实验中的吸附作用表面张力的测定
- 格式:docx
- 大小:62.72 KB
- 文档页数:5
实验二十一溶液中的吸附作用和表面张力的测定课程名称物理化学实验实验名称溶液中的吸附作用和表面张力的测定姓名学号专业班级实验日期一、实验目的1.了解表面张力的性质,表面能的意义以及表面张力和吸附的关系。
2.掌握一种测定表面张力的方法——最大气泡法。
二、实验原理1.Γ=﹣c/RT×(dσ/d c)T(以σ~c作图→以求出Γ)2.Γ=Γ∞×Kc/(1+Kc)c/Γ=c/Γ∞+1/KΓ∞(以c/Γ~c作图→以求出Γ∞)3.S。
=1/Γ∞N A (以求出S。
)4.σ=K×ΔP三、注意事项1.测定用的毛细管一定要洗干净,否则气泡可能不能连续稳定的流过,而使压差计不稳定,如发生此种现象,毛细管应重洗。
2.毛细管一定要保持垂直,管口刚好插到与液面接触。
3. 在数字式微压差测量仪上,应读出气泡单个逸出时的最大压力差。
四、 数据记录五、 数据处理1.在25℃时σH2O =71.97×10﹣3N /m ΔP =366Pa ∴仪器常数K为∶K =H2OPσ∆=371.9710N m 366Pa⨯﹣/=1.97×10﹣42. 由σ=K ·P ∆得∶3.溶液的表面张力σ与浓度c 的关系曲线4.可求出各点的切线斜率(dσ)T ﹐还可根据Γ=﹣c(d σ)T 5.Γ与c 的关系图6.直线斜率为 9.8×104 L /(m ·mol )1∞Γ=9.8×104 m 2/mol ∴Γ∞=1.02×10﹣5mol /m 2 7.S 0=·1N∞Γ=1.58×10﹣19m ²六、思考题1.用最大气泡法测定表面张力时为什么要读最大压力差? 答∶若抽气速度太快,气泡的形成与逸出速度快而不稳定,亦使U型压力计中的酒精所处的位置相对不稳定,不易观察出其最高点而引起的较大的误差。
2.哪些因素影响表面张力测定结果?如何减小以致消除这些实验的影响?答∶温度、气泡逸出速度、毛细管是否干净及毛细管的尖端是否与液面相切会影响测定结果。
溶液中的吸附作用及表面张力的测定中国科学技术大学少年班学院摘要:本实验通过最大气泡压力法对不同浓度的正丁醇溶液的表张力进行测定,并由此计算溶液界面上的吸附量并由饱和时吸附量的值计算得到正丁醇的分子截面积。
关键词:最大气泡压力法,表面张力,正丁醇,表面吸附1前言对于液体而言,其界面和表面处的性质尤为重要,可以决定其很多用处,而对于这部分性质而言,表面张力是其中最重要的一个数值,例如表面活性剂和表面吸附都要以表面张力为基础。
对于表面张力的测定则由很多方法,例如液膜法和泡压法,本实验采用的泡压法是利用溶液中气泡在涨破瞬间的压力来计算得到表面张力数值的。
2实验部分2.1实验仪器及试剂HK-2A型超级恒温水浴DMP-2B型数字式微压差测量仪Perfluid Model BT50b 气泵恒温套管,毛细管,100mL容量瓶,2mL移液管正丁醇,蒸馏水,铬酸洗液2.2实验设计2.2.1吸附量的求得吸附量定义为溶液中表层与里层浓度之差,曾经有人用刮下表层液膜并测定其中溶质浓度的方法来计算吸附量,这种方法虽然来自于最原始的对于吸附量的定义,但是用刀片刮下表层液膜这一点上操作起来十分困难,而吉布斯则从热力学上对吸附量的数值进行了推导,得到了吸附量与其他各个热力学函数之间的关系式:Γ=−cRT (ðσðc)T(1)其中σ为溶液的表面张力,c为溶液浓度,T为温度,溶液浓度和温度都容易得到,故此时的任务便是求得(ðσðc )T项,为了求出偏导数的值,则至少要测量多组表面张力-浓度数据,而其中表面张力的测定便要用到最大气泡压力法。
