电力系统的两种自动装置备自投和自动重合闸
- 格式:ppt
- 大小:239.50 KB
- 文档页数:15
备自投(BZT)和自动转换开关(ATS)的区别BZT装置(备用电源自动投入装置)是电力系统中非常重要的电气装置,在较低电压等级的用户供电系统中,特别是6~35KV系统,常采用BZT装置,以保证自动化生产供电不中断和避免生产装置因失电而引起停车的严重后果。
根据《电力装置的继电保护和自动装置设计规范》,BZT装置应满足以下技术要求:(1)应保证在工作电源或设备断开后BZT装置才动作;(2)工作母线和设备上的电压不论因何原因消失时BZT装置均应动作;(3)BZT 装置应保证只动作一次;(4)BZT装置的动作时间以使负荷的停电时间尽可能短为原则;(5)工作母线和备用母线同时失去电压时,BZT装置不应起动;(6)当BZT装置动作时,如备用电源或设备投于故障,应使其保护加速动作;(7)手动断开工作回路时,BZT装置不应动作。
从BZT装置在电力系统的大量实际应用和动作结果中可以看到,各种工作电源发生故障时,BZT装置的正确动作对确保生产装置连续稳定运行起着重要作用。
一旦BZT装置不能正确动作,将会影响生产装置的安全运行。
工厂里几乎每年都会发生数起BZT装置故障而影响生产的事故。
因此除按以上技术要求在设计上合理配置外,解决BZT装置在实际应用中的问题具有重要意义。
1. 与自动重合闸装置的配合自动重合闸装置(ZCH装置)与BZT装置一样,也是电力系统保证可靠供电的重要自动装置。
在电力系统单侧电源线路中,通常在线路电源侧装设ZCH装置,ZCH装置是根据输电线路故障大多为瞬时性故障而设置的(据统计,架空线路的瞬时性故障次数约占总故障次数的80%~90%以上),一旦线路因瞬时性故障被保护断开后,由ZCH装置进行一次重合,往往就能够恢复原工作电源向负荷供电。
可见,BZT装置是在工作电源永久性故障跳闸(或瞬时性故障跳闸无重合)后投入另一路备用电源,ZCH 装置是在线路瞬时性故障跳闸后,再次投入工作电源。
两者的正确配合使用,可大大提高电力系统供电的可靠性。
浅析进线备自投和线路保护重合闸的配合问题作者:林楠曹振丰来源:《文化产业》2016年第02期摘要:近年来,随着昌吉供电局电网的快速发展,新建了许多110kV变电站,这些变电站大多配置了备自投装置,目前现场备自投装置的跳合闸出口的主要方式,就是大多接至线路保护操作回路的保护跳闸和保护合闸开入,由此带来的问题是备自投装置动作时会造成线路重合闸的不正确动作和不正确放电。
下面就一起调试ISA-358G备自投装置时发现备自投逻辑与线路重合闸功能不能配合的问题进行分析。
关键词:线路保护;备自投;重合闸;配合线路已经成为我们的主干线路,原来比较重要的110kV变电站正慢慢的转变为双电源供电的终端站。
一般我们是用两条线路互为备用,也可以将一条线路作为备用电源,另一条线路作为主供电源。
此条件下与该运行方式相适应的备用电源自动投入装置,广泛应用于110kV 电网。
一、备自投及重合闸动作原理备自投的动作原理为:当工作母线(工作电源)失电,备用电源有压,无其它闭锁条件开入,经延时跳工作电源断路器,再经一个延时合备用电源断路器或母联断路器,通常有“进线备自投”和“母联备自投”两种方式。
自动重合闸装置是因故障跳开后的断路器按需要自动投入的一种自动装置。
自动将断路器重合,不仅提高了供电的安全性和可靠性,减少了停电损失,而且还提高了电力系统的暂态水平,增大了高压线路的送电容量,也可纠正由于断路器或继电保护装置造成的误跳闸。
