第三章_变压器漏感对整流电路的影响
- 格式:ppt
- 大小:451.00 KB
- 文档页数:6
变压器漏电抗对整流电路的影响一、换相期间的输出电压 以三相半波可控整流大电感负载为例,分析漏抗对整流电路的影响。
在换相(即换流)时,由于漏抗阻止电流变化,因此电流不能突变,因而存在一个变化的过程。
ωt1时刻触发V2管,使电流从a相转换到b相,a相电流从Id不能瞬时下降到零,而b相电流也不能从零突然上升到Id,电流换相需要一段时间,直到ωt2时刻才完成,如图2-23(c)所示,这个过程叫换相过程。
换相过程所对应的时间以相角计算,叫换相重叠角,用γ表示。
在重叠角γ期间,a、b两相晶闸管同时导电,相当于两相间短路。
两相电位之差ub-ua称为短路电压,在两相漏抗回路中产生一个假想的短路电流ik,如图2-23(a)虚线所示(实际上晶闸管都是单向导电的,相当于在原有电流上叠加一个ik ),a相电流ia=Id- ik ,随着ik的增大而逐渐减小;而ib= ik是逐渐增大的。
当增大到Id也就是ia减小到零时,V1关断,V2管电流达到稳定电流Id ,完成换相过程。
在换相过程中,ud波形既不是ua也不是ub,而是换流两相电压的平均值。
与不考虑变压器漏抗,即γ=0时相比,整流输出电压波形减少了一块阴影面积,使输出平均电压Ud减小了。
这块减少的面积是由负载电流Id换相引起的,因此这块面积的平均值也就是Id引起的压降,称为换相压降,其值为图中三块阴影面积在一个周期内的平均值。
对于在一个周期中有m次换相的其它整流电路来说,其值为m块阴影面积在一个周期内的平均值。
由式(2-21)知,在换相期间输出电压ud = ub -LT(dik/dt)= ub -LT(dib/dt),而不计漏抗影响的输出电压为ub ,故由LT引起的电压降低值为ub -ud= LT(dib/dt ),所以一块阴影面积为二、换相重叠角γ 为了便于计算,坐标原点移到a、b相的自然换相点,并设 从电路工作原理可知,当电感LT中电流从0变到Id时,正好对应ωt从α变到α+γ,根据这些条件,再进行数学运算可求得 上式是一个普遍公式,对于三相半波电路,代入m=3可得 对于三相桥式电路,因它等效于相电压为时的六相半波整流电路,电压为,m=6,代入后结果与三相半波电路相同。
【电⼒电⼦技术期末考试】简答题简答题:1、晶闸管的触发电路有哪些要求?1触发电路发U的触发信号应具有⾜够⼤的功率2不该触发时,触发电路因漏电流产⽣的漏电压应⼩于控制极不触发电压UGT 3触发脉冲信号应有⾜够的宽度,4触发脉冲前沿要陡5触发脉冲应与主回路同步,且有⾜够的移相范围。
导通:正向电压、触发电流半控:晶闸管全控:门极可关断晶、电⼒晶体管、电⼒场效应管,IGBT电流控门极可关断晶、电⼒晶体管、电压控电⼒场效应管,IGBT半控型器件有SCR(晶闸管),全控型器件有GTO、GTR、MOSFET、IGBT电流驱动器件有SCR、GTO、GTR 电压型驱动器件:MOSFET、IGBT☆半控器件:⼤电压⼤电流,即⼤功率场合☆全控器件:中⼩功率2、具有变压器中⼼抽头的单相全波可控整流电路,问该变压器还有直流磁化问题吗?具有变压器中⼼抽头的单相全波可控整流电路中,因为变压器⼆次测绕组中,正负半周内上下绕组内电流的⽅向相反,波形对称,其⼀个周期内的平均电流为零,故不会有直流磁化的问题(变压器变流时双向流动的就没有磁化存在磁化的:单相半波整流、三相半波整流)3、电压型逆变电路中反馈⼆极管的作⽤是什么?为什么电流型逆变电路中没有反馈⼆极管?在电压型逆变电路中,当交流侧为阻感负载时需要提供⽆功功率,直流侧电容起缓冲⽆功能量的作⽤。
为了给交流侧向直流侧反馈的⽆功能量提供通道,逆变桥各臂都并联了反馈⼆极管。
