直流伺服电机教学内容
- 格式:ppt
- 大小:916.50 KB
- 文档页数:30
第三节直流伺服驱动控制直流伺服电动机是用直流电信号控制的执行元件,它的功能是将输入的电压控制信号,快速转换为轴上的角位移或角速度输出。
直流伺服电动机具有线性调速范围宽、信号响应迅速、无控制电压立即停转、堵转转矩大等特点,作为驱动元件被广泛应用于数控闭环(或半闭环)进给系统中。
以直流伺服电机作为驱动元件的伺服系统称为直流伺服系统。
一、直流伺服电动机的工作原理及类型1.工作原理直流电机的工作原理是建立在电磁力定律基础上的,电磁力的大小与电机中的气隙磁场成正比。
直流电机的工作原理如图3–12所示,位于磁场中的线圈abcd 的a端和d端分别连接于各自的换向片上,换向片又分别通过静止的电刷A和B 与直流电源的两极相连。
当电流通过线圈时,产生电磁力和电磁转矩,使线圈旋转,线圈转动的同时,abcd的两个相连的换向片的位置产生变化,从而改变了所接触的电源极性,维持线圈沿固定方向连续旋转。
图3–12 直流电机的工作原理图就原理而言,一台普通的直流电机也可认为就是一台直流伺服电机,因为当一台直流电机加以恒定励磁,若电枢(多相线圈)不加电压,电机不会旋转;当外加某一电枢电压时,电机将以某—转速旋转,改变电枢两端的电压,即可改变电机转速,这种控制叫电枢控制。
当电枢加以恒定电流,改变励磁电压时,同样可达到上述控制目的,这种方法叫磁场控制。
直流伺服电机一般都采用电枢控制。
直流电机的种类很多,但它们的工作原理都是一样的,但是由于功用不同,在结构和工作性能上也有所区别。
2.直流伺服电机的分类直流电机按其励磁方式分为永磁式、励磁式(他励、并励、串励、复励)、混合式(励磁和永磁合成)三种;按电枢结构分为有槽、无槽、印刷绕组、空心杯形等;按输出量分为位置、速度、转矩(或力)三种控制系统;按运动模式分为增量式和连续式;按性能特点及用途不同又有不同品种。
二、常用直流伺服电动及特点永磁电机和他励电机适合于数控机床,而这类电机在实际应用中,习惯上按其性能特点又有小惯量直流伺服电机和宽调速直流伺服电机之分。
I、示标II、复习1、步进电动机伺服系统的功率驱动;2、提高步进伺服系统精度的措施。
III、新授第三节直流电机伺服系统伺服电机是转速及方向都受控制电压信号控制的一类电动机,常在自动控制系统用作执行元件。
伺服电机分为直流、交流两大类。
直流伺服电机在电枢控制时具有良好的机械特性和调节特性。
机电时间常数小,起动电压低。
其缺点是由于有电刷和换向器,造成的摩擦转矩比较大,有火花干扰及维护不便。
直流伺服电动机的结构与一般的电机结构相似,也是由定子、转子和电刷等部分组成,在定子上有励磁绕组和补偿绕组,转子绕组通过电刷供电。
由于转子磁场和定子磁场始终正交,因而产生转矩使转子转动。
由图4-30可知,定子励磁电流产生定子电势Fs ,转子电枢电流αi产生转子磁势为F r,F s和F r垂直正交,补偿磁阻与电枢绕组串联,电流αi又产生补偿磁势F c,F c与F r方向相反,它的作用是抵消电枢磁场对定子磁场的扭斜,使电动机有良好的调速特性。
永磁直流伺服电动机的转子绕组是通过电刷供电,并在转子的尾部装有测速发电机和旋转变压器(或光电编码器),它的定子磁极是永久磁铁。
我国稀土永磁材料有很大的磁能积和极大的矫顽力,把永磁材料用在电动机中不但可以节约能源,还可以减少电动机发热,减少电动机体积。
永磁式直流伺服电动机与普通直流电动机相比有更高的过载能力,更大的转矩转动惯量比,调速范围大等优点。
因此,永磁式直流伺服电动机曾广泛应用于数控机床进给伺服系统。
由于近年来出现了性能更好的转子为永磁铁的交流伺服电动机,永磁直流电动机在数控机床上的应用才越来越少。
二、直流伺服电机的调速原理和常用的调速方法由电工学的知识可知:在转子磁场不饱和的情况下,改变电枢电压即可改变转子转速。
直流电机的转速和其它参量的关系可用式4-19表示:φe K IRU n -=(4-19) 式中:n ——转速,单位为rpm ;U ——电枢电压,单位为V ; I ——电枢电流,单位为A ;R ——电枢回路总电压,单位为Ω; φ——励磁磁通,单位为Wb (韦伯); K e ——由电机结构决定的电动势常数。