2.2.2最大气泡压力法测定表面张力对于毛细管口处的一个气泡而言,它受到内外两个压力差的作用,同时还受到毛细管口一圈处表面张力的作用,在表面张力的作用下,气泡仍然停留在管口处不溢出,而当气压差达到一定大小的时候,表面张力无法再维持住气泡,则气泡此时会从管口溢出,在溢出时,两个作用力大小应该相等,可以得到关系式:2πrσ=ρg∆P (2)等式左侧为气泡受到的表面张力,其中r为毛细管管口半径,右侧则为压力差在气泡上的作用力,在测定的时候,∆P的数值可以从微压计上读出,但是毛细管半径和溶液密度的数值则不易得到,而在溶液密度变化不大的情况下,对于两个情况下的表面张力和压力差数值,可以近似得到:∆P1∆P2=σ1σ2(3)由上式可以得知,只要在某种已知表面张力的液体中进行一次测定,之后每一次便都可以通过压力差的数值得到表面张力的数值,定义K′=σ1∆P1为毛细管常数,则对于某一固定的毛细管而言,此常数为一定值,而某一情况下的表面张力则可以表达为σ=K′∆P (4)由此便可以计算得到任意情况下的表面张力数值。
【DOC】溶液中的吸附作用和表面张力的测定
吸附作用是指一种物质在表面上形成的极小的颗粒,其主要来源于溶质与固体接触表面之间的力学或化学作用。
它可以增强溶质与固体之间的相互作用强度,从而影响溶质的活性和溶液的物理性质。
由于这种作用,溶液表面生成一个新的“界面”,使原有一种溶液有千变万化的表现。
表面张力是指液体表面承受的力,是液体自身有限的张力表现出来的参数。
它是影响液体流变性能的关键因素之一,也是液体的重要性质之一。
此外,表面张力也影响着液体表面的其他性质,比如:表面活性剂的吸附与混溶能力、表面污染物的吸附能力、溶质的极性和分散性等等。
因此,测定溶质中的吸附作用及溶液表面张力非常重要。
常见的测定溶质中的吸附作用的方法有实验检测和模型预测两种,它们之间相关度很高,能够综合考察不同溶质的吸附作用及其机理。
一般而言,实验检测是介观检测性质,比如:液体表面张力等,而模型预测则可以从微观角度反映溶质之间的相互作用,并能够深入分析吸附作用及其机理。
通常,液体表面张力的测定可以采用传统的实验检测方法,例如:气液界面法、粘度计等。
以气液界面法为例,通过测量小液滴的重量就可以计算出液体表面张力。
其他方法如粘度计测定、机械张力法、上清法等也是测量液体表面张力的常用方法之一;而扫描电镜等技术可以分析吸附过程中液体表面的构型,从而加深对溶质吸附的认知。
本文从实验检测和模型预测的角度讨论了溶质中的吸附作用及表面张力测定的方法与技术,从而为进一步研究和应用提供借鉴与参考。
一、实验目的和要求1、加深理解表面张力、表面吸附等概念以及表面张力和吸附的关系。
2、掌握用最大气泡法测定溶液表面张力的原理和技术。
二、实验内容和原理最大气泡法是测定液体表面张力的方法之一,它的基本原理如下:当玻璃毛细管一端与液体接触,并往毛细管内加压时,可以在液面的毛细管口处形成气泡。
气泡的半径在形成过程中先由大变小,然后再由小变大。
设气泡在形成过程中始终保持球形,则气泡内外的压力差△p (即施加于气泡的附加压力)与气泡的半径r 、液体表面张力σ之间的关系可又拉普拉斯(Laplace )公式表示,即2p r σ∆=(1)显然,在气泡形成过程中,气泡半径由大变小,再由小变大,所以压力差△p 则由小变大,然后再由大变小。
当气泡半径r 等于毛细管半径R 时,压力差达到最大值max p ∆。
因此max 2p R σ∆=(2)由此可见,通过测定R 与max p ∆,即可求得液体的表面张力。
由于毛细管的半径较小,直接测量R 误差较大。
通常用一已知表面张力为0σ的液体(如水、甘油等)作为参考液体,实验测得其对应的最大压力差为0,maxp ∆。
