物理化学实验(压力)
- 格式:ppt
- 大小:3.55 MB
- 文档页数:43
实验二纯液体饱和蒸气压的测量班级:环境14 实验人:覃琳钧郝立翀高宏宇实验时间:2016年4月19日小时:2016-4-19 (9:30-11:00)室温:18.2℃大气压:99.28KPa一、仪器药品饱和蒸气压验装置1套数显恒温水浴1套DP-AF精密数字压力计1台射流式真空泵1台乙醇(分析纯) 若干精密控温仪1套二、实验步骤1.开启数字压差计电源,按单位选择钮至显示单位“kPa”.关紧平衡阀,打开进气阀,待压差计显示数字稳定后,按采零钮。
2.接通冷凝水,关紧进气阀和放空阀、打开平衡阀,开启真空泵电源,打开抽气阀,抽气至压力为-70Kpa左右。
关紧抽气阀,压力变化不得大于0.6 KPa/min。
3.如果符合要求,再次打开抽气阀和平衡阀,抽气提高真空度至沸点仪U型管中连续不断有气泡从试液球中外溢,持续3 min。
4.调节恒温水浴至30.0℃,到达设定温度后,等待自动恒温10 min左右。
5.关紧抽气阀,此时可以关闭真空泵。
6.小心调节平衡阀,使U型管中液面缓慢变化至U型管中两侧液面持平,保持平稳状态2~3 min后记录压力计读数、恒温器温度及大气压,作为一组数据。
7.微开平衡阀,使少量气泡从U型管中外溢1 min,重复步骤6,得另一组数据。
8.重复步骤6~7,得到同一指定温度下的6组实验数据。
9.重复步骤4~8,分别测定35.0,40.0,45.0,50.0,55.0, 60.0, 65.0℃等8个实验温度点。
10.待实验完成后,打开放空阀,开启进气阀和平衡阀引入空气,关闭冷却水,关断所有仪器电源开关。
三、 数据记录和处理1、用列表法处理实验数据,列出p*~T 表与~1/T 表饱和蒸气压p* =大气压读数 + 压差计读数2、画p*~T 图和~1/T 直线图*ln p *ln p1.由直线图~1/T 可知直线斜率K=-6082.9 2.由克-克方程可知在实验温度区间内,即直线斜率K=-/R.得=-6082.9×(-8.3145)=50576.3J/mol3.由直线图~1/T 以及所得的方程Y=-6082.9X+22.13可知乙醇的正常沸点(101.325Kpa)为:T=347.34k(74.19℃)4.相对误差:T 的相对误差=(347.34-351.52)/351.52×100%=-1.19% 误差分析:a.实验开始时恒温水浴锅的回差调的是0.3未调到规定的0.1以至于开始几组数据有一定的测量误差。
物理化学实验最大气泡压力法测定溶液表面张力C210 2010-04-12T=286.15K P=85.02kPa一、实验目的1.掌握最大气泡法测定溶液表面张力的原理和方法2.测水溶液的表面张力并计算定不同浓度正丁醇计算吸附量3.加深对表面张力、表面自由能、表面张力和吸附量关系的理解二、实验原理处于溶液表面的分子,受到不平衡的分子间力的作用而具有表面张力s.气泡最大压力法测定表面张力装置见实物;实验中通过滴水瓶滴水抽气使得体系压力下降,大气压与体系压力差△p逐渐把毛细管中的液面压至管口,形成气泡。
如果毛细管半径很小,则形成的气泡基本上是球形的;当气泡开始形成时,表面几乎是平的,这时曲率半径最大;随着气泡的形成,曲率半径逐渐变小,直到形成半球形,这时曲率半径R和毛细管半径r相等,曲率半径达最小值,根据拉普拉斯公式得:附加压力达最大值ΔP max =σ/r min。
气泡进一步长大,R变大,附加压力则变小,直到气泡逸出。
加入表面活性物质时溶液的表面张力会下降,溶质在表面的浓度大于其在本体的浓度,此现象称为表面吸附现象;单位溶液表面积上溶质的过剩量称为表面吸附量Γ, Γ=-(c/RT)*( dσ/dc).对可形成单分子层吸附的表面活性物质,溶液的表面吸附量Γ与溶液本体浓度c之间的关系符合朗格谬尔吸附等温式: Γ=Γ∞*kc/1+kc朗格谬尔吸附等温式的线性形式为: c/Γ=c/Γ∞+1/kΓ∞Γ∞为饱和吸附时,单位溶液表面积上吸附的溶质的物质的量,则每个溶质分子在溶液表面上的吸附截面积为:A m=1/(N A*Γ∞)三、仪器与试剂恒温槽装置;数字式微压差计;抽气瓶l个;表面张力测定仪烧杯(1000mL);T形管1个;电导水;正丁醇(A.R.)及其不同浓度的标准溶液;四、实验步骤1.仪器常数的测定将表面张力测定仪清洗干净;在干净的表面张力测定仪中装入电导水,使毛细管上端塞子塞紧时,毛细管刚好与液面垂直相切;抽气瓶装满水,连接好后旋开下端活塞使水缓慢滴出;控制流速使气泡从毛细管平稳脱出(每个气泡4-6秒),记录气泡脱出瞬间数字微压差计的最大数值,取三次并求平均值。
