浅析直流输电控制保护系统
- 格式:docx
- 大小:28.33 KB
- 文档页数:3
特高压直流输电控制与保护技术的探讨摘要:随着特高压大电网、交直流并网等领域的不断发展,直流输电技术在实际工程中得到了越来越多的应用。
本文主要基于对直流输电技术和换流技术的深入研究,并结合±800 kV特高压直流输电工程,对其分层冗余结构、控制和保护技术进行了较为系统的阐述,以期更好地确保特高压大电网及交直流并网安全稳定运行提供良好技术支撑。
关键词:特高压;直流输电工程;换流技术;控制和保护技术引言在我国电网发展中,特高压直流输电起着举足轻重的作用。
其中,控制与保护是其中的关键,其能保证传输电源的正常运行,并能有效地保证传输电源的安全。
±800 kV特高压直流每极均采用串联、母线区连接方式,各电极工作方式灵活、完整,这对保证其工作性能将能够发挥良好的辅助作用。
1 直流输电简介1.1 直流输电系统当前直流输电系统通常采用两端直流传输的方式,包括整流站、直流线路和逆变站。
1.2 换流技术换流站的关键部件为换流器,它包括一个或几个换流器,其电路都是三相换流桥,主要材料为晶闸阀。
其基本工作原理是:通过对桥式阀门的触发时间进行控制,从而实现对直流电压瞬时值、电阻上直流电流、直流传输功率的调整。
同时,对各个桥式阀门的晶闸管单元进行同一触发脉冲控制。
2 特高压直流输电的特点特高压直流输电的特点具体包括:①增加传送能力,增加传送距离。
②节约了线路走廊和变电所的空间。
③有利于联网,简化网络结构,降低故障率。
3 直流输电控制系统分层冗余结构UHVDC是指超过600 kV的直流输电系统,它的控制和保护系统是分层、分布式、全冗余的。
本文以±800 kV特高压直流工程为例,将其按控制等级划分为三个层次:运行人员控制层、过程控制层和现场控制层。
4 为满足特高压交直流系统动态性能要求的控制技术4.1 降低和避免直流对交流系统的不良影响由于换流技术的机制存在着两个主要的问题:谐波和无功。
传统的方法是,安装合适的容量和数量的直流滤波器/电容,并采用多脉动式变流器。
高压直流输电系统的稳定控制与保护引言高压直流输电系统是一种用于长距离电力传输的技术,具有传输能力强、输电损耗小、环境影响少等优势。
然而,高压直流输电系统在运行过程中也面临着一些挑战,例如稳定控制和保护问题。
本文将探讨高压直流输电系统的稳定控制与保护技术,旨在提供一种全面的了解。
一、高压直流输电系统的稳定控制高压直流输电系统的稳定控制是指对系统的电压、功率、频率等进行实时调节,以确保系统的稳定运行。
稳定控制可分为两个方面:电力稳定控制和频率稳定控制。
1. 电力稳定控制电力稳定控制是指根据负荷需求和传输能力,实时调整高压直流输电系统的电压和功率,以保证系统供电的稳定性。
为了实现电力稳定控制,可以采用频率反馈控制方法,通过自动控制装置调整换流变压器的触发角来控制电流。
同时,还可以使用能量储备装置来补偿瞬间负荷变化引起的电力不平衡。
能量储备装置可以是电容器或电感器,通过储存电能或释放电能来调整系统的电力平衡。
此外,还可采用先进的预测控制算法,根据系统的实时运行情况,预测未来的负荷变化,进一步优化电力调控策略。
2. 频率稳定控制频率稳定控制是指在高压直流输电系统中,通过调节直流电流的大小和相位,以及调节换流变压器和直流系统的参数,来控制系统的频率变化。
频率稳定控制可以通过反馈控制的方法实现,根据系统的实时运行情况,调整直流电流和换流变压器的参数,以使系统的频率保持在设定范围内。
此外,还可以使用先进的自适应控制算法,通过监测和分析系统的频率变化,自动调整控制策略,提高系统的频率稳定性。
二、高压直流输电系统的保护技术高压直流输电系统的保护技术是指在系统故障或异常情况下,及时采取措施,限制故障范围和保护设备的安全运行。
保护技术主要包括故障检测、故障定位和故障隔离。
