个脉冲信号,所以磁头①和磁头③所产生的脉冲信号相位差正好为90°。
将这两个脉冲信号送入信号放大与整形电路中合成后,即产生曲轴1°转角的信号(如图3所示)。
产生120°信号的磁头②安装在上止点前70°的位置(图4),故其信号亦可称为上止点前70°信号,即发动机在运转过程中,磁头②在各缸上止点前70°位置均产生一个脉冲信号。
(2)丰田公司磁脉冲式曲轴位置传感器丰田公司TCCS系统用磁脉冲式曲轴位置传感器安装在分电器内,其结构如图5所示。
该传感器分成上、下两部分,上部分产生G信号,下部分产生Ne信号,都是利用带有轮齿的转子旋转时,使信号发生器感应线圈内的磁通变化,从而在感应线圈里产生交变的感应电动势,再将它放大后,送入ECU。
Ne信号是检测曲轴转角及发动机转速的信号,相当于日产公司磁脉冲式曲轴位置传感器的1°信号。
该信号由固定在下半部具有等间隔24个轮齿的转子(N0.2正时转子)及固定于其对面的感应线圈产生(如图6(a)所示)。
当转子旋转时,轮齿与感应线圈凸缘部(磁头)的空气间隙发生变化,导致通过感应线圈的磁场发生变化而产生感应电动势。
轮齿靠近及远离磁头时,将产生一次增减磁通的变化,所以,每一个轮齿通过磁头时,都将在感应线圈中产生一个完整的交流电压信号。
N0.2正时转子上有24个齿,故转子旋转1圈,即曲轴旋转720°时,感应线圈产生24个交流电压信号。
Ne信号如图6(b)所示,其一个周期的脉冲相当于30°曲轴转角(720°÷24=30°)。
更精确的转角检测,是利用30°转角的时间由ECU再均分30等份,即产生1°曲轴转角的信号。
同理,发动机的转速由ECU依照Ne信号的两个脉冲(60°曲轴转角)所经过的时间为基准进行计测。
G信号用于判别气缸及检测活塞上止点位置,相当于日产公司磁脉冲式曲轴位置传感器120°信号。
G信号是由位于Ne发生器上方的凸缘转轮(No.1正时转子)及其对面对称的两个感应线圈(G1感应线圈和G2感应线圈)产生的。
其构造如图7所示。
其产生信号的原理与Ne信号相同。
G信号也用作计算曲轴转角时的基准信号。
G1、G2信号分别检测第6缸及第1缸的上止点。
由于G1、G2信号发生器设置位置的关系,当产生G1、G2信号时,实际上活塞并不是正好达到上止点(BTDC),而是在上止点前10°的位置。
图8所示为曲轴位置传感器G1、G2、Ne信号与曲轴转角的关系。
2、磁脉冲式曲轴位置传感器的检测以皇冠3.0轿车2JZ-GE型发动机电子控制系统中使用的磁脉冲式曲轴位置传感器为例说明其检测方法,曲轴位置传感器电路如图9所示。
(1)曲轴位置传感器的电阻检查点火开关OFF,拔开曲轴位置传感器的导线连接器,用万用表的电阻档测量曲轴位置传感器上各端子间的电阻值(表1)。
如电阻值不在规定的范围内,必须更换曲轴位置传感器。
表1 曲轴位置传感器的电阻值端子条件电阻值(Ω)G1-G- 冷态125-200热态160-235G2-G- 冷态125-200热态160-235Ne-G- 冷态155-250热态190-290(2)曲轴位置传感器输出信号的检拔下曲轴位置传感器的导线连接器,当发动机转动时,用万用表的电压档检测曲轴位置传感器上G1-G-、G2-G-、Ne-G-端子间是否有脉冲电压信号输出。
如没有脉冲电压信号输出,则须更换曲轴位置传感器。
(3)感应线圈与正时转子的间隙检查用厚薄规测量正时转子与感应线圈凸出部分的空气间隙(图10),其间隙应为0.2-0.4mm。
若间隙不合要求,则须更换分电器壳体总成。
二、光电式曲轴位置传感器1、光电式曲轴位置传感器的结构和工作(1)日产公司光电式曲轴位置传感器的结构和工作日产公司光电式曲轴位置传感器设置在分电器内,它由信号发生器和带缝隙和光孔的信号盘组成(图11)。
信号盘安装在分电器轴上,其外围有360条缝隙,产生1°(曲轴转角)信号;外围稍靠内侧分布着6个光孔(间隔60°),产生120°信号,其中有一个较宽的光孔是产生对应第1缸上止点的120°信号的,如图12所示。
信号发生器固装在分电器壳体上,主要由两只发光二极管、两只光敏二极管和电子电路组成(图13)。
