打印 概率
- 格式:doc
- 大小:532.60 KB
- 文档页数:14
第二十五章随机事件的概率25.1.1什么是概率教学目标:<-)知识与技能1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值2.在具体情境中了解概率的意义〈二〉教学思考让学生经历猜想试验一收集数据一分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.〈三〉解决问题在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.〈四〉情感态度与价值观在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.【教学重点】在具体情境中了解概率意义.【教学难点】对频率与概率关系的初步理解【教具准备】壹元硬币数枚、图钉数枚、多媒体课件【教学过程】一、创设情境,引出问题教师提出问题:周末后体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.学生:抓阉、抽签、猜拳、投硬币,……教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阉、投硬币)追问,为什么要用抓阉、投硬币的方法呢?由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大在学生讨论发言后,教师评价归纳.用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定''正而朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.质疑:那么,这种直觉是否真的是正确的呢?引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.说明:现实中不确定现象是大量存在的,新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.二、动手实践,合作探究3.教师布置试验任务.(1)明确规则.把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.(2)明确任务,每组掷币50次,以实事求是的态度,认真统计'‘正面朝上”的频数及“正面朝上” 的频率,整理试验的数据,并记录下来..2.教师巡视学生分组试验情况.注意:(1).观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.(2).要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.3.各组汇报实验结果.由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因.在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性,引导他们小组合作,进一步探究.解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作.4.全班交流.把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上Pm 要求填好25-2.并根据所整理的数据,在25. 1-1图上标注出对应的点,完成统计图.表m正面向上的频率10.55。
《概率初步1》复习学案姓名:一.课堂目标:弄清概率的意义,会用列举法或树状图求随机事件的概率。
二.课堂检测:(一)、选择填空题(每题7分,共63分)1、(杭州)“a是实数,|a|≥0”这一事件是()A、必然事件B、不确定事件C、不可能事件D、随机事件2、(河池)下列说法中,完全正确的是()A、打开电视机,正在转播足球比赛B、抛掷一枚均匀的硬币,正面一定朝上C、三条任意长的线段都可以组成一个三角形D、从1,2,3,4,5这五个数字中任取一个数,取到奇数的可能性较大3、(赤峰)某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为.小张这期间在该超市买商品获得了三次抽奖机会,则小张()A、能中奖一次B、能中奖两次C、至少能中奖一次D、中奖次数不能确定4、(自贡)小球从A点入口往下落,在每个交叉口都有向左向右的可能,且可能性相等.则小球最终从E点落出的概率为()A、B、C、D5、(遵义)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A、B、C、D、6、(2010嘉兴)若自然数n使得三个数的加法运算“n+(n+1)+(n+2)”产生进位现象,则称n为“连加进位数”.例如:2不是“连加进位数”,因为2+3+4=9不产生进位现象;4是“连加进位数”,因为4+5+6=15产生进位现象;51是“连加进位数”,因为51+52+63=156产生进位现象.如果从0,1,2,…,99这100个自然数中任取一个数,那么取到“连加进位数”的概率是()A、0.88B、0.89C、0.90D、0.917、(定西)如图,在一个正方形围栏中均匀散布着许多米粒,正方形内画有一个圆.一只小鸡在围栏内啄食,则“小鸡正在圆圈内”啄食的概率为。
8、(丽水)玉树地震灾区小朋友卓玛从某地捐赠的2种不同款式的书包和2种不同款式的文具盒中,分别取一个书包和一个文具盒进行款式搭配,则不同搭配的可能种。
第一讲 随机事件与概率考试要求1. 了解样本空间的概念, 理解随机事件的概念, 掌握事件的关系与运算.2. 理解概率、条件概率的概念, 掌握概率的基本性质, 会计算古典型概率和几何型概率, 掌握概率的加法公式、减法公式、乘法公式、全概率公式, 以及贝叶斯公式.3. 理解事件独立性的概念, 掌握用事件独立性进行概率计算;理解独立重复试验的概率, 掌握计算有关事件概率的方法. 一、古典概型与几何概型1.试验,样本空间与事件.2.古典概型:设样本空间Ω为一个有限集,且每个样本点的出现具有等可能性,则 基本事件总数中有利事件数A A P =)(3.几何概型:设Ω为欧氏空间中的一个有界区域, 样本点的出现具有等可能性,则、体积)Ω的度量(长度、面积、体积)A的度量(长度、面积=)(A P【例1】 一个盒中有4个黄球, 5个白球, 现按下列三种方式从中任取3个球, 试求取出的球中有2个黄球, 1 个白球的概率. (1) 一次取3个;(2) 一次取1 个, 取后不放回; (3) 一次取1个, 取后放回.【例2 】从 (0,1) 中随机地取两个数,试求下列概率: (1) 两数之和小于1.2; (2) 两数之和小于1且其积小于163. 一、 事件的关系与概率的性质1. 事件之间的关系与运算律(与集合对应), 其中特别重要的关系有: (1) A 与B 互斥(互不相容) ⇔ Φ=AB (2) A 与B 互逆(对立事件) ⇔ Φ=AB ,Ω=B A(3) A 与B 相互独立⇔ P (AB )=P (A )P (B ).⇔ P (B|A )=P (B ) (P (A )>0). ⇔(|)(|)1P B A P B A += (0<P (A )<1).⇔P (B|A ) =P (B|A ) ( 0 < P (A ) < 1 )注: 若(0<P (B )<1),则,A B 独立⇔ P (A|B )=P (A ) (P (B )>0)⇔ 1)|()|(=+B A P B A P (0<P (B )<1). ⇔ P (A |B )=P (A |B ) (0<P (B )<1) ⇔ P (A |B )=P (A |B ) (0<P (B )<1)(4) A, B, C 两两独立 ⇔ P (AB )=P (A )P (B );P (BC )=P (B )P (C ); P (AC )=P (A )P (C ).