1. 故障检测故障检测是指通过监测高压直流输电系统的各种参数,如电压、电流、功率等,来检测故障的发生。
常用的故障检测方法包括差动保护、过流保护和电压保护等。
直流输电技术的研究与应用引言:直流输电技术是电子与电气工程领域中的一项重要研究课题,其应用能够显著提高电力传输效率、降低能源损耗,并且有助于解决远距离电力传输中的诸多挑战。
本文将探讨直流输电技术的研究进展、应用领域以及未来发展趋势。
1. 直流输电技术的原理与特点直流输电技术是指将电能以直流形式进行传输的一种电力传输方式。
与传统的交流输电技术相比,直流输电具有以下几个显著特点:首先,直流输电能够有效降低输电线路的电阻损耗。
在交流输电中,由于电流的周期性变化,导致输电线路存在较大的电阻损耗,而直流输电则能够避免这种损耗,提高能源利用率。
其次,直流输电技术具有较低的电磁辐射水平。
交流输电中,电流的频繁变化会产生较强的电磁辐射,对周围环境和人体健康造成潜在影响。
而直流输电则能够显著降低电磁辐射水平,减少对环境的影响。
此外,直流输电技术还具备较高的输电容量和稳定性。
由于直流电流的稳定性较好,可以通过合理设计输电线路和设备,提高输电容量和稳定性,满足不同规模的电力传输需求。
2. 直流输电技术的研究进展近年来,随着电力需求的不断增长和能源互联网的发展,直流输电技术得到了广泛关注和研究。
在直流输电技术的研究中,主要涉及以下几个方面的进展:2.1 高压直流输电技术高压直流输电技术是直流输电领域的核心研究方向之一。
通过提高输电电压,可以有效降低输电线路的电阻损耗,提高输电效率。
研究人员通过改进直流输电线路的设计和材料,提高输电电压的稳定性和安全性,以实现高效高压直流输电。
2.2 直流输电换流技术直流输电换流技术是直流输电系统中的关键环节,用于实现交流电网和直流输电线路之间的能量转换。
目前,多种直流输电换流技术被广泛研究和应用,如基于半导体器件的换流技术、多电平换流技术等。
这些技术的不断创新和改进,为直流输电系统的稳定运行提供了可靠的支持。
2.3 直流输电系统的控制与保护技术直流输电系统的控制与保护技术是直流输电研究的重要方向之一。
特高压直流输电控制与保护技术的探讨发布时间:2023-02-21T00:43:10.051Z 来源:《科技新时代》2022年10月19期作者:张伟闫宇浩[导读] 随着特高压、大电网以及交直流并网等领域的不断发展,直流输电技术在工程中的实际应用越来越多。
张伟闫宇浩国网陕西省电力有限公司超高压公司陕西省西安 710065摘要:随着特高压、大电网以及交直流并网等领域的不断发展,直流输电技术在工程中的实际应用越来越多。
电力是经济发展的必要条件,而煤炭仍然是我国的主要动力来源。
由于国内的环境与能源问题日益突出,这就给我国的电力系统和能源配置带来了新的挑战。
特高压直流输电具有传输能量大、传输距离远、损耗低、运行可靠以及可以进行调节迅速的优点,因此得到了广泛的应用,特高压大电网和交直流并网的安全运行具有重要的现实意义。
基于此,本文就特高压直流输电控制与保护技术进行探讨,以供业界专业人士进行交流讨论。
关键词:特高压直流;输电控制;保护技术引言:随着计算机技术的发展和对电力的需求不断增长,对直流输电技术的需求越来越大,对直流输电的控制和保护技术也相应地发展起来。
在当今社会发展的大背景下,大功率、长距离输送已逐步形成常态,特高压直流输电技术在这一过程中表现出难以比较的优势,得到各国的广泛应用。
直流控制是特高压直流输电工程的关键环节,它直接影响着整个项目和设备的安全和稳定。
目前,比较成熟的控制和保护技术都是建立在同样的换流理论基础上的。
强化直流输电的控制和保护技术,是当前电力工业中最主要的工作。
一、直流输电的基本控制保护技术分析直流系统的运行方式包括两类:整流器和逆流器。
整流器的工作原理是以三相电压环流元件为基础,它是以三相电流为基础,按一定的顺序接通和断开来完成交流电到直流电的转化,而在实际工作中,逆流器的工作原理与整流器是截然相反的。