两只发光二极管分别正对着光敏二极管,发光二极管以光敏二极管为照射目标。
信号盘位于发光二极管和光敏二极管之间,当信号盘随发动机曲轴运转时,因信号盘上有光孔,产生透光和遮光的交替变化,造成信号发生器输出表征曲轴位置和转角的脉冲信号。
图14所示为光电式信号发生器的作用原理。
当发光二极管的光束照射到光敏二极管上时,光敏二极管感光而导通;当发光二极管的光束被遮挡时,光敏二极管截止。
信号发生器输出的脉冲电压信号送至电子电路放大整形后,即向电控单元输送曲轴转角1°信号和120°信号。
因信号发生器安装位置的关系,120°信号在活塞上止点前70°输出。
发动机曲轴每转2圈,分电器轴转1圈,则1°信号发生器输出360个脉冲,每个脉冲周期高电位对应1°,低电位亦对应1°,共表征曲轴转角720°。
与此同时,120°信号发生器共产生6个脉冲信号。
(2)“现代SONATA”汽车用光电式曲轴位置传感器的结构和工作“现代SONATA”,汽车光电式曲轴位置传感器的工作原理与日产公司光电式曲轴位置传感器相似,其信号盘的结构稍有不同,如图15所示。
对于带有分电器的汽车,传感器总成装于分电器壳内;对于无分电器的汽车,传感器总成安装在凸轮轴左端部(从车前向后看)。
信号盘外圈有4个孔,用来感测曲轴转角并将其转化为电压脉冲信号,电控单元根据该信号计算发动机转速,并控制汽油喷射正时和点火正时。
信号盘内圈有一个孔,用来感测第1缸压缩上止点(在有些SONATA车上,设有两孔,用来感测第1、4缸的压缩上止点,目的是为了提高精度),并将它转换成电压脉冲信号输入电控单元,电控单元根据此信号计算出汽油喷射顺序。
其输出特性如图16所示。
曲轴位置传感器的线路连接如图17所示。
其内设有两个发光二极管和两个光敏二极管,当发光二极管照射到信号盘光孔中的某一孔时,光线便照射到光敏二极管上,使电路导通。
2、光电式曲轴位置传感器的检测(1)曲轴位置传感器的线束检查图18所示为韩国“现代SONATA”汽车光电式曲轴位置传感器连接器(插头)的端子位置。
检查时,脱开曲轴位置传感器的导线连接器,把点火开关置于“ON”,用万用表的电压档(图19)测量线束侧4#端子与地间的电压应为12V,线束侧2#端子和3#端子与地间电压应为4.8-5.2V,用万用表的电阻档测量线束侧1#端子与地间应为0Ω(导通)。
(2)光电式曲轴位置传感器输出信号检测用万用表电压档接在传感器侧3#端子和1#端子上,在起动发动机时,电压应为0.2-1.2V。
在起动发动机后的怠速运转期间,用万用表电压档检测2#端子和1#端子电压应为1.8-2.5V。
否则应更换曲轴位置传感器。
三、霍尔式曲轴位置传感器的检测霍尔式曲轴位置传感器是利用霍尔效应的原理,产生与曲轴转角相对应的电压脉冲信号的。
它是利用触发叶片或轮齿改变通过霍尔元件的磁场强度,从而使霍尔元件产生脉冲的霍尔电压信号,经放大整形后即为曲轴位置传感器的输出信号。
1、霍尔式曲轴位置传感器的结构和工作(1)采用触发叶片的霍尔式曲轴位置传感器美国GM公司的霍尔式曲轴位置传感器安装在曲轴前端,采用触发叶片的结构型式。
在发动机的曲轴皮带轮前端固装着内外两个带触发叶片的信号轮,与曲轴一起旋转。
外信号轮外缘上均匀分布着18个触发叶片和18个窗口,每个触发叶片和窗口的宽度为10°弧长;内信号轮外缘上设有3个触发叶片和3个窗口,3个触发叶片的宽度不同,分别为100°、90°和110°弧长,3个窗口的宽度亦不相同,分别为20°、30°和10°弧长。
由于内信号轮的安装位置关系,宽度为100°弧长的触发叶片前沿位于第1缸和第4缸上止点(TDC)前75°,90°弧长的触发叶片前沿在第6缸和第3缸上止点前75°,110°弧长的触发叶片前沿在第5缸和第2缸上止点前75°。
霍尔信号发生器由永久磁铁、导磁板和霍尔集成电路等组成。
内外信号轮侧面各设置一个霍尔信号发生器。
信号轮转动时,每当叶片进入永久磁铁与霍尔元件之间的空气隙时,霍尔集成电路中的磁场即被触发叶片所旁路(或称隔磁),这时不产生霍尔电压;当触发叶片离开空气隙时,永久磁铁2的磁通便通过导磁板3穿过霍尔元件这时产生霍尔电压。