(5) A, B, C 相互独立 ⇔ P (AB )=P (A )P (B );P (BC )=P (B )P (C ); P (AC )=P (A )P (C );P (ABC )=P (A )P (B )P (C ).2. 重要公式 (1) )(1)(A P A P -=(2))()()(AB P A P B A P -=-(3) )()()()(AB P B P A P B A P -+=)()()()()()()()(ABC P AC P BC P AB P C P B P A P C B A P +---++=(4) 若A 1, A 2,…,A n 两两互斥, 则∑===ni i ni iA P AP 11)()(.(5) 若A 21,A , …, A n 相互独立, 则 )(1)(11in i n i iA P A P ∏==-= )](1[11ini A P ∏=--=.∏===ni i n i i A P A P 11)()( .(6) 条件概率公式: )()()|(A P AB P A B P =(P (A )>0)【例3】 已知(A +B )(B A +)+B A B A +++=C, 且P ( C )=31, 试求P (B ). 【例4】 设两两相互独立的三事件A, B, C 满足条件: ABC =Φ, P (A )=P (B )=P (C )<21,且已知9()16P A B C =, 则P (A )= .【例5】 设三个事件A 、B 、C 满足P (AB )=P (ABC ), 且0<P (C )<1, 则 【 】(A )P (A B|C )=P (A|C )+ P (B|C ). (B )P (A B|C )=P (AB ).(C )P (AB|C )=P (A|C )+ P (B|C ). (D )P (AB|C )=P (AB ).【例6】 设事件A, B, C 满足条件: P (AB )=P (AC )=P (BC )18=, P (ABC )=116, 则事件A, B, C 中至多一个发生的概率为 .【例7】 设事件A, B 满足 P (B| A )=1则【 】(A ) A 为必然事件. (B ) P (B|A )=0.(C ) A B ⊃. (D ) A B ⊂.【例8】 设A, B, C 为三个相互独立的事件, 且0<P (C )<1, 则不独立的事件为 【 】 (A )B A +与C . (B ) AC 与C(C )B A -与C (D ) AB 与C【例9】 设A ,B 为任意两个事件,试证P (A )P (B )-P (AB ) ≤ P (A -B ) P (B -A ) ≤41. 三、乘法公式,全概率公式,Bayes 公式与二项概率公式 1. 乘法公式:).|()|()|()()().|()()|()()(1212131212121212121-===n n n A A A A P A A A P A A P A P A A A P A A P A P A A P A P A A P2. 全概率公式:11()(|)(),,,.i i i j i i i P B P B A P A A A i j A ∞∞====Φ≠=Ω∑ 3.Bayes 公式:11(|)()(|),,,.(|)()j j j i j i i iii P B A P A P A B A i j A P B A P A ∞∞====Φ≠=Ω∑ A 4.二项概率公式:()(1),0,1,2,,.k kn k n n P k C P P k n -=-= ,【例10】 10件产品中有4件次品, 6件正品, 现从中任取2件, 若已知其中有一件为次品,试求另一件也为次品的概率.【例11】设10件产品中有3件次品, 7件正品, 现每次从中任取一件, 取后不放回.试求下列事件的概率. (1) 第三次取得次品; (2) 第三次才取得次品;(3) 已知前两次没有取得次品, 第三次取得次品; (4) 不超过三次取到次品;【例12】 甲, 乙两人对同一目标进行射击,命中率分别为0.6和0.5, 试在下列两种情形下, 分别求事件“已知目标被命中,它是甲射中”的概率.(1)在甲, 乙两人中随机地挑选一人, 由他射击一次; ( 2)甲, 乙两人独立地各射击一次.【例13】设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份,7份和5份. 随机地取一个地区的报名表,从中先后任意抽出两份. (1) 求先抽到的一份是女生表的概率p;(2)已知后抽到的一份是男生表,求先抽到的一份是女生表的概率q .第二讲 随机变量及其分布考试要求1. 理解随机变量及其概率分布的概念.理解分布函数(()()F x P X x =≤) 的概念及性质.会计算与随机变量有关的事件的概率.2. 理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松(Poisson )分布及其应用.3. 了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4. 理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布2(,)N μσ、指数分布及其应用,其中参数为(0)λλ>的指数分布的概率密度为,0,()0,0.x e x f x x λλ-⎧>=⎨≤⎩5. 会求随机变量函数的分布. 一、分布函数1.随机变量:定义在样本空间上,取值于实数的函数称为随机变量. 2.分布函数:∞+-∞=<<),≤ ()(x x X P x FF (x )为分布函数 ⇔(1) 0≤F (x ) ≤1(2) F (x )单调不减 (3) 右连续F (x+0)=F (x ) (4)1)(,0)(=+∞=-∞F F3.离散型随机变量与连续型随机变量(1) 离散型随机变量∑∞=====1i 10,≥,,,2,1,)(i i i i p p n i p x X P分布函数为阶梯跳跃函数.(2) 连续型随机变量⎰∞-=xtt f x F d )( )(f (x )为概率密度 ⇔ (1) f (x )≥0, (2) ⎰+∞∞- f (x )1d =x⎰=≤≤=<<bax f b X a P b X a P )()()(4.几点注意【 例1 】 设随机变量X 的分布函数为0,1,57(),11,16161, 1.x F x x x x <-⎧⎪⎪=+-≤<⎨⎪≥⎪⎩则2(1)P X== .【 例2 】 设随机变量X 的密度函数为 f (x ), 且 f (-x ) = f (x ), 记()X F x 和()X F x -分别是X 和X -的分布函数, 则对任意实数x 有 【 】 (A )()()X X F x F x -=. (B )()()X X F x F x -=-.(C )()1()X X F x F x -=-.(D )()2()1X X F x F x -=-.【 例3 】 设 随机变量X 服从参数为0λ>的指数分布, 试求随机变量 Y= min { X, 2 } 的分布函数【 例4 】设某个系统由 6 个相同的元件经两两串联再并联而成, 且各元件工作状态相互独立 每个元件正常工作时间服从参数为 0λ>的指数分布, 试求系统正常工作的时间 T 的概率分布.【 例5】设随机变量X 的概率密度为⎩⎨⎧<-=.,0,1|||,|1)(其他x x x f 试求(1)X 的分布函数)(x F ; (2)概率)412(<<-X P .二、 常见的一维分布(1) 0-1分布:1,0,)1()(1 =-==-k p p k XP k k .(2) 二项分布n k p p C k X P p n B k n k k n ,,1,0,)1()(:),( =-==- .