在控制和保护系统中,换流元件的接通状态称为触发器角度,当交流系统的参数不变时,可以通过调节触发角来调节 DC电压值,而这一改变也会引起整流和逆变回路中的 DC电流发生改变,然后再由逆变器输出的 DC电流被逆变器接收,从而完成远程电力传输。
浅析直流输电控制保护系统摘要:直流输电控制保护系统在直流输电工程中的作用尤为重要,它关系着整个电网的安全。
因此,直流输电控制保护系统配置的可靠性是直流保护系统的根本,在设计中要从直流输电控制保护系统的特点,以及直流保护配置的设计原则入手,来提高控制保护系统的可靠性。
根据直流控制保护系统的特点,以及直流保护配置的设计原则:直流保护按保护区域设置,每一个保护区应与相邻保护的保护区重叠,不存在保护死区。
每一个保护区域的保护应至少为双重化冗余配置,在特高压或高压直流输电工程中一般采用冗余配置的原则。
关键词:电力系统;直流输电;控制保护引言由于直流输电系统的控制与保护功能装置基本采用完全相同的硬件、软件平台,两者联系十分紧密,故通常在直流输电工程中将直流输电系统的控制与保护功能统称为直流控制保护系统。
目前在高压直流输电工程中有多种直流控制保护系统配置方式,从直流保护配置的设计原则来分,主要分为完全双重化和三取二的配置。
1直流输电控制保护系统的概述直流输电的控制保护系统是指控制交直流功率转换,直流输送的全过程,是直流输电的中枢神经,它可以保护换流站所有电气设备以及直流输电线路受电气故障的损害。
交流输电技术不同的是其输电的全过程完全依赖于控制保护系统;其不同于交流系统二次部分只在运行状态改变或故障时起作用,它是建立在阀导通和截止控制上的一种电能传输方式,它的控制系统始终运行从不间断。
2直流控制保护系统的配置方式2.1直流输电工程———以某A直流输电工程为例该直流输电工程主系统包含MC1,MC2两台主计算机,其中控制子系统全部集成在MC1主机中,保护子系统分为两套不完全相同的保护分别集成于MC1,MC2主机中,任意一台MC1,MC2主机发生故障,所在主系统将退出运行。
2.1.1该直流输电工程的组成该直流输电工程正常运行过程中,A,B系统两套控制子系统互为备用,而直流保护系统采用“四取二”方式输出,即值班主系统两套保护中任意一套保护动作,切换至备用主系统,若备用主系统仍有保护动作,则保护动作信号输出。
柔性直流输电系统控制研究综述一、本文概述随着能源转型和可再生能源的大规模开发,电力系统的稳定性和可靠性面临着前所未有的挑战。
柔性直流输电系统(VSC-HVDC)作为一种新型的输电技术,以其独特的优势在解决这些问题中发挥着重要作用。
本文旨在对柔性直流输电系统的控制研究进行全面的综述,以期为未来该领域的研究提供有价值的参考。
本文将简要介绍柔性直流输电系统的基本原理和主要特点,阐述其在现代电力系统中的应用场景和优势。
接着,将重点回顾和梳理柔性直流输电系统在控制策略方面的研究历程和主要成果,包括基本控制策略、保护控制策略、优化控制策略等。
还将对柔性直流输电系统控制中的关键技术问题,如换流器控制、系统稳定性分析、故障穿越能力等,进行深入的分析和讨论。
通过本文的综述,读者可以对柔性直流输电系统的控制研究有一个全面而深入的了解,掌握该领域的研究现状和发展趋势,为相关研究和工程实践提供有益的参考和借鉴。
本文也期望能够激发更多学者和工程师对柔性直流输电系统控制技术的深入研究和探索,共同推动该领域的技术进步和应用发展。
二、柔性直流输电系统控制技术概述柔性直流输电系统(VSC-HVDC)作为新一代直流输电技术,以其独特的优势在电网建设中逐渐占据重要地位。
其核心在于采用了电压源型换流器(VSC),这种换流器能够通过快速控制其开关状态来实现对直流电流和电压的灵活调节,因此得名“柔性”。
柔性直流输电系统的控制技术是确保其高效、稳定运行的关键。
柔性直流输电系统的控制技术主要包括换流器控制、系统控制和保护控制三个方面。
