九年级数学下册 28.1 锐角三角函数(第3课时)教案 (新版)新人教版
- 格式:doc
- 大小:110.52 KB
- 文档页数:5
人教版数学九年级下册教学设计28.1《锐角三角函数》一. 教材分析人教版数学九年级下册第28.1节《锐角三角函数》是初中数学的重要内容,主要介绍了锐角三角函数的概念、定义及应用。
本节内容是学生对三角形知识深入理解的基础上进行学习的,对于培养学生的逻辑思维能力、空间想象能力和数学应用能力具有重要意义。
教材通过丰富的实例,引导学生探究锐角三角函数的定义,并运用函数思想解决实际问题。
二. 学情分析九年级的学生已经掌握了三角形的基本知识,具有较好的逻辑思维能力和空间想象能力。
但是,对于锐角三角函数的概念和应用,部分学生可能会感到抽象和难以理解。
因此,在教学过程中,教师需要关注学生的学习情况,针对学生的特点进行针对性的教学。
三. 教学目标1.知识与技能:使学生掌握锐角三角函数的概念、定义及性质,能够运用锐角三角函数解决实际问题。
2.过程与方法:通过探究活动,培养学生合作交流、解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的抽象思维能力和创新意识。
四. 教学重难点1.重点:锐角三角函数的概念、定义及性质。
2.难点:锐角三角函数在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例,引导学生认识锐角三角函数,激发学生的学习兴趣。
2.探究教学法:学生进行小组讨论,共同探究锐角三角函数的性质,培养学生的合作意识。
3.案例教学法:通过典型例题,讲解锐角三角函数在实际问题中的应用,提高学生的解决问题的能力。
六. 教学准备1.教学PPT:制作精美的教学PPT,展示锐角三角函数的相关概念、定义及应用。
2.教学案例:挑选具有代表性的例题,供课堂讲解和练习使用。
3.学习素材:为学生提供相关的学习资料,帮助学生巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如建筑设计、工程测量等,引导学生认识锐角三角函数,激发学生的学习兴趣。
2.呈现(10分钟)通过PPT展示锐角三角函数的概念、定义及性质,让学生初步了解并掌握相关知识。
人教版九年级数学下册: 28《锐角三角函数》《《锐角三角函数》教案》教案1一. 教材分析人教版九年级数学下册第28课《锐角三角函数》是学生在学习了三角函数概念和特殊角的三角函数值的基础上进行的一节实践性较强的课程。
本节课主要让学生了解锐角三角函数的概念,学会用锐角三角函数解决实际问题,培养学生运用数学知识解决实际问题的能力。
二. 学情分析九年级的学生已经掌握了三角函数的基本概念和特殊角的三角函数值,具备一定的数学基础。
但是,对于锐角三角函数的实际应用,学生可能还比较陌生。
因此,在教学过程中,教师需要注重引导学生将理论知识与实际问题相结合,提高学生运用数学知识解决实际问题的能力。
三. 教学目标1.知识与技能:让学生掌握锐角三角函数的概念,学会用锐角三角函数解决实际问题。
2.过程与方法:通过自主学习、合作探究的方式,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:锐角三角函数的概念及应用。
2.难点:如何引导学生将理论知识与实际问题相结合,提高学生运用数学知识解决实际问题的能力。
五. 教学方法1.情境教学法:通过生活实例,引导学生了解锐角三角函数在实际生活中的应用。
2.自主学习法:鼓励学生自主探究,培养学生的学习能力。
3.合作学习法:学生进行小组讨论,提高学生的团队合作能力。
六. 教学准备1.准备相关的生活实例,用于引导学生了解锐角三角函数在实际生活中的应用。
2.准备多媒体教学课件,帮助学生直观地理解锐角三角函数的概念。
七. 教学过程1.导入(5分钟)教师通过展示一些生活实例,如测量山的高度、计算建筑物的斜面积等,引导学生了解锐角三角函数在实际生活中的应用,激发学生的学习兴趣。
2.呈现(10分钟)教师通过多媒体课件,介绍锐角三角函数的概念,让学生了解锐角三角函数的定义和性质。
同时,教师可以通过讲解特殊角的三角函数值,帮助学生巩固已学的知识。
人教版九年级数学下册《28.1锐角三角函数(3)》教案(教学设计)
【活动二】运用特殊角的三角函数值进行计算
例1:求下列各式的值: (1)2
2
cos 60sin 60+;
(2)cos 45
tan 45sin 45
-.
例2.(1)如图(1),在Rt △ABC 中,∠C=90, AB=6,BC=3,求∠A 的度数.