(3) Poisson 分布)(λP : ,2,1,0,0>,e !)(===-k k k XP k λλλ.(4) 均匀分布⎪⎩⎪⎨⎧-=.,<<1)(:),(其他0,, b x a a b x f b a U(5) 正态分布N (μ,σ2):0,,eπ21)(222)(+∞<<∞->=--μσσσμ x x f(6) 指数分布⎩⎨⎧=-. ,0 >0,,e )(:)(其他x x f E x λλλ >0λ.(7) 几何分布.2110,)1()(:)(1 ,,k ,<p<p p k XP p G k =-==- (8) 超几何分布H (N,M,n ): },min{,,1,0,)(M n k C C C k X P nNkn M N k M ===-- . 【例6】某人向同一目标独立重复射击,每次射击命中目标的概率为p (0<p<1), 则此人第4次射击恰好第2次命中目标的概率为【 】 (A ) 2)1(3p p -.(B ) 2)1(6p p -.(C ) 22)1(3p p-. (D ) 22)1(6p p-.【例7】 设X ~N (μ, σ2), 则 P ( X ≤1+μ) 【 】 (A ) 随μ的增大而增大 . (B ) 随μ的增大而减小. (C ) 随σ的增大而不变 . (D ) 随σ的增大而减小. 【例8】 设X ~N (μ, σ2), ()F x 为其分布函数,0μ<,则对于任意实数a ,有 【 】(A ) ()() 1.F a F a -+> (B ) ()() 1.F a F a -+= (C ) ()() 1.F a F a -+< (D ) 1()().2F a F a μμ-++=【例9】 甲袋中有1个黑球,2个白球,乙袋中有3个白球,每次从两袋中各任取一球交换放入另一袋中,试求交换n 次后,黑球仍在甲袋中的概率.三、 随机变量函数的分布: 1. 离散的情形2. 连续的情形3. 一般的情形【例10】 设随机变量X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-=.,0,20,41,01,21)(其他x x x f X令),(,2y x F X Y=为二维随机变量(X, Y )的分布函数.(Ⅰ) 求Y 的概率密度)(y f Y ;(Ⅱ) )4,21(-F . 第三讲 多维随机变量及其分布考试要求1. 理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度.会求与二维随机变量相关事件的概率.2. 理解随机变量的独立性及不相关的概念,掌握随机变量相互独立的条件.3. 掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义 .4. 会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布. 一、 各种分布与随机变量的独立性 1. 各种分布(1)一般二维随机变量 F (x, y )=P{ X ≤ x, Y ≤ y }, x ∈ (−∞, +∞), y ∈ (−∞, +∞)的性质F (x, y )为联合分布函数 ⇔ 1) 0 ≤F (x, y )≤1 , ∀x ∈ (−∞, +∞),, y ∈ (−∞, +∞);2) F (−∞, y )= F (x, −∞)=0, F (+∞,+∞)=1;3) F (x, y )关于x, y 均为单调不减函数; 4) F (x, y )关于x, y 均分别右连续.(2)二维离散型随机变量的联合概率分布、边缘分布、条件分布联合概率分布律 P{X = x i , Y = y j } = p i j , i, j =1, 2 ,⋅⋅⋅ , p i j ≥ 0,1=∑∑ijji p.边缘分布律 p i • = P{X = x i }=∑jji p, i =1, 2 ,⋅⋅⋅ ,p • j = P{ Y = y j }=∑iji p, j =1, 2 ,⋅⋅⋅ ,条件分布律 P{X = x i |Y = y j } =jj i p p •, P{ Y = y j | X = x i } =•i j i p p .二维连续型随机变量的联合概率密度、边缘密度和条件密度f (x, y )为联合概率密度 ⇔ 1︒ f (x, y )≥0,2︒1=⎰⎰∞+∞-∞+∞- ),(dxdy y x f .设( X, Y )~ f (x, y )则分布函数: ⎰⎰∞-∞-=xydxdy y x f y x F ),(),(;边缘概率密度:⎰∞+∞-= ),()(dy y x f x f X , ⎰∞+∞-= ),()(dx y x f x f Y .条件概率密度:)(),()|(|y f y x f y x f Y Y X =, )(),()|(|x f y x f x y f X X Y =.⎰⎰=∈Ddxdy y x f D Y X P ),(}),{(.),(),(yx y x F y x f ∂∂∂=22. 随机变量的独立性和相关性X 和Y 相互独立 ⇔ F (x, y )= F X (x )F Y (y );⇔ p i j = p i • ⨯ p • j (离散型)⇔ f (x, y )= f X (x )f Y (y ) (连续型)【注】1︒ X 与Y 独立, f (x ), g (x )为连续函数 ⇒ f (X )与g (Y )也独立. 2︒ 若X 1, ⋅⋅⋅⋅, X m , Y 1, ⋅⋅⋅⋅, Y n 相互独立, f , g 分别为m 元与 n 元连续函数 ⇒ f (X 1, ⋅⋅⋅⋅, X m )与g (Y 1, ⋅⋅⋅⋅, Y n )也独立. 3︒ 常数与任何随机变量独立.3. 常见的二维分布(1)二维均匀分布 (X, Y )~ U (D ), D 为一平面区域. 联合概率密度为⎪⎩⎪⎨⎧∈=.,.),(,)(),(其他01D y x D S y x f (2)二维正态分布 (X, Y )~ N (μ1 , μ2, σ12,σ22, ρ ), −∞ <μ1, μ2 < +∞, σ1>0, σ2 > 0, | ρ | <1. 联合概率密度为221121ρσπσϕ-=),(y x ⎥⎥⎦⎤⎢⎢⎣⎡-+------22222121212122121σμσσμμρσμρ)())(()()(y y x x e性质:( a ) X ~ N (μ1, σ12 ), Y ~ N (μ2, σ22) ( b ) X 与Y 相互独立 ⇔ ρX Y =0 , 即 X 与Y 不相关.( c ) C 1X+C 2Y ~ N (C 1 μ1+ C 2 μ2, C 12σ12+ C 22σ22+2C 1C 2 ρ σ1σ2 ). ( d ) X 关于Y=y 的条件分布为正态分布: )](),([22122111ρσμσσρμ--+y N 【 例1 】 设A ,B 为事件,且P (A )=41, P (B|A )=21, P (A|B )=12令 X =⎩⎨⎧否则发生若,0,1A , Y =⎩⎨⎧否则发生若,0B ,1(1) 试求(X, Y )的联合分布律; (2)计算Cov ( X, Y ); (3) 计算 22(2,43)Cov XY +.【 例2 】设随机变量X 与Y 相互独立,下表列出了二维随机变量(X, Y )联合分布律及关于X 和关于Y 的边缘分布律中的部分数值, 试将其余数值填入表中的空白处.【 例3 】设随机变量X 与Y 独立同分布, 且X 的概率分布为313221PX 记{}{}Y X V Y X U,m in ,,m ax ==.(I )求(U, V )的概率分布;(II )求(U, V )的协方差Cov (U, V ).【详解】(I )易知U, V 的可能取值均为: 1, 2. 