物理压力实验报告这是一个关于物理压力实验的报告。
在本实验中,我们通过测量物体受力和表面积的变化来研究压力的概念。
实验包括两个任务,分别是使用压强计测量物体受力和使用不同面积的底座测量压力。
在第一个任务中,我们使用了一个压强计来测量物体的受力。
首先,我们选择了一个金属块作为研究对象,并将其放置在水平桌面上。
然后,我们将压强计平行于桌面放置在金属块上,并记录下压强计显示的数值。
接下来,我们改变了金属块的角度,并再次记录下压强计的数值。
最后,我们用不同重物叠加在金属块上,并记录下压强计显示的数值。
通过实验数据的分析,我们发现压强计的读数与金属块受力的大小成正比。
当金属块的角度变化时,压强计的读数也相应地发生了变化。
而叠加重物时,压强计的读数随重物增加而增加。
这表明压强计测量的是金属块所受的压力。
在第二个任务中,我们使用了不同面积的底座来测量压力。
我们选择了三个底座,分别是圆形、方形和长方形。
我们先将一个重物放在底座上,然后使用压强计测量其压力。
接着,我们更换了底座,并重复相同的操作。
通过实验数据的分析,我们发现不同底座的压力值会有所不同。
具体来说,圆形底座的压力值最大,方形次之,长方形最小。
这是由于不同底座的面积不同,而压力是由受力除以面积得到的。
因此,面积越小的底座所测得的压力就越大。
在整个实验过程中,我们还注意到了一些因素对压力的影响。
首先,当金属块的角度变化时,受力的方向也会发生改变。
这可能会影响压力的大小。
其次,底座的形状和大小也会对压力的测量结果产生影响。
最后,压强计的准确性也会对实验结果产生影响。
总的来说,通过这个实验,我们深入理解了压力的概念以及它与受力和表面积的关系。
我们通过使用压强计和不同面积的底座进行实验,得到了有关压力的实验数据,并进行了详细的分析。
通过这个实验,我们还学会了如何进行物理实验、处理实验数据和撰写实验报告。
这对于我们进一步学习和研究物理学有着重要的意义。
实验二液体饱和蒸汽压的测定摘要:本实验采取动态法,通过测定在不同外部压力下水的沸点来确定不同温度条件下水的饱和蒸汽压同温度的关系。
根据实验结果对克拉贝龙—克劳修斯方程进行了验证,并由此方程计算出纯水的平均摩尔汽化热。
关键词:沸点饱和蒸汽压摩尔汽化热克拉贝龙—克劳修斯方程Experiment No.2: The Determination of SaturatedVapor Pressure of the LiquidAbstract: In this experiment, we determined the boiling point of pure water under different exterior pressures in order to make sure the relationship of saturated vapor pressures and temperature, by using ‘Dynamic Method’. According to the result, we validate Clapeyron-Clausuis Equation, and then calculated the molar heat of vaporization of pure water.Key words: Saturated vapor pressure Molar heat of vaporization Clausius-Clapeyron Equation Boiling point1. 前言在封闭体系中,当液相的蒸发速度与相应气相的凝聚速度相等时,体系达到动态平衡,此时的蒸气压为该温度下的饱和蒸气压,液体的饱和蒸气压等于外压时的温度为液体的沸点,因此沸点是随外压变化的,当外压为101325Pa时,称之为正常沸点。