二、问题分析2013年8月4日,110kV南郊变增容改造现场调试长源深瑞公司生产的110kV备自投装置ISA-358G我们发现,备自投方式采用进线备自投方式,110kV奇南一线带110kV I母、110kV奇南二线带110kV II母作为进线电源互为备用,110kV母联在合位,当110kV奇南一线、110kV奇南二线重合闸功能投入时,备自投充好电后,模拟110kV I母线失压、110kV奇南一线无流、110kV II母有压且无其它闭锁开入,备自投即启动延时,延时到后,备自投发跳110kV奇南一线断路器命令,110kV奇南一线断路器可靠跳开后,备自投发合110kV奇南二线断路器命令,但我们现场发现当110kV奇南二线断路器合上后,110kV奇南一线断路器也合上,模拟110kV II母失压、110kV奇南二线无流、110kV I母有压且无其它闭锁开入时试验结果相同,即110kV奇南一线、110kV奇南二线断路器同时在合闸位置。
备自投(BZT)与自动转换开关(ATS)的区别BZT装置(备用电源自动投入装置)就是电力系统中非常重要的电气装置,在较低电压等级的用户供电系统中,特别就是6~35KV系统,常采用BZT装置,以保证自动化生产供电不中断与避免生产装置因失电而引起停车的严重后果。
根据《电力装置的继电保护与自动装置设计规范》,BZT装置应满足以下技术要求:(1)应保证在工作电源或设备断开后BZT装置才动作;(2)工作母线与设备上的电压不论因何原因消失时BZT装置均应动作;(3)BZT装置应保证只动作一次;(4)BZT装置的动作时间以使负荷的停电时间尽可能短为原则;(5)工作母线与备用母线同时失去电压时,BZT装置不应起动;(6)当BZT装置动作时,如备用电源或设备投于故障,应使其保护加速动作;(7)手动断开工作回路时,BZT装置不应动作。
从BZT装置在电力系统的大量实际应用与动作结果中可以瞧到,各种工作电源发生故障时,BZT装置的正确动作对确保生产装置连续稳定运行起着重要作用。
一旦BZT装置不能正确动作,将会影响生产装置的安全运行。
工厂里几乎每年都会发生数起BZT装置故障而影响生产的事故。
因此除按以上技术要求在设计上合理配置外,解决BZT装置在实际应用中的问题具有重要意义。
1、与自动重合闸装置的配合自动重合闸装置(ZCH装置)与BZT装置一样,也就是电力系统保证可靠供电的重要自动装置。
在电力系统单侧电源线路中,通常在线路电源侧装设ZCH装置,ZCH装置就是根据输电线路故障大多为瞬时性故障而设置的(据统计,架空线路的瞬时性故障次数约占总故障次数的80%~90%以上),一旦线路因瞬时性故障被保护断开后,由ZCH装置进行一次重合,往往就能够恢复原工作电源向负荷供电。
可见,BZT装置就是在工作电源永久性故障跳闸(或瞬时性故障跳闸无重合)后投入另一路备用电源,ZCH装置就是在线路瞬时性故障跳闸后,再次投入工作电源。
两者的正确配合使用,可大大提高电力系统供电的可靠性。
备自投(BZT)和自动转换开关(ATS)的区别BZT装置(备用电源自动投入装置)是电力系统中非常重要的电气装置,在较低电压等级的用户供电系统中,特别是6~35KV系统,常采用BZT装置,以保证自动化生产供电不中断和避免生产装置因失电而引起停车的严重后果。
根据《电力装置的继电保护和自动装置设计规范》,BZT装置应满足以下技术要求:(1)应保证在工作电源或设备断开后BZT装置才动作;(2)工作母线和设备上的电压不论因何原因消失时BZT装置均应动作;(3)BZT装置应保证只动作一次;(4)BZT装置的动作时间以使负荷的停电时间尽可能短为原则;(5)工作母线和备用母线同时失去电压时,BZT装置不应起动;(6)当BZT装置动作时,如备用电源或设备投于故障,应使其保护加速动作;(7)手动断开工作回路时,BZT装置不应动作。