当输出交流电压和电流的极性相同时,电流经电路中的可控开关器件流通,⽽当输出电压电流极性相反时,由反馈⼆极管提供电流通道。
在电流型逆变电路中,直流电流极性是⼀定的,⽆功能量由直流侧电感来缓冲。
当需要从交流侧向直流侧反馈⽆功能量时,电流并不反向,依然经电路中的可控开关器件流通,因此不需要并联反馈⼆极管。
电压型有电容器(电源侧),电流型⼀般串联⼤电感4、绘制直流升压斩波电路原理图。
1t t T U E E E t t β+===on off o off offRU I o o =直流降压斩波电路:Mb)t t U E E E t t Tα===+on on o on off RE U I m o o -=升降压:c)1n t t U E E E t T t αα===--on on o off o off on t t I I =215、电压型逆变电路的特点。
电力电子技术考试重点第三章一、换向重叠角r变化规律:(1)Id越大,r越大;(2)Xb越大,r越大;(3)a<90度,a越小,r越大。
二、变压器漏感对整流电路的影响:(1)出现换向重叠角r,整流输出电压平均值Ud降低。
(2)整流电路的工作状态增多。
(3)晶闸管的di/dt减小,有利于晶闸管的安全开通。
(4)换向时晶闸管电压出现缺口。
产生正的du/dt,可能使晶闸管误导通,为此必须加吸收电路。
(5)换向使电网电压出现缺口,成为干扰源。
三、采用多重连接方法并不能提高位移因数,但可以使输入电流谐波大幅减小,从而也可以在一定程度上提高功率因数。
(多重电路的顺序控制)前面介绍的多重连接电路中,各整流桥交流二次输入电压错开一定相位,但工作时各桥的控制角a是相同的。
四、逆变失败的原因?(1)触发电路工作不可靠,不能适时、准确地给各经这关分配脉冲。
(2)晶闸管发生故障,在应该阻断期间,器件失去阻断能力,或在应该导通时,器件不能导通。
(3)在逆变工作时,交流电源发生缺相或瞬间消失,由于直流电动势Em的存在,晶闸管仍可导通,此时变流器的交流侧由于失去了同直流电动势极性相反的交流电压,因此直流电动势将通过晶闸管使电路短路。
(4)换向的裕量角不足,引起换向失败。
五、带平衡电抗器的双反星形可控整流电路与三相桥式全控整流电路相比有何主要异同?答:带平衡电抗器的双反星形可控整流电路与三相桥式全控整流电路相比有以下异同点:①三相桥式电路是两组三相半波电路串联,而双反星形电路是两组三相半波电路并联,且后者需要用平衡电抗器;②当变压器二次电压有效值U2相等时,双反星形电路的整流电压平均值U d 是三相桥式电路的1/2,而整流电流平均值I d是三相桥式电路的2 倍。
③在两种电路中,晶闸管的导通及触发脉冲的分配关系是一样的,整流电压u d和整流电流i d的波形形状一样。
六、整流电路多重化的主要目的是什么?答:整流电路多重化的目的主要包括两个方面,一是可以使装置总体的功率容量大,二是能够减少整流装置所产生的谐波和无功功率对电网的干扰。
简答题:1、晶闸管的触发电路有哪些要求?1触发电路发U的触发信号应具有足够大的功率2不该触发时,触发电路因漏电流产生的漏电压应小于控制极不触发电压UGT 3触发脉冲信号应有足够的宽度,4触发脉冲前沿要陡5触发脉冲应与主回路同步,且有足够的移相范围。
导通:正向电压、触发电流半控:晶闸管全控:门极可关断晶、电力晶体管、电力场效应管,IGBT电流控门极可关断晶、电力晶体管、电压控电力场效应管,IGBT半控型器件有SCR(晶闸管),全控型器件有GTO、GTR、MOSFET、IGBT电流驱动器件有SCR、GTO、GTR 电压型驱动器件:MOSFET、IGBT☆半控器件:大电压大电流,即大功率场合☆全控器件:中小功率2、具有变压器中心抽头的单相全波可控整流电路,问该变压器还有直流磁化问题吗?具有变压器中心抽头的单相全波可控整流电路中,因为变压器二次测绕组中,正负半周内上下绕组内电流的方向相反,波形对称,其一个周期内的平均电流为零,故不会有直流磁化的问题(变压器变流时双向流动的就没有磁化存在磁化的:单相半波整流、三相半波整流)3、电压型逆变电路中反馈二极管的作用是什么?为什么电流型逆变电路中没有反馈二极管?在电压型逆变电路中,当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。
