导数在经济学的应用
- 格式:doc
- 大小:164.50 KB
- 文档页数:4
导数在经济中的应用1. 引言导数是微积分中的一个重要概念,它在经济学中有许多重要的应用。
导数可以用于解决一系列经济问题,如利润最大化、边际分析和最优化问题等。
本文将介绍导数在经济学中的应用,包括边际效益、弹性、生产函数和消费函数等。
2. 边际效益在经济学中,边际效益指的是增加或减少一单位生产或消费所带来的额外效益。
导数可以用来计算边际效益。
例如,在生产中,我们可以通过计算产出的边际效益来确定最有效的生产水平。
导数可以帮助我们计算出增加一单位产出所带来的额外收益。
同样,在消费中,导数可以帮助我们计算出消费品的边际效益,从而确定最佳消费水平。
3. 弹性在经济学中,弹性指的是经济变量相对于另一个变量的变化率。
导数可以用来计算弹性。
例如,价格弹性是指商品需求量对价格变化的敏感程度。
导数可以帮助我们计算出商品需求量对商品价格变化的弹性。
这对于企业定价、市场分析和政府政策制定等都非常重要。
4. 生产函数在经济学中,生产函数描述了生产要素(如劳动力和资本)与产出之间的关系。
导数在生产函数中有重要的应用。
导数可以帮助我们理解生产要素的边际效用和生产效率。
通过计算生产函数的导数,我们可以确定最优的生产要素组合,从而实现生产效率的最大化。
5. 消费函数在经济学中,消费函数描述了消费者通过消费来获得效用的方式。
导数在消费函数中也有重要的应用。
导数可以帮助我们计算消费者对不同消费品的边际效用,从而确定最佳的消费组合。
通过计算消费函数的导数,我们可以了解到在不同价格水平下,消费者对不同商品的需求变化情况。
6. 最优化问题在经济学中,最优化问题是经常遇到的问题之一。
最优化问题指的是在一定的约束条件下,寻找使某一目标函数取得最大值或最小值的变量值。
导数在解决最优化问题中发挥了重要的作用。
通过计算目标函数的导数,我们可以找到目标函数取得最大值或最小值的变量值,从而解决最优化问题。
7. 结论导数在经济学中有许多重要的应用。
它可以帮助我们解决一系列经济问题,如边际效益、弹性、最优化问题等。
浅谈导数在经济分析中的应用导数是微积分中的重要概念,它在经济分析中有着十分重要的应用。
在经济学领域中,导数在描述市场变化、成本分析和边际效益等方面发挥着重要作用。
本文将从以上几个方面来探讨导数在经济分析中的应用。
导数在描述市场变化方面具有重要作用。
在市场经济中,市场需求和供给的变化对市场价格有着重要影响。
导数可以帮助分析市场需求曲线和供给曲线的斜率,从而帮助理解市场变化。
当市场需求曲线的导数为负数时,表示当价格上涨时市场需求下降的速度;当市场需求曲线的导数为正数时,表示当价格上涨时市场需求上涨的速度。
这样,利用导数来描述市场变化可以帮助经济学家更加准确地理解市场的运行规律,为经济政策的制定提供更加可靠的依据。
导数在成本分析方面也有着重要的应用。
在企业生产中,成本是一个非常重要的方面,对于企业的经营状况和利润水平有着重要影响。
在经济学中,导数可以帮助分析企业成本函数的变化。
企业的边际成本就是通过对成本函数进行求导得到的。
通过分析边际成本的变化,可以帮助企业决定最优的生产规模和生产方式,从而提高生产效率,降低生产成本,实现良好的经济效益。
导数在经济分析中具有十分重要的应用价值。
通过对市场变化、成本分析和边际效益等方面的导数分析,可以帮助理解经济运行的规律,为经济政策的制定和企业经营的决策提供重要的依据。
对于经济学家、企业家和政策制定者来说,掌握导数分析方法是十分重要的,可以帮助他们更好地理解和解决相关的经济问题。
希望本文的介绍可以帮助读者更好地理解导数在经济分析中的重要作用。
浅谈导数在经济分析中的应用导数在经济分析中有广泛的应用,主要体现在以下几个方面:1. 边际效应分析:导数可以衡量一个经济变量对另一个经济变量的边际影响。
对于一个生产函数来说,生产量对于投入变量的边际影响可以通过对生产函数求导得到。
这种边际效应分析可以帮助经济学家和决策者理解不同变量之间的相互关系,并制定相应的政策。
2. 最优化问题:很多经济问题可以通过最优化理论求解,而求解最优化问题往往需要使用导数。