从BZT装置在电力系统的大量实际应用和动作结果中可以看到,各种工作电源发生故障时,BZT装置的正确动作对确保生产装置连续稳定运行起着重要作用。
一旦BZT装置不能正确动作,将会影响生产装置的安全运行。
工厂里几乎每年都会发生数起BZT装置故障而影响生产的事故。
因此除按以上技术要求在设计上合理配置外,解决BZT装置在实际应用中的问题具有重要意义。
1. 与自动重合闸装置的配合自动重合闸装置(ZCH装置)与BZT装置一样,也是电力系统保证可靠供电的重要自动装置。
在电力系统单侧电源线路中,通常在线路电源侧装设ZCH装置,ZCH装置是根据输电线路故障大多为瞬时性故障而设置的(据统计,架空线路的瞬时性故障次数约占总故障次数的80%~90%以上),一旦线路因瞬时性故障被保护断开后,由ZCH装置进行一次重合,往往就能够恢复原工作电源向负荷供电。
可见,BZT装置是在工作电源永久性故障跳闸(或瞬时性故障跳闸无重合)后投入另一路备用电源,ZCH装置是在线路瞬时性故障跳闸后,再次投入工作电源。
两者的正确配合使用,可大大提高电力系统供电的可靠性。
浅谈线路保护重合闸与备自投配合问题作者:胡光永唐铭浩来源:《中国新通信》 2017年第24期一、前言在电力系统中,线路自动重合闸装置是将因故障跳开后的断路器按需要自动重新合闸的一种自动装置,广泛应用于架空线输电和架空线供电线路上的有效反事故措施(电缆输、供电不能采用)。
运行经验表明,架空线路绝大多数的故障都是瞬时性的,永久性的故障一般不到10%。
其中引发瞬时性故障的原因主要有:①雷击过电压引起绝缘子表面闪络。
②大风时的短时碰线。
③通过鸟类身体(或树枝)放电。
瞬时性故障一般顺序如下:保护动作跳断路器- > 熄弧- > 故障消除- > 保护重合断路器- > 恢复供电。
随着电力系统网络日趋坚强,110kV 及以下变电站一般已具有两回线及以上的电源线路供电,如果是发生永久性故障将无法重合成功,这时将需要另一种装置——备用电源自动投入装置(简称备自投装置BZT),它的作用是当正常供电的线路发生故障而停电时,能自动而迅速地将备用电源投入工作或将负荷切换到备用电源上去,从而保证用户的连续供电。
但如果线路重合闸与备自投装置配合不当时,将无法达到预期效果。
本文以某变电站发生的故障为例,浅谈线路保护重合闸与备自投配合的问题。
二、事故过程及分析某110kV 变电站C 的110kV 采用单母分段接线,110kV有2 回电源进线线路1Y、2Y,分别接至220kV 变电站A 和B。
C 站两条线路保护均为CSC-161A 距离零序保护,线路对侧A、B 站保护均为WXH-811 距离零序保护,保护均带重合闸功能,同时,C 站并配置了1 台CSC-246 备自投装置,备自投方式为进线备自投。
正常运行时,1Y 为主供电源,2Y 处于热备用状态。
接线示意图如下图1。
某日,110kV 1Y 线路侧发生故障,1Y 线路保护装置动作跳开1DL 断路器后重合未成功,备自投装置也未正确动作合上2DL 断路器,致使110kV 母线失压数小时。
《电力系统自动装置原理》知识点杨冠城主编绪论1.电力系统自动装置对发电厂、变电所电气设备运行的控制与操作的自动装置,是直接为电力系统安全、经济和保证电能质量服务的基础自动化设备。
电力系统自动装置有两种类型:自动调节装置和自动操作装置。
2.电气设备的操作分正常操作和反事故操作两种类型。
(1)按运行计划将发电机并网运行的操作为正常操作。