可得被测液体的表面张力σ1=σ2*(△p1/△p2)=K △p1 (3)本实验中用DMP-2B 型数字式微压差测量仪测量,该仪器可直接显示以Pa 为单位的压力差。
对纯溶剂而言,表面层与内部的组成是相同的,但对溶液来说却不然。
当加入溶质后,溶剂的表面张力会发生变化。
根据能量最低原则,溶质能降低溶剂的表面张力时,表面层中溶质的浓度比溶液内部的大,反之,溶质使溶剂的表面张力升高时,它在表面层中的浓度比在内部的浓度低。
这种表面浓度与溶液内部浓度不同的现象叫做溶液的表面吸附。
显然,在指定的温度和压力下,溶液表面吸附溶质的量与溶液的表面张力和加入溶质的量(即溶液的浓度)有关,从热力学方法可知它们间的关系遵守吉布斯吸附方程:(4)式中:Γ吸附量(mol/m2);σ为表面张力(N/m );T 为绝对温度;c 为溶液浓度(mol/m3);R 为气体常数,R=8.314J ·mol -1·K -1。
实验报告课程名称: 大学化学实验(P ) 指导老师: 成绩:_______________实验名称: 溶液表面张力的测定及等温吸附 实验类型: 测量型实验 同组学生姓名: 无 【实验目的】1. 加深理解表面张力、表面吸附等概念以及表面张力和吸附的关系。
2. 掌握用最大气泡法测定溶液表面张力的原理和技术。
【实验原理】最大气泡法测定表面张力:当表面张力仪中的毛细管尖端与待测液体相切时,液面即沿毛细管上升。
打开滴液漏斗的活塞,使水缓慢下滴而减小系统压力,这样毛细管内液面上受到一个比试管中液面上大的压力,当此压力差在毛细管尖端产生的作用力稍大于毛细管管口液体的表面张力时,气泡就从毛细管口逸出,这一最大压力差可由数字式微压差测量仪测出:p 最大=p 大气-p 系统 =p ∆。
毛细管内气体压力必须高于大试管内液面上压力的附加压力以克服气泡的表面张力,此附加压力与表面张力成正比,与气泡的曲率半径R 成反比,其关系式为:2P Rγ∆=如果毛细管半径很小,则形成的气泡基本上是球形的,当气泡刚开始形成时,表面几乎是平的,这时曲率半径最大,随着气泡的形成曲率半径逐渐变小,直到形成半球形,这时曲率半径R 与毛细管内半径r 相等,曲率半径达到最小值,由上式可知此时附加压力达最大值,气泡进一步长大,R 变大附加压力则变小,直到气泡逸出。
R = r 时的最大附加压力m p ∆2rγ=,从此式得2m r P γ=∆,当使用同一根毛细管及相同的压差计介质时,对两种具有表面张力为1γ,2γ的液体而言,γ正比于p ∆,且同温度下有:2121//p p ∆∆=γγ,若液体2的2γ为已知,则12121/p K p p ∆=∆∆=γγ式中:K 为仪器常数,可用已知表面张力的液体2来测得,因此,通过该式求得1γ。
本实验就是通过测定已知表面张力的水的2p ∆来求得不同浓度正丁醇溶液的表面张力。
溶质若能降低溶液的表面张力,则表面层中溶质的浓度就比溶液内部的大;反之,溶质若使溶液的表面张力升高,则它的表面层中的浓度比在内部的浓度小,这种表面浓度与溶液内部浓度不同的现象叫做溶液的表面吸附。
溶液中的吸附作用和表面张力的测定溶液中的吸附作用和表面张力的测定——最大气泡压力法【摘要】本实验采用最大气泡压力法测定了一系列不同浓度的正丁醇溶液的表面张力,并根据Gibbs吸附公式和Langmuir等温方程式的到了表面张力与溶液吸附作用的关系,用作图法求出了正丁醇分子横截面积,从实验上进一步了解表面张力的性质以及表面张力和吸附的关系,并得到了一个测量表面张力的简单有效而又精确的方法。
【关键词】最大气泡法表面张力吸附作用一、前言正丁醇是一种表面活性物质,可以使溶液表面张力下降。