换流器控制直接决定了VSC的运行特性,其核心任务是实现有功功率和无功功率的独立控制。
这通常通过控制VSC的触发角和调制比来实现,从而确保直流电压和电流的稳定。
系统控制则关注于整个直流输电系统的稳定性和经济性。
这包括直流电压控制、有功功率分配、无功功率补偿等。
系统控制需要综合考虑交流侧和直流侧的动态行为,确保在各种运行工况下系统都能够保持稳定。
特高压直流输电控制与保护技术分析摘要:与高压直流电相比,直流具有灵活多样的运行方式,在大功率长距离传输中表现出巨大的优势,在世界各地广泛应用,直流输电控制与保护技术是整个直流系统的大脑,在系统的运行中起着非常重要的作用,直接决定着直流工程的运行状态和安全性。
近年来,在科学技术和经济等各种因素的作用下,直流输电的控制和保护技术不断得到改进和发展,特别是在保护手段和设备方面。
为此,本文结合当前实际,分析了特高压直流输电的控制保护技术,探讨了其应用效果和价值,希望能够为我国电力系统的稳定发展提供一些理论上的参考。
关键词:特高压;直流输电;控制保护技术;应用分析现今,计算机技术的发展和用电需求的增加,直流输电技术提出了更高的要求,在这种情况下,直流输电控制保护技术也得到了发展,性能控制和保护策略,以持续改进,不断改进的转炉部件,设备和设备的性能改善等。
该技术的发展也为特高压直流输电系统的进展提供了基本条件.1直流输电的基本控制保护技术分析直流输电主要通过接入三相电压转换器元件,并为了完成交流电流,该工艺成为整流端,触发角度指的是换向元件及其连接的交流电压超过0点作为计算和预测数据结果的出发点,当交流系统参数为固定值时,触发角成为控制直流电压值的主要内容,将导致整个直流回路电流值的变化。
,影响了输电过程,因此可以分析转换元件的触发角是控制直流输电的最终变量。
另外,直流控制技术中最为重要的是Vd/Id曲线,这两条曲线描述了直流通电触发角和不同直流电压、电流的影响,是直接决定输电系统运行状态的重要参数。
当前,直流输电的基本控制技术可以概括为以下几点。
首先,确定触发角,根据上文提到的,触发角是直流电流的控制技术的关键参数,在取直流电流、电压和取逆变侧换流器的电流关闭和断开时刻,不同的控制策略形成了以电流调节器、逆变侧熄弧角调节器、电压调节器为主的经典控制三角。
其次,确定触发脉冲,触发脉冲如何发生,需要考虑到交流电压是否同步,以及是按照间距触发还是按相触发为主要方法。
高压直流输电的控制和保护系统策略分析2河南绿控科技有限公司,河南许昌461000摘要:近几年来连缕的雾猩天气,己成为我国当前社会发展和能源策咯选择面临的最迫切需要解决的环境问题,火力发电中燃煤是影响雾靈的主要污染成分PM2.5的一个重要因素。
治理雾靈,首先要控制燃煤排放。
经济发展需要电力能源,但目前燃煤发电仍旧是我国主要电力来源。
随着国内环境和能源的问题突出,对我国电网结构和能源布局提出新的要求。
高压直流输电有着输送能量大、距离远、损耗低、运行可靠、调节快速等优点,越来越被广泛应用。
这就需要对高压直流输电的控制和保护系统策略进行进一步分析,实现最优策略方案。
关键词:高压直流输电;控制;保护系统中图分类号:G31文献标识码:A1引言高压直流输电系统直流分压器传感器故障是导致直流电压波动的直接原因。
从2005年07月至今,高肇直流、天广直流、兴安直流、普侨直流等国内直流工程多次出现电压波动。
发生电压波动时,逆变侧直流电压测量值比实际值偏低,整流侧直流电压在直流控制系统作用下比电压参考值高。
电压波动幅度越大对直流系统造成的影响越严重,甚至会造成整流侧电压幅值达到部分直流保护的电压定值,如直流低电压保护(27DC)或过电压保护(59/37DC),导致直流闭锁。
因此,研究直流电压控制原理,改进直流电压稳定控制方法,降低电压波动对直流系统稳定性的影响,具有十分重要的意义。