且{}{}})1,m in ,1,(m ax )1,1(=====Y X Y X P V U P)1,1(===Y X P 94)1()1(====Y P X P , {}{}0})2,m in ,1,(m ax )2,1(======Y X Y X P V U P , {}{}})1,m in ,2,(m ax )1,2(=====Y X Y X P V U P)2,1()1,2(==+===Y X P Y X P)2()1()1()2(==+===Y P XP Y P X P 94=, {}{}})2,m in ,2,(m ax )2,2(=====Y X Y X P V U P)2()2()2,2(======Y P X P Y X P 91=, 故(U, V )的概率分布为:(II ) 9122941209411)(⨯⨯+⨯⨯++⨯⨯=UV E 916=, 而 914952941)(=⨯+⨯=U E , 910912981)(=⨯+⨯=V E . 故 814910914916)()()(),(=⨯-=-=V E U E UV E V U Cov . 【 例4】 设随机变量X 在区间(0, 1)上服从均匀分布, 在)10(<<=x x X 的条件下,随机变量Y 在区间),0(x 上服从均匀分布, 求(Ⅰ)随机变量X 和Y 的联合概率密度;(Ⅱ)Y 的概率密度; (Ⅲ)概率}1{>+Y XP .二、 二维(或两个)随机变量函数的分布 1.分布的可加性(1)若X~B (m, p ), Y~B (n, p ), 且X 与Y 相互独立,则 X+Y ~ B (m+n, p ). (2)若X~P (λ1), Y~P (λ2), 且X 与Y 相互独立,则 X+Y ~ P (λ1+λ2).(3)若X~N (211,μσ), Y~P (222,μσ), 且X 与Y 相互独立,则 X+Y ~ N (221212,μμσσ++).一般地,若X i ~N (2,i i μσ), i =1, 2, …, n, 且X 1,X 2,…,X n 相互独立,则Y=C 1X 1+C 2X 2+…+C n X n +C 仍服从正态分布,且此正态分布为2211(,),n ni i i i i i N C C Cμσ==+∑∑ 其中C 1,…,C n 为不全为零的常数.2. 两个随机变量函数的分布. 【例5】 设X 与Y 相互独立, 且~(1),~(2),X P Y P 则{max(,)0}______;P X Y ≠={min(,)0}__________.P X Y ≠=【 例6】 设X 与Y 相互独立, 其密度函数分别为:1,01,()X x f x <<⎧=⎨⎩0,其他. ,0,()y Y e y f x -⎧>=⎨⎩0,其他.求Z =2X +Y 的概率密度.【 例7】设二维随机变量(X, Y )的概率密度为2,01,01,(,)0,x y x y f x y --<<<<⎧=⎨⎩其它.(I )求{}Y X P 2>;(II )求Z =X+Y的概率密度)(z f Z .【详解】(I ){}Y X P 2>⎰⎰>=yx dxdy y x f 2),(⎰⎰--=12210)2(ydx y x dy 247=. (II )方法一: 先求Z 的分布函数: ⎰⎰≤+=≤+=zy x Z dxdy y x f Z Y X P z F ),()()(当z<0时, 0)(=z F Z ; 当10<≤z 时, ⎰⎰=1),()(D Z dxdy y x f z F ⎰⎰---=yz zdx y x dy 00)2(3231z z -=;当21<≤z 时, ⎰⎰-=2),(1)(D Z dxdy y x f z F ⎰⎰-----=111)2(1yz z dx y x dy3)2(311z --=; 当2≥z时, 1)(=z F Z .故Z =X+Y的概率密度)(z f Z =)(z F Z '⎪⎩⎪⎨⎧<≤-<<-=.,0,21,)2(,10,222其他z z z z z方法二:⎰∞+∞--=dx x z x f z f Z ),()(,⎩⎨⎧<-<<<---=-.,0,10,10),(2),(其他x z x x z x x z x f ⎩⎨⎧+<<<<-=.,0,1,10,2其他x z x x z 当z ≤0 或z ≥ 2时, 0)(=z f Z ;当01z <<时,⎰-=z Z dx z z f 0)2()()2(z z -=;当21<≤z 时, ⎰--=11)2()(z Z dx z z f 2)2(z -=;故Z =X+Y的概率密度)(z f Z ⎪⎩⎪⎨⎧<≤-<<-=.,0,21,)2(,10,222其他z z z z z【例8】 设随机变量X 与Y 相互独立, X 有密度函数f (x ), Y 的分布律为 ()i i P Y a p ==, i =1,2. 试求Z =X +Y 的概率分布.第四讲 数字特征与极限定理考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念, 会运用数字特征的基本性质, 并掌握常用分布的数字特征.2.会根据随机变量X 的概率分布求其函数)(X g 的数学期望)(X Eg ;会根据随机变量X 和Y 的联合概率分布求其函数),(Y X g 的数学期望),(Y X Eg .3.了解切比雪夫不等式.4.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量的大数定律)5.了解棣莫弗—拉普拉斯定理(二项分布以正态分布为极限分布)和列维—林德伯格定理(独立同分布的中心极限定理);(经济类还要求)会用相关定理近似计算有关随机事件的概率 一、 数学期望与方差(标准差) 1. 定义(计算公式)离散型{}i i p x X P ==, ∑=iii px X E )(连续型)(~x f X , xx xf X E d )()(⎰+∞∞-=方差:[]222)()())(()(X E X E X E X E X D -=-=标准差:)(X D ,2. 期望的性质:1° )())((,)(X E X E E C C E == 2° )()()(2121Y E C X E C Y C X C E +=+ 3° )()()(Y E X E XY E ,Y X =则独立与若4° [])()(≤)(222Y E X E XY E3. 方差的性质:1° 0))((,0))((,0)(===X D D X E D C D 2°)()()(Y D X D Y X D Y X +=±相互独立,则与3° )()(2121X D C C X C D =+ 4° 一般有 ),Cov(2)()()(Y X Y D X D Y XD ±+=±)()(2)()(Y D X D Y D X D ρ±+=5°2()()C D X E X <-, )(X E C ≠【例1】设试验成功的概率为43, 失败的概率为41, 独立重复试验直到成功两次为止. 试求试验次数的数学期望. 【例2】 n 片钥匙中只有一片能打开房门, 现从中任取一片去试开房门, 直到打开为止. 试在下列两种情况下分别求试开次数的数学期望与方差: (1)试开过的钥匙即被除去; (2)试开过的钥匙重新放回.【例3】 设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=.,0,0,2cos 21)(其他πx x x f 对X 独立地重复观察4次, 用Y 表示观察值大于3π的次数, 求2Y 的数学期望.【例4】 设有20人在某11层楼的底层乘电梯上楼, 电梯在中途只下不上, 每个乘客在哪一层(2-11层)下是等可能的, 且乘客之间相互独立, 试求电梯须停次数的数学期望. 