利用最大气泡压力法,可以测量出正丁醇溶液的表面张力。
根据表面张力与气泡压力的关系,由σ-c曲线可以求出溶液界面上的吸附量和单个正丁醇分子的横截面积(S)。
1、物体表面的分子和内部分子能量也不同,表面层的分子受到向内的拉力,有自动缩小的趋势,表面分子的能量比内部分子大。
体系产生新的表面(∆A)所需耗费功(W)的量,其大小应与∆A成正比。
在等温下形成1m2新的表面所需的可逆功为σ,称为单位表面的表面能,其单位为N·m-1,通常称为表面张力。
2、纯液体情形下,表面层的组成与内部的组成相同,因此液体降低体系表面自由能的途径是缩小其表面积。
对于溶液,溶质会影响表面张力,调节溶质在表面层的浓度来降低表面自由能。
根据能量最低原理,溶质能降低溶液的表面张力时,表面层中溶质的浓度应比溶液内部大。
反之同理 。
这种表面浓度与溶液里面浓度不同的现象叫“吸附”。
Gibbs 用热力学的方法推导出吸附与溶液的表面张力及溶液的浓度间的关系式Γ =T c RT c ⎪⎭⎫ ⎝⎛-∂∂σ 当()∂σ∂c T <0时,Γ >0,称为正吸附。
反之,()∂σ∂cT >0时,Γ <0,称为负吸附。
正丁醇溶液浓度极小时,溶质分子平躺在溶液表面上,当浓度增加到一定程度时,被吸附了的表面活性物质分子占据了所有表面形成了单分子的饱和吸附层。
实验二十一溶液中的吸附作用和表面
张力的测定
课程名称物理化学实验实验名称溶液中的吸附作用和表面张力的测定姓名学号专业班级实验日期2011.9.14
一、实验目的
1.了解表面张力的性质,表面能的意义以及表面张力和吸
附的关系。
2.掌握一种测定表面张力的方法——最大气泡法。
二、实验原理
1.Γ=﹣c/RT×(dσ/d c)T(以σ~c作图→以求出Γ)
2.Γ=Γ∞×Kc/(1+Kc)
c/Γ=c/Γ∞+1/KΓ∞(以c/Γ~c作图→以
求出Γ∞)
3.S。
=1/Γ∞N A (以求出S。
)
4.σ=K×ΔP
三、注意事项
1.测定用的毛细管一定要洗干净,否则气泡可能不能连续
稳定的流过,而使压差计不稳定,如发生此种现象,毛细管应重洗。
2.毛细管一定要保持垂直,管口刚好插到与液面接触。
3. 在数字式微压差测量仪上,应读出气泡单个逸出时的最大压力差。
四、 数据记录
五、 数据处理 1.在25℃时σ
H2O
=71.97×10﹣
3
N /m ΔP =366Pa ∴仪器常数K 为∶K =H 2O
P
σ∆=
3
71.9710N m
366Pa
⨯﹣/=1.97×10
﹣4
2. 由σ=K ·P ∆得∶
3.溶液的表面张力σ与浓度c的关系曲线
4.可求出各点的切线斜率(dσ)T﹐还可根据Γ=﹣c(dσ)T
5.c Γ
与c 的关系图
6.直线斜率为 9.8×104 L /(m ·mol )
1∞
Γ=9.8×10
4
m 2/mol
∴Γ∞=1.02×10﹣
5mol /m 2
7.S 0=
·1N
∞Γ=1.58×10
﹣19
m ²
六、思考题
1.用最大气泡法测定表面张力时为什么要读最大压力差? 答∶若抽气速度太快,气泡的形成与逸出速度快而不稳定,亦使U 型压力计中的酒精所处的位置相对不稳定,不易观察出其最高点而引起的较大的误差。
2.
哪些因素影响表面张力测定结果?如何减小以致消除这
些实验的影响?
答∶温度、气泡逸出速度、毛细管是否干净及毛细管的尖端是否与液面相切会影响测定结果。
减少或消除这些因素引起误差的措施是∶恒温、控制气泡逸出速率恒定、毛细管干净以及毛细管与液面相切。
3.滴液漏斗放水的速度对实验结果有没有影响?为什么?答∶有影响,滴液漏斗放水的速度会影响气泡逸出的速度而气泡逸出的速度对实验结果有影响。