每蒸发1mol液体所需的热量称该温度下的摩尔汽化热。
气体压力及流量的测量压力是用来描述体系状态的一个重要参数。
许多物理、化学性质,比如熔点、沸点、蒸气压几乎都与压力有关。
在化学热力学与化学动力学研究中,压力也是一个很重要的因素。
因此,压力的测量具有重要的意义。
就物理化学实验来说,压力的应用范围高至气体钢瓶的压力,低至真空系统的真空度。
压力通常可分为高压、中压、常压与负压。
压力范围不一致,测量方法不一样,精确度要求不一致,所使用的单位也各有不一致的传统习惯。
一、压力的表示方法压力是指均匀垂直作用于单位面积上的力,也可把它叫作压力强度,或者简称压强。
国际单位制(SI)用帕斯卡作为通用的压力单位,以Pa或者帕表示。
当作用于1m2(平方米)面积上的力为1N(牛顿)时就是1Pa(帕斯卡):但是,原先的许多压力单位,比如,标准大气压(或者称物理大气压,简称大气压)、工程大气压(即kg·cm-2)、巴等现在仍然在使用。
物理化学实验中还常选用一些标准液体(比如汞)制成液体压力计,压力大小就直接以液体的高度来表示。
它的意义是作用在液柱单位底面积上的液体重量与气体的压力相平衡或者相等。
比如,1atm能够定义为:在0℃、重力加速度等于9.80665时,760mm高的汞柱垂直作用于底面积上的压力。
如今汞的密度为13.5951g·cm-3。
因此,1atm又等于1.03323kg·cm-2。
上述压力单位之间的换算关系见表II-2-1。
表Ⅱ-2-1 常用压力单位换算表Pa kg·cm-2 atm bar mmHg 压力单位Pa 1 1.019716×10-2 0.9869236×10-5 1×10-5 7.5006×10-3 kg·cm-2 9.800665×10-4 1 0.967841 0.980665 753.559 atm 1.01325×105 1.03323 1 1.01325 760.0bar 1×105 1.019716 6.986923 1 750.062 mmHg 133.3224 1.35951×10-3 1.3157895×10-3 1.33322×10-3 1 除了所用单位不一致之外,压力还可用绝对压力、表压与真空度来表示。
华南师范大学实验报告学生姓名学号专业年级、班级课程名称物理化学实验实验项目纯液体饱和蒸气压的测定—静态法实验类型□验证□设计■综合实验时间年月日实验指导老师实验评分一、实验目的1.明确纯液体饱和蒸汽压和蒸汽压的概念及其与温度的关系,加深对劳修斯-克拉贝龙(Clausius-Clapeyron)方程式的理解。
2.掌握静态法测定纯液体饱和蒸汽压的原理及方法,并学会用图解法求纯液体的平均并学会由图解法求其平均摩尔气化热和正常沸点。
3.了解数字式低真空侧压仪=,熟悉常用的气压计的使用及校正的方法,初步掌握真空实验技术。
二、实验原理在一定温度下(距离临界温度较远时),纯液体与其蒸气达平衡时的蒸气压称为该温度下液体的饱和蒸气压,简称为蒸气压。
蒸发一摩尔液体所吸收的热量称为该温度下液体的摩尔气化热。
液体的饱和蒸气压与温度的关系用克劳修斯-克拉贝龙方程式表示:式中,R为摩尔气体常数;T为热力学温度;Δvap H m为在温度T时纯液体的摩尔气化热。
在温度变化范围不大时,Δvap H m可以近似作为常数,积分上得:由此式可以看出,以ln p对作图,应为一直线,直线的斜率为m= ,由斜率可求算液体的Δvap H m=-Rm当液体的饱和蒸汽压登月外界压力时,液体沸腾,此时的温度即为该液体的沸点,当外压为1atm(1.01325kPa)时,液体的沸点成为正常沸点。
测定液体饱和蒸气压的方法很多。
本实验采用静态法,是指在某一温度下,直接测量饱和蒸气压,此法一般适用于蒸气压比较大的液体。
实验所用仪器是纯液体饱和蒸气压测定装置,如图Ⅲ-3-1所示。
平衡管由A球和U型管B、C组成。
平衡管上接一冷凝管5,以橡皮管与压力计相连。
A内装待测液体,当A球的液面上纯粹是待测液体的蒸气,而B管与C管的液面处于同一水平时,则表示B管液面上的(即A球液面上的蒸气压)与加在C管液面上的外压相等。