生产者在确定生产量时通常会面临成本最小化问题,这个问题可以通过对成本函数求导得到最小化成本对应的生产量。
消费者在确定消费组合时也会面临效用最大化问题,同样可以通过对效用函数求导得到最大化效用对应的消费组合。
3. 弹性分析:弹性是衡量变量之间相互影响的一种度量,而导数可以用来计算弹性。
常见的有价格弹性、收入弹性等。
价格弹性可以告诉我们当价格发生变化时,需求量或供应量的相应变化幅度。
收入弹性可以告诉我们消费者的购买力提高或降低时,对于不同商品需求的变化情况。
通过弹性分析,我们可以更好地理解市场的运行规律,为政策调控提供有力的依据。
4. 经济模型的建立和分析:经济模型是经济学中用来描述经济系统的一种工具,而模型的建立和分析往往需要使用导数。
在宏观经济学中,凯恩斯经济学模型通过对消费函数的导数进行分析,揭示了收入对消费的影响;在微观经济学中,供求模型通过对供给曲线和需求曲线的导数进行分析,揭示了价格和数量之间的关系。
导数在经济分析中具有重要的应用价值。
通过对经济变量之间的边际效应、最优化问题、弹性分析以及经济模型的建立和分析等进行导数的运用,我们可以更好地理解经济现象,分析经济问题,制定经济政策。
导数也为经济学提供了强大的工具和方法,使得经济学成为一门严谨而科学的学科。
导数在经济学中的应用引言导数是微积分的重要概念之一,在经济学中有着广泛的应用。
导数在经济学中的应用不仅可以帮助我们理解市场经济中的各种现象,还可以用于分析经济模型和制定经济政策。
本文将重点介绍导数在经济学中的三个主要应用:边际效应分析、优化问题求解和经济增长模型。
边际效应分析在经济学中,边际效应是指某一经济变量的变化对另一经济变量的影响。
导数可以帮助我们计算出边际效应的大小和方向。
例如,在市场经济中,对某种商品的需求函数往往是一个曲线,而导数可以告诉我们需求曲线上某一点的斜率,也即是该点的价格弹性。
价格弹性越大,说明该商品对价格的敏感度越高。
这对企业制定定价策略和政府制定税收政策都有重要的指导作用。
此外,导数还可以帮助我们分析产量变化对生产本钱和利润的影响。
在经济学中,企业的生产函数通常是某一种投入要素与产量之间的关系。
通过对生产函数求导,我们可以得到边际产量、边际本钱和边际利润的函数。
这些边际效应的分析对企业的生产决策和资源配置非常重要。
优化问题求解优化问题求解是经济学中常见的问题之一,即在给定一组约束条件下,如何找到使某一目标函数最大或最小的决策变量取值。
导数在解决这类问题时起到了关键作用。
在微积分中,导数为函数提供了局部的信息。
在优化问题求解中,我们通常需要找到目标函数的极值点。
通过计算目标函数的导数,并将导数等于零的点作为候选极值点进行分析,我们可以找到目标函数的局部最大值和最小值。
这对于制定经济政策和优化资源配置具有重要意义。
经济增长模型经济增长模型是经济学中研究产出和收入长期增长的理论框架。
导数在经济增长模型中的应用主要表达在生产函数和资本积累方程中。
生产函数是描述产出与生产要素之间的关系的函数。
通过对生产函数求导,我们可以得到投入要素的边际产出,从而帮助我们分析生产要素的配置和经济增长的驱动力。
资本积累方程是经济增长模型中描述资本存量变化的方程。
通过对资本积累方程求导,我们可以得到资本积累率的边际变化,从而帮助我们分析资本积累的速度和经济增长的潜力。
导数在经济学中的应用1. 引言经济学是一门研究人类如何管理资源以满足各种需求的学科。
在经济学中,数学工具起着非常重要的作用,其中导数是一种常用的数学工具。
导数可以帮助经济学家研究和分析各种经济现象,并做出相应的政策建议。
本文将介绍导数在经济学中的应用,并通过具体的例子来说明其作用。
2. 供需分析在经济学中,供需分析是一种基本的方法,用于研究产品或服务的市场行为。
通过对供给曲线和需求曲线的分析,经济学家可以确定平衡价格和数量。
而导数在供需分析中起着重要的作用。
导数可以帮助我们理解市场的反应速度。
例如,假设某种商品的需求量与价格之间存在负相关关系。
通过计算需求曲线的导数,我们可以得到价格变化对需求量变化的敏感度。
当我们知道了市场对价格变化的敏感度后,可以通过调整价格来影响需求量,实现市场的稳定。