二、随机变量函数的期望(或方差) 1、一维的情形 )(X g Y =离散型:{}i i P Xx p == , ∑=ii ipx g Y E )()(连续型:~()X f x x x f x g Y E d )()()(⎰+∞∞-=2、二维的情形 ),(Y X g Z =离散型{}iji i p y Y x X P Y X ===,~),(,∑∑=jij jiipy x g Z E ),()(连续型),(~),(y x f Y X , y x y x f y x g Z E d d ),(),()(⎰⎰+∞∞-+∞∞-=【例5】 设X 与Y 独立且均服从N (0,1),求Z =22Y X + 的数学期望与方差.【例6】设两个随机变量X 与Y 相互独立且均服从N (0,21), 试求Z =|X -Y |的数学期望与方差. 三 、协方差,相关系数与随机变量的矩 1、重要公式与概念:协方差 []))()((()Cov(Y E Y X E X E X,Y --=相关系数 )()()Cov(Y D X D X,Y XY =ρ)(k X E k 阶原点矩[]kX E X E k ))((- 阶中心矩2、性质:1°),(Cov ),(Cov X Y Y X =2° ),(Cov ),(Cov Y X ab bY aX = 3° ),(Cov ),(Cov ),(Cov 2121Y X Y X Y X X +=+4° |(,)|1X Y ρ≤5° 1)(1),(=+=⇔=b aX Y P Y X ρ )>0(a 1)(1),(=+=⇔-=b aX Y P Y X ρ )<0(a 3、下面5个条件互为充要条件:(1)0),(=Y X ρ(2)0)Cov(=X,Y (3))()()(Y E X E XY E = (4))()()(Y D X D Y X D +=+ (5))()()(Y D X D Y X D +=- 【例7】设)2(,,,21>n X X X n 为独立同分布的随机变量, 且均服从)1,0(N , 记∑==ni iX n X 11,.,,2,1,n i X X Y i i =-= 求:(I ) i Y 的方差n iY D i ,,2,1),( =;(II ) 1Y 与n Y 的协方差),(1n Y Y Cov ; (III ) }.0{1≤+n Y Y P四、极限定理1. 切比雪夫不等式{}{}()()|()|,|()|<1-22D X D X P XE X P X E X εεεε-≥≤-≥或2. 大数定律3. Poisson 定理4. 中心极限定理列维—林德伯格定理: 设随机变量X 1,X 2,…,X n ,…相互独立同分布, 且2(),(),i i E X D X μσ== 1,2,,,i n =, 则对任意正数x ,有2-2lim d n t i x n X n P x t μ-∞→∞⎧⎫-⎪⎪⎪≤=⎬⎪⎪⎪⎩⎭∑⎰ 棣莫弗—拉普拉斯定理: 设~(,),nB n p η(即X 1,X 2,…,X n,…相互独立, 同服从0一1分布) 则有22lim d t x n P x t --∞→∞⎧⎫⎪≤=⎬⎪⎭⎰. 【例8】 银行为支付某日即将到期的债券须准备一笔现金,已知这批债券共发放了500张,每张须付本息1000元,设持券人(1人1券)到期到银行领取本息的概率为0.4.问银行于该日应准备多少现金才能以99.9%的把握满足客户的兑换.【分析】 若X 为该日到银行领取本息的总人数,则所需现金为1000X ,设银行该日应准备现金x 元.为使银行能以99.9%的把握满足客户的兑换,则 P (1000X ≤x )≥0.999.【详解】 设X 为该日到银行领取本息的总人数,则X~B (500,0.4)所需支付现金为1000X ,为使银行能以99.9%的把握满足客户的兑换,设银行该日应准备现金x 元,则 P (1000 X ≤x )≥0.999.由棣莫弗—拉普拉斯中心极限定理知:(1000)()1000x P X x P X ≤=≤5000.4x P ⎛⎫-⨯ ⎪=≤=≤0.999(3.1).ΦΦ≈≥=即3.1,≥得 x ≥ 233958.798.因此银行于该日应准备234000元现金才能以99.9%的把握满足客户的兑换.第五讲 数理统计考试要求1. 理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念.其中样本方差定义为.)(11212X X n S i ni --=∑=2. 了解2χ分布、t 分布和F 分布的概念及性质,了解分位数的概念并会查表计算. 3. 了解正态总体的常用抽样分布.4. 理解经验分布函数的概念和性质, 会根据样本值求经验分布函数.5. 理解参数的点估计、估计量与估计值的概念.6. 掌握矩估计法(一阶、二阶矩)和最大似然的估计法.7. 了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.8. 理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间. 9. 理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的 两类错误.10. 了解单个及两个正态总体的均值和方差的假设检验 一、样本与抽样分布1. 总体、个体与简单随机样本:2. 常用统计量:1° 样本均值 i ni X nX ∑==112° 样本方差 212)(11X X n S i ni --=∑=3° 样本标准差: S =4° 样本k 阶原点矩 11,1,2,n kk i i A X k n ===∑5° 样本k 阶中心矩 11(),1,2,n kk i i B X X k n ==-=∑3.分位数 4. 重要抽样分布(1)分布2χ (2) t 分布 (3) F 分布5. 正态总体的常用抽样分布:22,,,(,),n X X X N μσ1设为来自正态总体的样本11nii X X n ==∑,2211()1ni i S X X n ==--∑, 则 (1)2~,~(0,1).X N N n σμ⎛⎫ ⎪⎝⎭ (2)222221(1)1()~(1).ni i n S X X n χσσ=-=--∑(3)22211()~().ni i X n μχσ=-∑(4) ~(1).X t n - (5)X 与2S 相互独立, 且 μ=)(X E , 22)(σ=S E , nX D 2)(σ=.【例1】 设总体2~(,),XN μσ设12,,,n X X X 是来自总体X 的一个样本, 且22111,()nni nii i X X S XX n====-∑∑,求21()n E X S .【例2】 设总体2~(,),X N μσ 设12,,,nX X X 是取自总体X 的一个样本, 且221111,()1nni i i i X X S X X nn ====--∑∑,则 2()_________D S=.【例3】设随机变量~()(1),X t n n >, 则 21~________Y X =【例4】 设总体X 服从正态分布)2,0(2N , 而1521,,,X X X 是来自总体X 的简单随机样本, 求随机变量)(221521121021X X X X Y ++++= 的分布. 【例5】 设总体2~(,),X N μσ 设121,,,,n n X X X X +是来自总体X 的一个样本, 且*221111,()()nni ii i X X S XX nn====-∑∑,试求统计量的分布. 二、参数估计1. 矩估计2. 最大似然估计3. 区间估计4. 估计量的评选标准 【例6】设总体12~(,)XU θθ,n X X X ,,,21 为来自总体X 的样本,试求12,θθ的矩估计和最大似然估计.【例7】设总体X 的概率密度为⎪⎩⎪⎨⎧<≤-<<=.,0,21,1,10,),(其他x x x f θθθ其中θ是未知参数)10(<<θ, n X X X ,,2,1 为来自总体X 的简单随机样本, 记N 为样本值n x x x ,,2,1 中小于1的个数, 求:(1)θ的矩估计;(2) θ的最大似然估计.【例8】设总体X 的概率密度为36(),0,()0,xx x f x θθθ⎧-<<⎪=⎨⎪⎩其他. n X X X ,,,21 为来自X 的简单随机样本,(1) 求θ的矩估计量ˆθ; (2) 判断θ的无偏性; (3) 判断θ的一致性. 三、假设检验1. 假设检验的基本思想:对总体分布中的未知参数作出某种假设,根据样本在假设为真的前提下构造一个小概率事件,基于“小概率事件”在一次试验中几乎不可能发生而对假设作出拒绝或接受.2. 单个正态总体均值和方差的假设检验.3. 假设检验两类错误:第一类错误:原假设0H 为真,但拒绝了0H .第二类错误;原假设0H 为假,但接受到了0H .。