此时,体系气液两相平衡的温度称为液体在此外压下的沸点。
《物理化学实验》课程考试大纲(适用于化学专业)课程编码:150712110学时:48 学分:1.5开课学期:第七学期课程类型:专业基础课考试方式:过程操作考核额外携带的考试工具:无考试持续时间:根据具体情况而定成绩构成:平时成绩[包括出勤、课堂提问、讲解实验、实际操作、实验报告等]×80%+期末考核成绩×20%一、课程简介《物理化学实验》是继无机化学实验、分析化学实验和有机化学实验之后的一门独立的基础实验课程。
其主要目的是使学生初步了解物理化学的研究方法,掌握物理化学的基本实验技术和技能,学会重要的物理化学性能测定,熟悉物理化学实验现象的观察和记录,实验条件的判断和选择,实验数据的测量和处理,实验结果的分析和归纳等一套严谨的实验方法,从而加深对物理化学基本理论的理解,增强解决实际化学问题的能力。
本大纲依据该课程的教学大纲编制而成,适用于化学专业。
共分三个部分。
二、考试内容实验一恒温槽装配及性能测试一、考试知识点恒温槽的构造及恒温原理,分析恒温槽的性能,贝克曼温度计和接触温度计的调节及使用。
二、考核要求1、了解恒温槽的构造及恒温原理,初步掌握其装配和调试的基本技术。
2、绘制恒温槽的灵敏度曲线(温度一时间曲线),学会分析恒温槽的性能。
3、掌握贝克曼温度计和接触温度计的调节及使用。
实验二燃烧热的测定一、考试知识点氧弹卡计各主要部件的作用,掌握燃烧热的测定技术。
恒压燃烧热与恒容燃烧热的差别及相互关系,图解法校正温度改变值。
二、考核要求1、通过萘的燃烧热的测定,了解氧弹卡计各主要部件的作用。
2、掌握燃烧热的测定技术。
3、了解恒压燃烧热与恒容燃烧热的差别及相互关系。
4、学会应用图解法校正温度改变值。
实验三液体饱和蒸汽压的测定一、考试知识点液体饱和蒸汽压和温度的关系:克劳修斯—克拉贝龙方程式,真空实验技术,用图解法求被测液体在实验温度范围内的平均摩尔汽化热与正常沸点。
二、考核要求1、明确液体饱和蒸汽压的定义和气液两相平衡的概念,深入了解液体饱和蒸汽压和温度的关系:克劳修斯—克拉贝龙方程式。
最大气泡压力法对溶液吸附作用和表面张力的探究PB09007215中国科学技术大学地球和空间科学学院摘要 本实验对正丁醇水溶液的吸附作用和表面张力进行探讨,通过最大气泡压力法对不同浓度下正丁醇溶液表面张力进行测定,并运用热力学知识分析其性质及其与吸附作用的关系,计算正丁醇分子横截面积。
关键词 CH 3(CH 2)3OH 最大气泡压力法 表面张力 吸附作用1.前言表面张力,即表面层分子沿着与表面相切的方向垂直作用于表面上任意单位长度线段的表面紧缩力【1】,是液体最重要的性质之一,与所处温度、压力、液体组成及共存的相的组成等都有关系。
吸附作用,即一种界面现象,是在界面层中的一个组分或多各组分的浓度与它们在体相中浓度不同的界面现象【2】.美国物理学家、化学家J.W.Gibbs 在1873~1878年期间对经典热力学规律进行总结,并全面解决了热力学体系平衡问题,提出了Gibbs 吸附公式【2】Γ =Tc RT c⎟⎠⎞⎜⎝⎛−∂∂σ 式中,Γ——气一液界面上的吸附量(mol·m -2); σ——溶液的表面张力(N·m -1); T ——绝对温度(K );c -溶液浓度(mol·m -3); R ——气体常数(8.314J·mol -1·K -1)。
应用Gibbs 吸附公式,并结合Langmuir 等温方程式,在一定温度下,吸附量与溶液浓度之间的关系可表示为ΓΓ=⋅+⋅∞K C K C1Γ∞为饱和吸附量,K 为经验常数进而结合正丁醇分子在气-液界面上散步形式,即可求得其分子横截面积。
2.实验部分(一) 仪器与试剂试剂:正丁醇(分析纯)仪器: HK-2A 型恒温水槽 南京南大万和科技有限公司;DMP-2B 型数字式微压差测量仪 南京南大万和科技有限公司;恒温套管 1个; 毛细管(半径为0.15~0.2mm ) 1个;100mL 容量瓶7个; 2mL 移液管 1个;250mL 分液漏斗1个; 500mL 的塑料烧杯 1个;(二) 实验过程1、毛细管常数的测定:按实验装置图装好仪器,打开恒温水浴,使其温度稳定于25℃。