(2)如图(2)已知圆锥的高AO 等于圆锥的底面半径 OB 的3倍,求a .
例2:操场里有一个旗杆,老师让小明去测量旗杆
高度,小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为30度,并已知目高为1.65米.然后他很快就算出旗杆的高度了。
1.65米
10米
?
你想知道小明怎样算出的吗?
应用生活
30°
三、巩固练习、应用提高
A :P67第1题
B :P67第2题
通过例题,加深学生对特殊角的三角函数值的记忆和应用,提高学生的运算能力。
利用此题目(1)培养学生的逆向思维;(2)初次渗透在直角三角形中,利用边角关系求角的度数,这也是解直角三角形的一部分
在直角三角形中,利用边角关系,解决实际问题
通过习题,加深学生对特殊角的三角函数值的记忆和应用,提高学生的运算能力
2
A=,则∠
3。
人教版数学九年级下册28.1《锐角三角函数》教学设计2一. 教材分析人教版数学九年级下册28.1《锐角三角函数》是本节课的主要内容。
本节课主要介绍了锐角三角函数的定义、性质和应用。
通过本节课的学习,学生能够理解锐角三角函数的概念,掌握锐角三角函数的性质,并能运用锐角三角函数解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了锐角的概念和直角三角形的性质。
但是,对于锐角三角函数的定义和应用可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生通过实际操作和思考,理解并掌握锐角三角函数的概念和性质。
三. 教学目标1.理解锐角三角函数的概念,掌握锐角三角函数的性质。
2.能够运用锐角三角函数解决实际问题。
3.培养学生的动手操作能力和逻辑思维能力。
四. 教学重难点1.锐角三角函数的概念和性质。
2.运用锐角三角函数解决实际问题。
五. 教学方法1.情境教学法:通过实际例子,引导学生理解锐角三角函数的概念和性质。
2.实践操作法:引导学生通过实际操作,加深对锐角三角函数的理解。
3.问题驱动法:通过提问引导学生思考,激发学生的学习兴趣。
六. 教学准备1.教学课件:制作相关的教学课件,以便于引导学生逐步深入学习。
2.教学道具:准备一些实际的三角形道具,以便于学生进行实际操作。
七. 教学过程1.导入(5分钟)通过一个实际问题,引入锐角三角函数的概念。
例如,给定一个直角三角形,如何求解一个锐角的正弦值、余弦值和正切值。
2.呈现(10分钟)利用教学课件,呈现锐角三角函数的定义和性质。
引导学生通过观察和思考,理解并掌握锐角三角函数的概念和性质。
3.操练(10分钟)学生分组进行实际操作,利用给定的三角形道具,测量并计算各个锐角的正弦值、余弦值和正切值。
教师巡回指导,解答学生的问题。
4.巩固(5分钟)通过一些练习题,巩固学生对锐角三角函数的理解。
教师引导学生进行思考和讨论,帮助学生加深对锐角三角函数的认识。
5.拓展(5分钟)引导学生思考如何将锐角三角函数应用到实际问题中。
人教版数学九年级下册28.1《锐角三角函数》教案3一. 教材分析人教版数学九年级下册28.1《锐角三角函数》是本册的一个重要内容。
在此之前,学生已经学习了锐角三角形的性质,本节课将引导学生进一步探究锐角三角形的边长与角度之间的关系,为后续学习三角函数的图像和性质打下基础。
二. 学情分析九年级的学生已经具备了一定的几何知识,对锐角三角形有了一定的了解。
但是,对于锐角三角形的边长与角度之间的具体关系,可能还存在着一定的模糊认识。
因此,在教学过程中,需要通过具体实例,引导学生直观地感受和理解锐角三角形的边长与角度之间的关系。
三. 教学目标1.知识与技能:使学生理解锐角三角函数的概念,掌握正弦、余弦、正切函数的定义和性质;2.过程与方法:通过实际问题,培养学生运用锐角三角函数解决问题的能力;3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和创新精神。
四. 教学重难点1.重点:锐角三角函数的概念和性质;2.难点:正弦、余弦、正切函数的图像和性质。
五. 教学方法采用问题驱动法、实例教学法、合作学习法等多种教学方法,引导学生通过自主学习、合作探讨,掌握锐角三角函数的知识。
六. 教学准备1.教师准备:教材、教案、课件、教学工具等;2.学生准备:课本、笔记本、文具等。