为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。
当输出交流电压和电流的极性相同时,电流经电路中的可控开关器件流通,而当输出电压电流极性相反时,由反馈二极管提供电流通道。
在电流型逆变电路中,直流电流极性是一定的,无功能量由直流侧电感来缓冲。
当需要从交流侧向直流侧反馈无功能量时,电流并不反向,依然经电路中的可控开关器件流通,因此不需要并联反馈二极管。
电压型有电容器(电源侧),电流型一般串联大电感4、绘制直流升压斩波电路原理图。
1t t T U E E E t t β+===on off o off offRU I o o =直流降压斩波电路:Mb)t t U E E E t t Tα===+on on o on off RE U I m o o -=升降压:c)1n t t U E E E t T t αα===--on on o off o off on t t I I =215、电压型逆变电路的特点。
(完整版)电力电子技术简答题重点1. 晶闸管导通的条件是什么?关断的条件是什么?答: 晶闸管导通的条件: 应在晶闸管的阳极与阴极之间加上正向电压。
应在晶闸管的门极与阴极之间也加上正向电压和电流。
晶闸管关断的条件: 要关断晶闸管, 必须使其阳极电流减小到维持电流以下,或在阳极和阴极加反向电压。
晶闸管维持的条件要维持晶闸管, 必须使其晶闸管电流大于到维持电流。
2. 变压器漏感对整流电路的影响(1)出现换相重叠角r,整流输出电压平均值Ud降低。
( 2)整流电路的工作状态增多( 3)晶闸管的di/dt 减小,有利于晶闸管的开通。
( 4)换相时晶闸管电压出现缺口,产生正的du/dt, 可能使晶闸管误导通,为此必须加吸收电路.( 5)换相使电网电压出现缺口,成为干扰源。
3. 什么是谐波,什么是无功功率,们的危害. 为建立交变磁场和感应磁通而需要的电功率成为无功功率,电力电子装置消耗无功功率,对公用电网的不利影响:( 1 )无功功率会导致电流增大和视在功率增加,导致设备容量增加;( 2)无功功率增加,会使总电流增加,从而使设备和线路的损耗增加( 3)无功功率使线路压降增加,冲击性无功负载还会使电压剧烈波动。
谐波是指电流中所含有的频率为基波的整数倍的电量,电力电子装置产生谐波,对公用电网的危害:( 1)谐波使电网中的元件产生附加的谐波损耗,降低发电、输电及用电设备的效率,大量的三次谐波流过中性线会使线路过热甚至发生火灾;( 2)谐波影响各种电气设备的正常工作,使电机发生机械振动、噪声和过热,使变压器局部严重过热,使电容器、电缆等设备过热、使绝缘老化、寿命缩短以至损坏;(3)谐波会引起电网中局部的并联谐振和串联谐振,从而使谐波放大会使危害大大增大,甚至引起严重事故;(4)谐波会导致继电保护和自动装置的误动作,并使电气测量仪表计量不准确;( 5)谐波会对领近的通信系统产生干扰,轻者产生噪声,降低通信质量,重者导致信息丢失,使通信系统无法正常工作。
四、简答题1.晶闸管并联使用时需解决什么问题?如何解决?当晶闸管并联时就会分别因静态和动态特性参数的差异而存在电路分配不均匀的问题,均流不佳,有的器件电流不足,有的过载,有碍提高整个装置的输出,甚至造成器件和装置的损坏。