3. 生产函数分析在经济学中,生产函数是一种描述生产过程的数学模型。
生产函数可以帮助我们分析输入要素对输出的影响。
而导数在生产函数分析中可以帮助经济学家计算边际产出。
边际产出指的是增加一个单位的输入要素所能获得的额外产出。
通过计算生产函数的导数,我们可以得到边际产出的变化情况。
这对于生产效率的改进和资源的优化分配非常重要。
4. 最优化问题经济学中经常会遇到最优化问题,即在给定的约束条件下,寻找能够使某个目标函数取得最大或最小值的变量取值。
导数在最优化问题中起着重要的作用。
通过计算目标函数的导数,我们可以找到函数的极值点。
这对于决策者来说非常有用,因为他们可以通过调整相关变量来实现经济目标的最大化或最小化。
5. 边际效用分析边际效用是指每增加一个单位的消费量所产生的额外满足感。
在经济学中,通过边际效用的概念,经济学家可以研究消费者的行为和做出相关政策建议。
导数在边际效用分析中起着重要的作用。
通过计算效用函数的导数,我们可以得到边际效用的变化情况。
这可以帮助我们判断消费者对于不同商品之间的偏好,并且可以进行合理的消费决策。
浅谈导数在经济分析中的应用导数是微积分的基础概念之一,它在经济学分析中具有重要的应用价值。
本文将从经济学的角度,简要探讨导数在经济分析中的应用。
导数在经济学中的应用主要有以下几个方面。
一、边际分析边际分析是微观经济学的重要工具之一,它用来研究某个决策在某个点的响应。
在经济学中,边际效应通常是指经济变量的微小变化所引起的效应。
例如,产量的边际效应是指增加一单位生产量所带来的额外效益。
而在微积分中,边际效应可以通过导数来描述。
以需求函数为例,需求函数通常被表示为Q=D(p),其中Q表示需求量,p表示价格,D 为价格的函数。
当p发生微小变化时,需求量也会随之发生微小变化。
设p0为某个价格点,Q0为该价格点下的需求量,则需求函数在p0处的导数D'(p0)即为该点互补需求(即边际需求)的大小。
二、最优化理论在经济学中,最优化问题是指在满足某些约束条件下,选择某个变量的取值,使得某个目标函数的值最大或最小。
而最优化问题可以通过导数来解决。
例如,企业在确定生产规模时,需要考虑生产成本以及市场需求等因素,以求获得最大利润。
假设生产成本为C(Q),市场需求为D(p),企业的利润为R(Q)=pQ-C(Q),则企业通过对R(Q)求导数,确定R(Q)取极值时的生产规模Q*,即可达到最大化利润的目标。
三、计量经济学计量经济学中的许多方法都是基于微积分理论和导数的应用。
例如,回归分析中的弹性系数就是导数的一种应用。
回归分析通常用于研究因变量和自变量之间的关系。
在经济学中,通常用线性模型表示因变量和自变量之间的关系。
例如,GDP与货币供应量之间的关系可以表示为y=ax+b,其中y表示GDP,x表示货币供应量,a和b为常数。
这时,a即为GDP对货币供应量的弹性系数,可以通过对y关于x的导数指标来计算。
总之,导数是微积分的基础概念之一,它在经济学中具有广泛的应用。
无论是研究边际效应、还是最优化决策,都需要用到导数的知识。
导数在经济学中的应用一、边际和弹性(一)边际与边际分析边际概念是经济学中的一个重要概念,通常指经济变量的变化率,即经济函数的导数称为边际。
而利用导数研究经济变量的边际变化的方法,确实是边际分析方法。
1、总成本、平均成本、边际成本总成本是生产一定量的产品所需要的成本总额,通常由固定成本和可变成本两部分构成。
用c(x)表示,其中x 表示产品的产量,c(x)表示当产量为x 时的总成本。
不生产时,x=0,这时c(x)=c(o),c(o)确实是固定成本。
平均成本是平均每个单位产品的成本,若产量由x 0变化到x x ∆+0,则:xx c x x c ∆-∆+)()(00称为c(x)在)(00x x x ∆+,内的平均成本,它表示总成本函数c(x)在)(00x x x ∆+,内的平均变化率。
而x x c /)(称为平均成本函数,表示在产量为x 时平均每单位产品的成本。