七. 教学过程1.导入(5分钟)通过一个实际问题,如测量一个未知角度的三角形的边长,引发学生对锐角三角函数的思考,激发学生的学习兴趣。
2.呈现(15分钟)讲解锐角三角函数的概念,引导学生通过直观的图示和实例,理解正弦、余弦、正切函数的定义和性质。
3.操练(15分钟)让学生通过自主学习和合作探讨,完成课本上的练习题,巩固所学的锐角三角函数知识。
4.巩固(10分钟)通过一些实际问题,让学生运用所学的锐角三角函数知识解决问题,加深对知识的理解和运用。
5.拓展(10分钟)引导学生思考锐角三角函数在实际生活中的应用,如建筑设计、工程测量等,培养学生的应用意识。
锐角三角函数教学目标:1、 明白得锐角三角函数的概念,把握锐角三角函数的表示法;2、 能依照锐角三角函数的概念计算一个锐角的各个三角函数的值;3、 把握Rt △中的锐角三角函数的表示:sinA=斜边的对边A ∠, cosA=斜边的邻边A ∠,tanA=的邻边的对边A A ∠∠4、把握锐角三角函数的取值范围;五、通过经历三角函数概念的形成进程,培育学生从特殊到一样及数形结合的思想方式。
教学重点:锐角三角函数相关概念的明白得及依照概念计算锐角三角函数的值。
教学难点:锐角三角函数概念的形成。
教学进程: 一、创设情境:鞋跟多高适合?美国人体工程学研究人员卡特·克雷加文调查发觉,70%以上的女性喜爱穿鞋跟高度为6至7厘米左右的高跟鞋。
但专家以为穿6厘米以上的高跟鞋腿肚、背部等处的肌肉超级容易疲劳。
据研究,当高跟鞋的鞋底与地面的夹角为11度左右时,人脚的感觉最舒适。
假设某成年人脚前掌到脚后跟长为15厘米,不难算出鞋跟在3厘米左右高度为最佳。
问:你明白专家是如何计算的吗? 显然,高跟鞋的鞋底、鞋跟与地面围城了一个直角三角形,回忆直角三角形的已学知识,引出课题。
二、探讨新知:一、下面咱们一路来探讨一下。
实践一:作一个30°的∠A ,在角的边上任意取一点B ,作BC ⊥AC 于点C 。
⑴计算AB BC ,AB AC ,ACBC的值,并将所得的结果与你同伴所得的结果进行比较。
∠A=30°时AB BC AB AC ACBC学生1结果 学生2结果 学生3结果 学生4结果⑵将你所取的AB 的值和你的同伴比较。
实践二:作一个50°的∠A ,在角的边上任意取一点B ,作BC ⊥AC 于点C 。
(1)量出AB ,AC ,BC 的长度(精准到1mm )。
(2)计算AB BC ,AB AC ,ACBC的值(结果保留2个有效数字),并将所得的结果与你同伴所得的结果进行比较。
∠A=50°时 AB AC BCAB BC AB AC ACBCAC B学生1结果 学生2结果 学生3结果学生4结果(3)将你所取的AB 的值和你的同伴比较。
28.1 锐角三角函数(第三课时)
一、【教材分析】
二、【教学流程】
21,7==AC BC 高AO 等于圆锥的底面半径)OB 的3倍,求a .
给予指点.
教师出示题目后,让学生认真读题,分析题目条件与要求的结论,分析它们之间的关系,教师关注学生的分析思路,适当时给予指点:如图(1),BC 边是∠A 的邻边,AB 是斜边,由此想到利用∠A 的余弦值来求∠A 的度数.图(2)中,OA 是a 角的对边,OB 是a 角的邻边,由此想到利用a 角的正切值来求a 角的度数.
初次解这种类型的题目,教师要板演解题过程,给学生规范的解题格式.
强化解决此类问题过程中步骤的书写.
补 偿 提 高
1、求下列各式的值: .
)21()1(60cos 2
1
45sin 2)4(;30tan 160sin 160cos )3(;60sin 245tan 30tan 3)2(;
30cos 30sin 21)1(02005
-+-+-+++--o o o
o o o o o o o 2、在Rt △ABC 中,∠C =
90°, ,求∠A 、∠B 的度数.
3、求适合下列各式的锐角α
教师出示题目,学生读题后,独立完成此练习,教师巡视过程中,观察学生对题目的理解,对学困生给予指点. 教师提出问题,学生相互交流,教师适时给予指点.教师要关注学生: 1. 特殊角的三角函数值必须熟记; 2.在直角三角形中,知道两边,可求出每个锐角的各个三角函数;反之,由特殊角的三角函数值,可求出锐角的度数.
3.能否由任意的锐角求出三角函数值,或知道任意三角函数值都可以求出它所对应的锐角呢?
对内容的升
华理解认识
总结 B A
C 721
四、【教后反思】。