2高压直流输电系统电气回路接线方式2.1单极大地回线方式单极大地回线方式是利用整流站和逆变站的同一个极、同一极直流线路、两侧接地极线路和大地构成直流回路。
在此种接线方式下,大地相当于直流回路中的一根导线,流经大地的电流与流经直流线路的电流大小相等,为直流输电系统的运行电流。
这种方式下直流输电过程中的损耗与双极回线方式下一个极的损耗相比要偏大,因为增加了直流电流流经接地极线路和大地的损耗。
如果直流输电系统接地极长期通过比较大的入地电流,将造成极址附近金属设施的电腐蚀,还会导致中性点接地变压器铁芯磁饱和。
浅析直流输电控制保护系统
摘要:直流输电是电力系统近年来迅速发展的一项新技术,直流输电克服了电
感损耗,只有导线电阻损耗,主要应用于远距离大容量输电、电力系统联网、远
距离海底电缆、大城市地下电缆送电、配电网络轻型直流输电等方面。
直流输电
与交流输电相互配合,构成现代电力传输系统。
随着电力系统技术经济需求的不
断增长和提高,直流输电受到广泛的注意并得到不断的发展。
关键词:电力系统;直流输出;保护层面;控制保护
一、直流输电概况
(一)直流输电系统概念
直流输电系统由直流线路、逆变站、整流站、交流侧电力滤波器、直流侧电
力滤波器、换流变压器、无功补偿装置、直流电抗器以及保护、控制装置等构成,通常是两端直流输电系统,其中整流站和逆变站属于换流站,通过整流站和逆变
站能够实现交流电力和直流电力的转换,换流站是直流输电系统比较重要的组成
部分。
首先由交流系统的送电端将交流功率通过换流变压器送到整流器,完成交
流功率到直流功率的转化,然后将直流功率通过线路传输到逆变器,逆变器又会
将直流功率转化为交流功率,最终传输到交流电力系统的受电端。
(二)换流站的换流技术
整流站和逆变站都属于换流站,他们的核心元件都是换流器,通常由一个或
者是多个基本换流单元组成的,多采取串联模式,其中电路一般应用三相换流桥,较为常用的材料为可控硅阀,即常说的晶闸阀。
当换流器进行工作的时候,控制
桥阀能够触发控制调节装置,改变了触发相位,从而达到直流输送功率、流经电
阻的直流电流、直流电压的瞬时值等的调整。
与此同时,同样的触发脉冲能够控
制所有桥阀的每一个可控硅元件,在三相电源的波为对称正弦波的时候,线电压
从负到正,经过零点时脉冲会触发桥阀,使得阀两端的电压均变为正电压,完成
阀开通的动作。
六个脉冲发生器能够各自独立的完成对位于单桥换流器中六个桥
阀的触发,使得交流正弦波刚好能够经过第一个周期,在线电压行进到下一个零
点的时候,交流弦电源开始触发第二个周期,但是在工程上所应用的多为十二脉
的双桥换流器,因为十二脉双桥换流器能够产生更小脉波的直流输电电压。
二、直流输电控制保护层
直流输电系统的控制根据层级的不同可以分为三个层面,即现场控制层、过
程控制层、运行人员控制层。
(一)现场控制层
现场控制层使得交直流主设备能够在就地进行控制,通过硬线将交直流主设
备与较近距离的设备接口进行连接,通过现场总线将交直流主设备与较远距离的
设备接口进行连接。
通过分布式的I/O控制单元实现现场控制,包括高压装置的
联锁、输出控制命令、控制命令的监控、SER事件的产生、自诊断、二进制模拟
量的预处理等功能。
通过现场控制层面能够实现控制系统的分层式、分布式,来
自调度中心的控制命令经由高速LAN和现场总线进行传达,监控系统的实时数据
在逐层反馈,保证主系统、从系统的循环数据传输过程。
(二)过程控制层
过程控制层包括交流/直流站控制系统和极控系统,是直流输电控制系统的核
心组成。
交流/直流站控制系统的任务是顺序控制交流场和换流站直流系统,为了
避免系统故障和系统维护导致的直流输电系统不可用,所以直流/交流站控制多采用冗余结构,因其具有双重化配置,能够包含各个层面的系统。
极控系统在运行
人员下达命令后,发出稳定、有效、正确的功率定值,执行与双极、换流器相关
的所有功能,为阀和换流器提供全部控制功能。
而极控系统包括三方面,即换流
器控制(也称阀控系统)、极控制、双极控制,其中双极控制能够实现与双极运