(2)电网突然发生事故,为防止事故扩大的紧急操作为反事故操作。
防止电力系统的系统性事故采取相应对策的自动操作装置称为电力系统安全自动控制装置。
3.电力安全装置发电厂、变电所等电力系统运行操作的安全装置,是为了保障电力系统运行人员的人身安全的监护装置。
自动装置及其数据的采集处理电力系统运行的主要参数是连续的模拟量,而计算机内部参与运算的信号是离散的二进制数字信号,所以,自动装置的首要任务是数据采集和模拟信号的数字化。
1、硬件组成形式从硬件方面看,目前电力系统自动装置的结构形式主要有四种:即微型计算机系统、工业控制机系统、集散控制系统(Distributed control system——DCS)和现场总线系统(Field bus Control System——FCS)。
2、采样对连续的模拟信号x(t),按一定的时间间隔T S,抽取相应的瞬时值,这个过程称为采样。
采样过程就是一个在时间和幅值上连续的模拟信号x(t),通过一个周期性开闭(周期为T S,开关闭合时间为τ)采样开关S后,在开关输出端输出一串在时间上离散的脉冲信号x S(nT S)。
3、采样定理采样周期T S决定了采样信号的质量和数量: T S太小,会使x S(nT S)的数据剧增,占用大量的内存单元;T S太大,会使模拟信号的某些信息丢失,当将采样后的信号恢复成原来的信号时,就会出现信号失真现象,而失去应有的精度。
因此,选择采样周期必须有一个依据,以保证x S(nT S)能不失真地恢复原信号x(t)。
这个依据就是采样定理。
重合闸是故障跳闸后由重合闸继电器启动合闸的,主要是用在线路发生闪烁故障后能快速恢复供电。
检同期是二个电源并列(合环)时,由同期装置检测A相的相角差和电位差,这二个差值在允许范围内就自动合闸,如发电机并网。
检无压是给线路送电前,待送线路压变二次的电压继电器(常闭接点)闭锁断路的合闸(回路),线路有电则无法合闸。
备自投是备用电源向在用设备(跳闸后)自动送电(合闸),一般是进线开关在电源停电时,电压继电器(低电压保护)动作,跳开进线断路器,其辅助触点(常闭)接通备用电源断路器的合闸电源。
这四个是独立的装置,相互之间并无直接关系。
重合闸:从字面上理解就是重新合闸。
也就是在高压系统中(特别是110kV及以上的中性点直接接地系统),有些故障是瞬时性的,为了提高供电的连续性,在线路故障保护动作后,允许线路断路器重新合闸。
重合闸可以分为单相重合闸和三相重合闸。
备自投:备用电源自动投入。
与重合闸的最大区别就是,它投入的是另一路电源,而重合闸投入的仍是原线路本身。
重合闸和备自投是电网中快速恢复供电的两种最重要最常见的自动装置。
检同期和检无压,是在重合闸(或备自投)中实现的一种方式和手段。
也就是说,重合闸和备自投都分为检同期和无压两种方式。
检同期方式主要应用在有内部电源的情况下,就是在投入重合闸(或备自投)断路器前,需对断路器两端的电压进行同期判定。
如果电压幅值差和相角差在允许范围内,则断路器允许合闸。
否则,合不上。
无压方式应用得更多。
即重合闸装置(备自投装置)发出合闸命令后,不需对两端电压进行比对。
(注意,这里的无压重合闸或无压备自投与发电机同期装置中的检无压稍微有不一样。
同期装置中检无压,是必须无压才能合闸,有压则闭锁。
而这里不同,无压重合闸和无压备自投在运行方式的规定时就不允许两侧电源的存在。
所以,不需要再判定两端是否无压。
)重合闸有几种方式?(1)重合闸方式必须根据具体的系统结构及运行条件,经过分析后选定。
(2)凡是选用简单的三相重合闸方式能满足具体系统实际需要的,线路都应当选用三相重合闸方式。