例1,设有某种商品的成本函数为:x x x c 30135000)(++=其中x 表示产量(单位:吨),c(x)表示产量为x 吨时的总成本(单位:元),当产量为400吨时的总成本及平均成本分别为:(元)1080040030400135000)(400=⨯+⨯+==x x c 吨)(元/2740010800)(400===x xx c 假如产量由400吨增加到450吨,即产量增加x ∆=50吨时,相应地总成本增加量为:4.686108004.11468)400()450()(=-=-=∆c c x c 728.13504.686)()(500400==∆∆+=∆∆=∆=x x xx x c x x c 这表示产量由400吨增加到450吨时,总成本的平均变化率,即产量由400吨增加到450吨时,平均每吨增加成本13.728元。
类似地运算可得:当产量为400吨时再增加1吨,即x ∆=1时,总成本的变化为:7495.13)400()401()(=-=∆c c x c 7495.1317495.13)(1400=∆∆=∆=x x xx c表示在产量为400吨时,再增加1吨产量所增加的成本。
第七节 导数在经济学中的应用
本节讨论导数概念在经济学中的两个应用——边际分析和弹性分析.
内容分布图示
★ 引言 ★ 边际函数
★ 边际成本 ★ 例1
★ 边际收入与边际利润
★ 例2 ★ 例3 ★ 例4
★ 函数的弹性
★ 需求弹性 ★ 例5
★ 用需求弹性分析总收益的变化 ★ 例6
★ 例7 ★ 例8 ★ 例9
★ 内容小结 ★ 课堂练习
★ 习题3-7 ★ 返回
内容要点:
一、边际分析
在经济学中,习惯上用平均和边际这两个概念来描述一个经济变量y 对于另一个经济变量x 的变化. 平均概念表示在x 在某一范围内取值y 的变化. 边际概念表示当x 的改变量x ∆趋于0时,y 的相应改变量y ∆与x ∆的比值的变化,即当x 在某一给定值附近有微小变化时,y 的瞬时变化.
边际函数: 根据导数的定义, 导数)(0x f '表示)(x f 在点0x x =处的变化率, 在经济学中, 称其为)(x f 在点0x x =处的边际函数值.
边际成本:成本函数)(x C C =(x 是产量)的导数)(x C '称为边际成本函数.
边际收入与边际利润:在估计产品销售量x 时, 给产品所定的价格)(x P 称为价格函数, 可以期望)(x P 应是x 的递减函数. 于是,
收入函数 )()(x xP x R =
利润函数 )()()(x C x R x L -=()(x C 是成本函数)
收入函数的导数)(x R '称为边际收入函数; 利润函数的导数)(x L '称为边际利润函数.
二、 函数弹性
函数弹性的概念:在边际分析中所研究的是函数的绝对改变量与绝对变化率, 经济学中常需研究一个变量对另一个变量的相对变化情况, 为此引入下面定义.
定义1 设函数)(x f y =可导, 函数的相对改变量
)
()()(x f x f x x f y y -∆+=∆ 与自变量的相对改变量
x x ∆之比x
x y y //∆∆, 称为函数)(x f 从x 到x x ∆+两点间的弹性(或相对变化率). 而极限 x x y y x //lim
0∆∆→∆ 称为函数)(x f 在点x 的弹性(或相对变化率), 记为
.lim //lim 00y
x y y x x y x x y y Ex Ey x x '=⋅∆∆=∆∆=→∆→∆ 注: 函数)(x f 在点x 的弹性
Ex
Ey 反映随x 的变化)(x f 变化幅度的大小,即)(x f 对x 变化反应的强烈程度或灵敏度. 数值上, )(x f Ex
E 表示)(x f 在点x 处,当x 产生1%的改变时, 函数)(x f 近似地改变)(x f Ex E %, 在应用问题中解释弹性的具体意义时, 通常略去“近似”二字.
需求弹性:设需求函数)(P f Q =, 这里P 表示产品的价格. 于是, 可具体定义该产品在价格为P 时的需求弹性如下:
)
()(lim //lim
)(00P f P f P Q P P Q P P Q Q P P P '⋅=⋅∆∆=∆∆==→∆→∆ηη 当P ∆很小时, 有 P
Q P f P P f P f P ∆∆⋅≈'⋅=)()()(η, 故需求弹性η近似地表示在价格为P 时, 价格变动1%, 需求量将变化%η, 通常也略去“近似”二字.