行相关的所有控制功能,在接收到运行人员的命令以后,通过给极控制层传送相
应的电流、极功率参考值,实现两极之间的功能协调,包括电流平衡控制、功率
传输方向控制、稳定控制、极间电流转移、运行人员功率参考值设定等功能。
极
控制能够实现与极相关的功能空中,接收的命令来自于双极控制层,然后产生换
流器闭环控制的直流电压、电流、熄弧角控制参考值,最后完成极电流协调、换
流器协调、分接头控制、极解锁闭锁、空载加压、故障恢复等功能。
阀控系统由
漏水检测、避雷检测、光接收发射、电源及接口、反向恢复保护控制单元等硬件
组成,包括触发准备、负电压检测、反向恢复保护、关状态四个阶段。
(三)运行人员控制层
运行人员控制层实现运行人员的控制,包括常见的基本功能:用户管理、曲
线显示、保护信息处理、谐波监控、报表处理、图形页面显示、自动功率控制、
事件顺序记录、控制操作等。
对于UHVDC系统来说,其启停、状态、运行、故
障以及辅助操作也可通过运行人员层面实现。
阀控工作站、运行人员工作站、远
动工作站均采用冗余配置实现双工作站,两个工作站相互配合,一个负责进行控制,另外一个负责刷新实时数据,在主设备出现故障后可自动将备用的切换为主
状态,同时完成调度的接口切换。
三、直流输电系统的常见故障及保护
(一)常见故障
引起直流输电故障的因素比较多,包括系统装置的误操作、换相的失败、雷
电和污染物引起的绝缘失效等诸多因素;常见的故障有电流中断、换相失败、触
发脉冲丢失、短路等。
(二)直流输电保护
(1)换流器保护
换流器的保护方式比较多,如换流器的三角侧短路保护、星型侧短路保护,
其动作结果为:将相应极紧急闭锁,将相应换流变压器的进线开关断开,高速中
性母线开关断开,闭锁触发脉冲。
交流过程保护,用于长时间超负荷故障的控制,逆变器的短路备用保护,整流器的短路备用保护,在发生短路、交流系统故障、
通信问题时候不会跳闸的情况,通过交流过程保护能够紧急闭锁相应的极并断开
换流变压器的进线开关。
另常见的也有直流差动保护、星型侧桥差保护、三角侧
桥差保护等。
(2)直流母线保护
直流母线保护常见的有高压直流母线差动保护、中性直流母线差动保护、直
流过流保护等,通过这些保护能够实现相应极的紧急闭锁、换流变压器进线开关
的关闭、中性母线开关的关闭等,其中直流过流保护应用较为常见,其保护范围
能够涵盖整个极,能够作为其他保护方式的备用保护手段。
(3)接地极线路保护
接地极线路保护包括接地极电流不平衡保护、中性母线差动保护、接地极过
流保护、过电压保护、金属接地故障保护等,其动作后果有将相应极闭锁、发出
报警信号、将运行极闭锁等。
(4)直流线路保护
直流线路保护包括对开关的保护和对设备的保护两种,其中设备保护方式有行波保护、低电压保护、直流线路差动保护、交直流碰线保护、远方站故障检测等;开关的保护有高速中性母线开关保护、高速接地开关保护、金属回线开关保护等。
四、结论
通过文章对于直流输电的组成结构及其换流技术的分析总结了几个层面的直流输电保护方式,包括常见的换流器保护、直流母线保护、接地极线路保护、直流线路保护等,旨在为相关从业人员提供参考意见。
参考文献:
[1]杨光亮,邰能灵,郑晓冬,等.±800kV特高压直流输电控制保护系统分析[J].高電压技术,2016(12):3277-3283.
[2]李延龙,杨亚璞,李楠.高压直流输电控制保护系统的冗余可靠性研究[J].电力系统保护与控制,2016(16):59-62.
[3]王徭.特高压直流输电控制与保护技术的研究[J].电力系统保护与控制,2016(15):53-58+64.
[4]张望,黄利军,郝俊芳,等.高压直流输电控制保护系统的冗余设计[J].电力系统保护与控制,2016(13):88-91.
[5]石岩,韩伟,张民,等.特高压直流输电工程控制保护系统的初步方案[J].电网技术,2016(02):11-15+21.。