初三概率练习题可以打印在初三数学学习中,概率是一个重要的概念。
通过概率的学习,学生可以掌握随机事件的发生规律,从而更好地解决实际问题。
为了帮助初三学生巩固概率知识,下面提供了一些概率练习题,供学生打印使用。
1. 单选题:一个标准扑克牌由52张牌组成,其中有4种花色(红桃、方块、梅花和黑桃),每种花色有13张牌(A、2、3、4、5、6、7、8、9、10、J、Q、K)。
若从一副标准扑克牌中随机抽取一张牌,以下哪个事件的概率最大?A. 抽到黑桃B. 抽到红桃C. 抽到梅花D. 抽到方块2. 多选题:某公司的员工有男性和女性两种性别,员工总数为100人,其中有30人是女性。
现从该公司中随机选取一名员工,以下哪些事件是互斥事件?(可多选)A. 选到女性员工B. 选到男性员工C. 选到30岁以下的员工D. 选到40岁以上的员工3. 判断题:将一个骰子投掷三次,每次的结果是独立的。
以下哪个事件是不可能事件?A. 第一次投掷得到1点,第二次投掷得到2点,第三次投掷得到3点B. 第一次投掷得到6点,第二次投掷得到6点,第三次投掷得到6点C. 第一次投掷得到4点,第二次投掷得到5点,第三次投掷得到6点D. 第一次投掷得到1点,第二次投掷得到1点,第三次投掷得到1点4. 解答题:某班级有60名学生,其中有30名男生和30名女生。
现从班级中随机选取2名学生,求以下事件的概率:A. 选到两名男生B. 选到一名男生和一名女生C. 选到两名女生5. 应用题:某班级有40名学生,其中有20名喜欢篮球,15名喜欢足球,5名既不喜欢篮球也不喜欢足球。
现从班级中随机选取一名学生,求以下事件的概率:A. 选到一名喜欢篮球的学生B. 选到一名既不喜欢篮球也不喜欢足球的学生C. 选到一名喜欢篮球或足球的学生以上是一些初三概率练习题,希望能够帮助同学们巩固概率知识。
你可以通过打印这些练习题,并根据题目要求进行解答,检验自己的学习成果。
同时,也可以将这些题目作为小组活动或课堂讨论的素材,与同学们一起合作解答。
3D打印中常见的打印时间过长问题解决方法3D打印技术在近年来得到了广泛的应用和发展,它不仅可以制造各种复杂的零件和产品,而且还能够实现个性化定制。
然而,对于许多使用3D打印技术的人来说,一个常见的问题是打印时间过长。
本文将探讨一些解决这一问题的方法。
首先,选择合适的打印参数是缩短打印时间的关键。
在进行3D打印之前,我们需要根据打印对象的大小、复杂程度和所需质量来调整打印参数。
例如,我们可以通过降低打印层厚度来增加打印精度,但这也会导致打印时间的增加。
因此,我们需要在精度和时间之间进行权衡,选择适当的参数。
其次,合理设计模型也可以减少打印时间。
在进行3D建模时,我们应该尽量减少模型的复杂度和多余的细节。
过于复杂的模型不仅会增加打印时间,还可能导致打印失败。
因此,我们应该尽量简化模型,去除不必要的细节,使其更易于打印。
另外,使用合适的打印材料也能够缩短打印时间。
不同的打印材料具有不同的打印速度和特性。
一些材料打印速度较快,而另一些材料则需要更长的时间来完成打印。
因此,在选择打印材料时,我们应该根据需求和时间的权衡来做出选择。
此外,合理规划打印顺序也是缩短打印时间的一种方法。
对于复杂的模型,我们可以将其分解为多个部分,分别进行打印。
通过合理规划打印顺序,可以减少打印头的移动距离和打印时间。
同时,我们还可以通过合并一些小零件来减少打印时间。
例如,如果我们需要打印多个相同的小零件,可以将它们合并为一个大的零件,一次性进行打印,这样可以节省很多时间。
另一个有效的方法是使用更快的打印机。
随着技术的发展,现在市场上有许多速度更快的3D打印机。
这些打印机具有更高的打印速度和更快的热床加热速度,可以大大缩短打印时间。
因此,如果我们经常需要进行大批量的3D打印,购买一台更快的打印机是一个明智的选择。
最后,合理利用3D打印的预处理和后处理技术也可以减少打印时间。
在进行打印之前,我们可以使用预处理软件对模型进行修复、优化和切片。
第十章 概率与统计初步第1节 计数原理一、分类计数原理(加法原理)完成一件事,有n 类方式。
第一类方式有1k 种方法,第2类方式有2k ,...第n 类方式有n k 种方法,那么完成这件事的方法共有n k k k N +⋅⋅⋅++=21(种)二、分步计数原理(乘法原理)完成一件事,有n 个步骤,完成第1步有1k 种方法,完成第2步方式有2k ,...完成第n 步方式有n k 种方法,那么完成这件事的方法共有n k k k N •⋅⋅⋅••=21(种)第2节 随机事件三、事件随机事件:可能发生,可能不发生(表示:A,B,C ) 必然事件:一定发生(表示:Ω) 不可能事件:一定不发生(表示:Φ)举例说明生活中哪些是随机事件,哪些是必然事件,哪些是不可能事件。
事件的描述:加大括号 A={抛掷一枚硬币,出现正面向上}任意抛掷一颗骰子,观察掷出的点数。
事件A={点数是1},B={点数是2}.C={点数不超过2}之间存在着什么联系呢?基本事件:不能再分的最简单事件 复合事件:基本事件组成的事件 二、概率回忆频率的概念,频数:出现的次数总数频数频率=举例:抛掷一枚硬币25次,出现13次正面向上,则正面向上的频率为2513;大量重复地抛一枚硬币,发现事件A 发生的频率稳定在21,事件A 发生的概率为21概率:在大量重复试验中,事件发生的频率的稳定值记为()A P 。
频率与概率的区别:1、频率是试验中的近似值,概率是理论上的准确值;2、概率是频率在大量试验中的稳定值。
三、事件的概率的性质1.对于任意事件A ,有()10≤≤A P2.必然事件的概率为1,()1=ΩP ;3.不可能事件的概率为0,();0=ΦP第3节 古典概型一、古典概型 满足(1)有限性:基本事件有有限个;(2)等可能性:每个基本事件发生的可能性相等。
的试验称为古典概型。
举例:1.在圆内随机找一点,如果找出的每个点都是等可能的,这是古典概型吗? 分析:满足等可能性不满足有限性2.在射击训练中,结果有“命中10环”,“命中9环”,“命中8环”,“命中7环”,“命中6环”,“命中5环”,“不中环”,你认为这是古典概型吗? 分析:满足有限性不满足等可能性。
stata中binomialp代码Stata中的binomialp代码在统计分析领域中,二项分布经常被用来表示在一系列独立的伯努利试验中成功的次数。
对于使用Stata进行数据分析的研究者和分析师来说,了解如何使用Stata中的binomialp代码是非常重要的。
binomialp代码是一个用于计算二项分布累积概率的函数。
本文将介绍binomialp代码的基本用法和相关细节。
binomialp代码的格式如下:binomialp(x,n,p)该代码使用三个参数来计算二项分布的累积概率。
其中,x表示成功次数,n表示总试验次数,p表示单次试验成功的概率。
在Stata中,binomialp代码返回的结果是累积概率,即成功次数小于等于x的概率。
下面通过一个实例来说明如何使用binomialp代码。
假设有一个样本,其中总共进行了20次伯努利试验,成功的次数是10次。
我们要计算成功次数小于等于10的概率。
首先,打开Stata软件并加载所需数据。