当需要同时串联和并联晶闸管时,通常采用先串后并的方法连接。
2.变压器漏感对整流电路有一些什么影响?(1)出现换相重叠角γ,整流输出电压平均值U d降低。
(2)整流电路的工作状态增多(3)晶闸管的di/dt减小,有利于晶闸管的安全开通。
有时人为串入进线电抗器以抑制晶闸管的di/dt。
(4)换相时晶闸管电压出现缺口,产生正的du/dt,可能使晶闸管误导通,为此必须加吸收电路。
(5)换相使电网电压出现缺口,成为干扰源3.交流调压电路和交流调功电路有什么区别?二者各运用于什么样的负载?交流调压电路和交流调功电路的电路形式完全相同,二者的区别在于控制方式不同。
交流调压电路是在交流电源的每个周期对输出电压波形进行控制。
而交流调功电路是将负载与交流电源接通几个周波,再断开几个周波,通过改变接通周波数与断开周波数的比值来调节负载所消耗的平均功率。
交流调压电路广泛用于灯光控制(如调光台灯和舞台灯光控制)及异步电动机的软起动,也用于异步电动机调速。
交流调功电路常用于电炉温度这样时间常数很大的控制对象。
由于控制对象的时间常数大,没有必要对交流电源的每个周期进行频繁控制。
4.无源逆变和有源逆变电路有何不同?两种电路的不同主要是:有源逆变电路的交流侧接电网,即交流侧接有电源。
而无源逆变电路的交流侧直接和负载联接。
5.说明PWM控制的基本原理。
PWM 控制就是对脉冲的宽度进行调制的技术。
即通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。
在采样控制理论中有一条重要的结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同,冲量即窄脉冲的面积。
效果基本相同是指环节的输出响应波形基本相同。
摘要本文指出隔离变换器漏感的影响。
由于开关变压器漏感的存在,当控制开关断开的瞬间会产生反电动势,容易把开关器件过压击穿;漏感还可以与电路中的分布电容以及变压器线圈的分布电容组成振荡回路,使电路产生振荡并向外辐射电磁能量,造成电磁干扰。
讲解了影响隔离变换器漏感的因素和漏感的一些其他分析。
关键词:隔离变换器漏感影响目录第一章绪论 (1)1.1 引言 (1)1.2 论文主要内容 (1)第二章漏感 (2)2.1 漏感是什么? (2)2.2 决定漏感大小的因素 (2)2.3 漏感的计算 (3)第三章变压器漏感对整流电路的影响 (4)第四章变压器漏感分析 (7)4.1 电子变压器在电源技术中的作用 (7)4.2 电源技术对电子变压器的要求 (8)4.2.1 使用条件 (8)4.2.2 完成功能 (9)4.2.3 提高效率 (9)4.2.4 降低成本 (10)4.3 新软磁材料在电子变压器中的应用 (11)4.3.1 硅钢 (11)4.3.2 软磁铁氧体 (12)4.3.3 非晶和纳米晶合金 (13)4.3.4 软磁复合材料 (14)4.4 新磁芯结构在电子变压器中的应用 (15)4.4.1 搭接式卷绕磁芯 (15)4.4.2 立体三角形磁芯 (15)4.4.3 正交形磁芯 (16)4.4.4 磁性液体磁芯 (16)第五章隔离变压器的漏感 (17)5.2 变压器的基本原理 (17)5.3 变压器的损耗 (17)5.4 变压器的材料 (18)第六章结语 (19)致谢 (20)参考文献 (21)第一章绪论1.1 引言漏电感在开关电源主回路中一定存在,尤其在变压器、电感器等中都是不可避免的。
过去在讨论中一般把它略而不计,设计中更无从考虑。
现在随着开关电源的单机容量和整机容量的日益提高,这个参数影响到开关电源主要的参数,例如,40A/5V输出的开关电源,电压损失竟达20%,还影响到开关电源的重量和效率。
因此,漏电感问题讨论、研究已摆到日程上了。