注: 一般地, 需求函数是单调减少函数, 需求量随价格的提高而减少(当0>∆P 时, 0<∆Q ), 故需求弹性一般是负值, 它反映产品需求量对价格变动反应的强烈程度(灵敏度). 用需求弹性分析总收益的变化:总收益R 是商品价格P 与销售量Q 的乘积, 即
),(P f P Q P R ⋅=⋅=
由 ⎪⎪⎭
⎫ ⎝⎛
'+='+=')()(1)()()(P f P P f P f P f P P f R ),1)((η+=P f
知:
(1) 若1||<η, 需求变动的幅度小于价格变动的幅度.,0>'R R 递增. 即价格上涨, 总收益增加; 价格下跌, 总收益减少.
(2) 若1||>η, 需求变动的幅度大于价格变动的幅度.0<'R , R 递减. 即价格上涨, 总收益减少; 价格下跌, 总收益增加.
(3) 若1||=η, 需求变动的幅度等于价格变动的幅度.0='R , R 取得最大值.
综上所述, 总收益的变化受需求弹性的制约, 随商品需求弹性的变化而变化,
例题选讲:
边际分析
例1(讲义例1)设每月产量为x 吨时, 总成本函数为
490084
1)(2++=x x x C (元), 求最低平均成本和相应产量的边际成本.
例2(讲义例2)设某种产品的需求函数为P x 1001000-=, 求当需求量300=x 时的总收入, 平均收入和边际收入.
例3(讲义例3)设某产品的需求函数为x P 1.080-=(P 是价格, x 是需求量), 成本函数为x C 205000+=(元).
(1) 试求边际利润函数)(x L ', 并分别求150=x 和400=x 时的边际利润.
(2) 求需求量x 为多少时, 其利润最大?
例4(讲义例4)设某厂在一个计算期内产品的产量x 与其成本C 的关系为
32000001.0003.061000)(x x x x C C +-+==(元),
根据市场调研得知, 每单位该种产品的价格为6元, 且全部能够销售出, 试求使利润最大的产量.
函数弹性
例5(讲义例5)设某种商品的需求量x 与价格P 的关系为
.411600)(P
P Q ⎪⎭
⎫ ⎝⎛= (1) 求需求弹性)(P η;
(2) 当商品的价格10=P (元)时, 再增加1%, 求该商品需求量变化情况.
例6(讲义例6)某商品的需求函数为275P Q -=(Q 为需求量, P 为价格).
(1) 求4=P 时的边际需求, 并说明其经济意义.
(2) 求4=P 时的需求弹性, 并说明其经济意义.
(3) 当4=P 时, 若价格P 上涨1%, 总收益将变化百分之几?是增加还是减少?
(4) 当6=P 时, 若价格P 上涨1%, 总收益将变化百分之几?是增加还是减少?
例7(讲义例7)糖果厂每周的销售量为Q 千袋, 每袋价格为2元, 总成本函数为
10001300100)(2++=Q Q Q C (元), 试求:
(1) 不盈不亏时的销售量; (2)可取得利润的销售量;
(3) 取得最大利润的销售量和最大利润;
(4) 平均成本最小时的产量.
例8(讲义例8)一玩具经售商以下列成本及收益函数销售某种产品:
60000,001.02.7)(6000
0,0002.04.2)(22≤≤-=≤≤-=x x x x R x x x x C
试问何时利润随产量增加(即增加产量可使利润增加)?
例9 某企业的成本函数为50005.0+=x C ,其中C 的单位为元,而x 为上生产数量. 试求10000,1000=x 及100000时的单位平均成本, 当x 趋近于无穷大时单位平均成本的极限为何?
课堂练习
1.设某产品的成本函数和价格函数分别为
,100
50)(,100053800)(2x x P x x x C -=-+= 决定产品的生产量x , 以使利润达到最大.
2.设商品需求函数为,2/12)(P P f Q -==
(1) 求需求弹性函数;
(2) 求6=P 时的需求弹性;
(3) 在6=P 时, 若价格上涨1%, 总收益增加还是减少? 将变化百分之几?
(4) P 为何值时, 总收益最大? 最大的总收益是多少?。