然后,输入以下命令进行计算:. scalar prob = binomialp(10, 20, 0.5)在这个例子中,我们使用binomialp代码计算成功次数小于等于10的概率。
参数x设置为10,表示成功次数小于等于10;参数n设置为20,表示总试验次数为20;参数p设置为0.5,表示单次试验成功的概率为0.5。
计算完成后,将结果存储在一个标量“prob”中。
可以通过以下命令输出结果:. di prob在Stata中,di命令用于打印结果。
运行以上命令后,Stata将输出成功次数小于等于10的概率。
除了计算累积概率,binomialp代码还可以用来计算单个概率。
如果我们想要计算成功次数等于10的概率,我们可以使用binomialp代码,并将参数x设置为10。
例如:. scalar prob_single = binomialp(10, 20, 0.5) - binomialp(9, 20, 0.5)在这个例子中,我们首先计算成功次数小于等于10的概率,然后通过减去成功次数小于等于9的概率来得到成功次数等于10的概率。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载概率论的定义以及公式地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容§2 随机事件的概率,古典概型与概率的加法公式2000/7/31概率的统计定义:1.频率:随机事件在一次具体的试验是否发生,虽然不能预先知道,但是,当大量重复同一试验时,随机现象却呈现出某种规律, 即所谓统计规律性.如:历史上有人作过成千上万次投掷硬币,下表列出他们的试验记录:2.随机事件1。
随机事件及其概率2。
古典概型容易看出,投掷次数越多正面向上的频率越接近0.5,其中事件A发生的次数频数事件A发生的频率==试验总次数试验总次数.我们将事件发生的可能性大小只停留在定性了解不够的,下面给出事件发生的可能性大小的客观的定量的描述,称为事件发生的概率.2.随机事件的概率:定义:在不变的一组条件S下,重复作次试验,记是次试验中事件发生的次数.当试验的次数很大时,如果频率稳定在某一数值的附近摆动,而且一来随着试验次数增多,这种摆动的幅度越变越小,则称数值为事件在条件S下发生的概率,记作这里,频率的稳定性是概率一个直观朴素的描述,通常称为概率的统计定义.但必须指出,事件的频率是带有随机性的,这是由事件本身的随机性所决定。
而事件的概率,却是一个客观存在的实数,是不变的。
二.古典概型:1.定义:如果随机现象满足下列三个条件:一次试验可能结果只有有限个,即所有基本事件只有有限个:,每一个基本事件发生的可能性是相等的.基本事件是两两互不相容满足以上三个条件的随机现象模型,称为古典概型.在古典概型中,如果n为基本事件总数, m为事件A包含的基本事件数, 那么事件A的概率法国数学家拉普拉斯(Laplace)在1812年把上式作为概率的一般定义.现在通常称它为概率的古典概型的定义,因为它只适用于古典概型场合.古典概型公式的运用举例:【例1】袋里有2个白球和3个黑球.从袋任取出一球,求它是白球的概率.解:容易看出,“从袋里任取一球”这一试验是古典概型的,且基本事件总数n=5,取到白球的基本事件数m=2,故把白球换为合格产品,黑球换为废品,则这个摸球模型就可以描述产品抽样检验问题.这种模型化的方法把表面上不同的问题归类于相同的模型之小中,能使问题更消楚,更易于计算。
概率论与数理统计习题 一2.设A ,B ,C 为三个事件,试用A ,B ,C(1) A 发生,B ,C 都不发生; (2) A 与B 发生,C(3) A ,B ,C 都发生; (4) A ,B ,C(5) A ,B ,C 都不发生; (6) A ,B ,C(7) A ,B ,C 至多有2个发生; (8) A ,B ,C 至少有2个发生. 【解】(1) A BC (2) AB C (3) ABC(4) A ∪B ∪C =AB C ∪A B C ∪A BC ∪A BC ∪A B C ∪AB C ∪ABC =ABC (5) ABC =AB C (6) ABC(7) A BC ∪A B C ∪AB C ∪AB C ∪A BC ∪A B C ∪ABC =ABC =A ∪B ∪C (8) AB ∪BC ∪CA =AB C ∪A B C ∪A BC ∪ABC 14.0.8和0.7,在两批种子中各随机取一粒,求:(1) 两粒都发芽的概率; (2) 至少有一粒发芽的概率; (3) 恰有一粒发芽的概率.【解】设A i ={第i 批种子中的一粒发芽},(i =1,2)(1) 1212()()()0.70.80.56P A A P A P A ==⨯= (2) 12()0.70.80.70.80.94P A A =+-⨯=(3) 2112()0.80.30.20.70.38P A A A A =⨯+⨯=18.0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率. 【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A === (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问: (1)考试及格的学生有多大可能是不努力学习的人? (2)考试不及格的学生有多大可能是努力学习的人?【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P(A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.20.110.027020.80.90.20.137⨯===⨯+⨯即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913⨯===⨯+⨯即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少? 【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B } 由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+2/30.980.994922/30.981/30.01⨯==⨯+⨯28.96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.960.980.9980.960.980.040.05⨯==⨯+⨯30.0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率. 【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==-12341()()()()P A P A P A P A =- 10.980.970.950.970.124=-⨯⨯⨯= 33.15,13,14,求将此密码破译出的概率.【解】 设A i ={第i 人能破译}(i =1,2,3),则31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯= 121121()1C (1)C (1)n k i i n ni P A n n=-=--+--+111(1)C (1)n n kn n n+----习题二4.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率. 【解】设X 表示击中目标的次数.则X =0,1,2,3.31232233(0)(0.2)0.008(1)C 0.8(0.2)0.096(2)C (0.8)0.20.384(3)(0.8)0.512P X P X P X P X ============故X 的分布律为 X 0 1 2 3 P0.0080.0960.3840.512分布函数0,00.008,01()0.104,120.488,231,3x x F x x x x <⎧⎪≤<⎪⎪=≤<⎨⎪≤<⎪≥⎪⎩(2)(2)(3)0.896P X P X P X ≥==+==8.已知在五重贝努里试验中成功的次数X 满足P {X =1}=P {X =2},求概率P {X =4}.【解】设在每次试验中成功的概率为p ,则1422355C (1)C (1)p p p p -=-故 13p =所以 4451210(4)C ()33243P X ===. 8.已知在五重贝努里试验中成功的次数X 满足P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则1422355C (1)C (1)p p p p -=-故 13p =所以 4451210(4)C ()33243P X ===14.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1) 保险公司亏本的概率;(2) 保险公司获利分别不少于10000元、20000元的概率. 【解】以“年”为单位来考虑.(1) 在1月1日,保险公司总收入为2500×12=30000元. 设1年中死亡人数为X ,则X~b (2500,0.002),则所求概率为(200030000)(15)1(14)P X P X P X >=>=-≤由于n 很大,p 很小,λ=np =5,故用泊松近似,有514e 5(15)10.000069!kk P X k -=>≈-≈∑(2) P (保险公司获利不少于10000)(30000200010000)(10)P X P X =-≥=≤510e 50.986305!kk k -=≈≈∑即保险公司获利不少于10000元的概率在98%P (保险公司获利不少于20000)(30000200020000)(5)P X P X =-≥=≤55e 50.615961!kk k -=≈≈∑即保险公司获利不少于20000元的概率约为62%15.已知随机变量X 的密度函数为f (x )=A e -|x |, -∞<x <+∞,求:(1)A 值;(2)P {0<X <1}; (3) F (x ).【解】(1) 由()d 1f x x ∞-∞=⎰得||1e d 2e d 2x x A x A x A ∞∞---∞===⎰⎰故 12A =. (2) 11011(01)e d (1e )22x p X x --<<==-⎰(3) 当x <0时,11()e d e 22x x x F x x -∞==⎰ 当x ≥0时,0||0111()e d e d e d 222x x x x x F x x x x ---∞-∞==+⎰⎰⎰ 11e 2x-=-故 1e ,02()11e 02xx x F x x -⎧<⎪⎪=⎨⎪-≥⎪⎩19.设顾客在某银行的窗口等待服务的时间X (以分钟计)服从指数分布1()5E .某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以Y 表示一个月内他未等到服务而离开窗口的次数,试写出Y 的分布律,并求P {Y ≥1}. 【解】依题意知1~()5X E ,即其密度函数为51e ,0()50,xx f x -⎧>⎪=⎨⎪≤⎩x 0 该顾客未等到服务而离开的概率为25101(10)e d e 5x P X x -∞->==⎰2~(5,e )Y b -,即其分布律为225525()C (e )(1e ),0,1,2,3,4,5(1)1(0)1(1e )0.5167kk k P Y k k P Y P Y ----==-=≥=-==--=21.设X ~N (3,22),(1) 求P {2<X ≤5},P {-4<X ≤10},P {|X |>2},P {X >3}; (2) 确定c 使P {X >c }=P {X ≤c }. 【解】(1) 23353(25)222X P X P ---⎛⎫<≤=<≤⎪⎝⎭11(1)(1)1220.841310.69150.5328ΦΦΦΦ⎛⎫⎛⎫=--=-+ ⎪ ⎪⎝⎭⎝⎭=-+=433103(410)222X P X P ----⎛⎫-<≤=<≤ ⎪⎝⎭770.999622ΦΦ⎛⎫⎛⎫=--=⎪ ⎪⎝⎭⎝⎭(||2)(2)(2)P X P X P X >=>+<-323323222215151122220.691510.99380.6977X X P P ΦΦΦΦ-----⎛⎫⎛⎫=>+< ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫=--+-=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=+-=333(3)()1(0)0.522X P X P Φ->=>=-=- (2) c=324.设随机变量X 分布函数为F (x )=e ,0,(0),00.xt A B x ,x λ-⎧+≥>⎨<⎩(1) 求常数A ,B ;(2) 求P {X ≤2},P {X >3}; (3) 求分布密度f (x ).【解】(1)由00lim ()1lim ()lim ()x x x F x F x F x →+∞→+→-=⎧⎪⎨=⎪⎩得11A B =⎧⎨=-⎩(2)2(2)(2)1e P X F λ-≤==-33(3)1(3)1(1e)e P X F λλ-->=-=--=(3) e ,0()()0,0x x f x F x x λλ-⎧≥'==⎨<⎩25.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≤-<≤.,0,21,2,10,其他x x x x 求X 的分布函数F (x ),并画出f (x )及F (x ).【解】当x <0时F (x )=0当0≤x <1时0()()d ()d ()d xxF x f t t f t t f t t -∞-∞==+⎰⎰⎰20d 2xx t t ==⎰当1≤x<2时()()d xF x f t t -∞=⎰111122()d ()d ()d d (2)d 132222212xx f t t f t t f t tt t t tx x x x -∞==+=+-=+--=-+-⎰⎰⎰⎰⎰当x ≥2时()()d 1xF x f t t -∞==⎰故 220,0,012()21,1221,2x x x F x x x x x <⎧⎪⎪≤<⎪=⎨⎪-+-≤<⎪⎪≥⎩28.设随机变量X 的分布律为 X -2 -1 0 1 3 P k1/5 1/6 1/5 1/15 11/30求Y =X 2的分布律.【解】Y 可取的值为0,1,4,91(0)(0)5117(1)(1)(1)615301(4)(2)511(9)(3)30P Y P X P Y P X P X P Y P X P Y P X =======-+==+====-=====故Y 的分布律为Y 0 1 4 9 P k 1/5 7/30 1/5 11/30习题三3.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎪⎩⎪⎨⎧≤≤≤≤.,020,20,sin sin 其他ππy x y x求二维随机变量(X ,Y )在长方形域⎭⎬⎫⎩⎨⎧≤<≤<36,40πππy x 内的概率. 【解】如图πππ{0,}(3.2)463P X Y <≤<≤公式 ππππππ(,)(,)(0,)(0,)434636F F F F --+ππππππsinsin sin sin sin 0sin sin 0sin 4346362(31).4=--+=-题3图说明:也可先求出密度函数,再求概率。