极射赤平投影CAD图解
- 格式:doc
- 大小:525.50 KB
- 文档页数:17
手把手教你应用赤平投影(CAD图解)来庆超一、序言岩质边坡稳定性分析方法有许多,但无论是平面滑动的单一楔形断面滑体、单滑块和多滑块分析法,还是楔体滑动的仿平面分析法、楔体分割法、立体分析法、霍克分析法以及《岩土工程勘察规范》(GB50021-94)推荐法等,在计算边坡稳定性系数时,需要知道滑体控制平面(包括结构面和坡面、坡顶面)或直线(包括平面的法线)的地质产状,以及平面与平面、直线与直线、直线与平面间夹角等。
其中平面和直线的产状可以通过现场测量获取,除此之外的几何参数,在没有发明极射赤平投影之前,都是用计算法求得,不仅它们的计算公式复杂,而且计算过程繁琐,也很容易出错。
如果采用极射赤平投影求解边坡稳定性分析所需的几何参数,那就可以简化这些几何参数的计算过程,而且一般情况下只需要在现场测量出各个控制平面的地质产状即可。
二、极射赤平投影的基本原理(一)投影要素极射赤平投影(以下简称赤平投影)以圆球作为投影工具,其进行投影的各个组成部分称为投影要素,包括:1.投影球(也称投射球):以任意长为半径的球。
2.球面:投影球的表面称为球面。
3.赤平面(也称赤平投影面):过投影球球心的水平面。
4.大圆:通过球心的平面与球面相交而成的圆,统称为大圆(如图一(a)中ASBN、PSFN、NESW),所有大圆的直径相等,且都等于投影球的直径。
当平面直立时,与球面相交成的大圆称为直立大圆(如图一(a)中PSFN);当平面水平时,与球面相交成的大圆称为赤平大圆或基圆(如图一(a)中NESW);当平面倾斜时,与球面相交成的大圆称为倾斜大圆(如图一(a)中ASBN)。
5.小圆:不过球心的平面与球面相而成的圆,统称为小圆(如图一(b)、(c)中AB、CD、FG、PACB)。
当平面直立时,与球面相交成的小圆称为直立小圆(如图一(b)中DC);当平面水平时,与球面相交成的小圆称为水平小圆(如图一(b)中AB);当平面倾斜时,与球面相交成的小圆称为倾斜小圆(如图一(b)中FG或图一(c)中PACB)。
极射赤平投影在构造地质学中的应用一、极射赤平投影的基本概念1. 投影球:假设有一个通过O点的平面,一个圆球面其圆心刚好与O点重合,平面就被球面切成一个ABCD圆,圆半径与球半径相等,该圆球叫投影球。
2. 球面投影:用投影球面表示构造空间产状的方法(ABCD圆是平面在圆球面上的投影)3. 极点:设投影球的顶点为发射点(极点),通过赤道平面到球面投影上的各点发射线,该射线与赤平面交出各点,连接各点成一大圆弧,该大圆弧就是球面投影在赤平面上的投影,也是平面在赤平面上的投影4. 赤平投影:以圆球面上的一个极点为发射点,将球面投影投到赤道平面上的一种投影(下半球投影)特点:(1)可将物体在三度空间的特征表现在平面上(2)能定量表现构造的产状要素(3)不涉及构造的具体位置、大小、距离二、极射赤平投影的基本原理1. 空间上任一通过球心的平面,球面投影为一直径等于投影球直径的大圆,其赤平投影:(1)水平平面:赤平投影是赤平大圆周(2)直立平面:赤平投影是赤平大圆的一条直径,其方位就是直立平面的走向(3)倾斜平面:赤平投影为一弦等于投影球半径的大圆弧2. 空间上任一不通过球心的平面,球面投影为一直径小于投影球直径的小圆,其赤平投影:(1)水平平面:赤平投影小圆与赤平大圆同心(2)直立平面、倾斜平面均为圆心在外的小圆弧3. 空间任一条直线(过圆心)的球面投影是两个点,赤平投影:(1)直立直线:赤平投影在圆心,两点重合为一点(2)水平直线:赤平投影为两个点,在赤平大圆周上(3)倾斜直线:赤平投影为一个点三、吴氏网的成图原理1. 吴氏网的组成(1)基圆:赤平大圆,一周360°(2)经线:一系列走向SN的经向大圆弧(3)纬线:一系列走向EW的纬向小圆弧标准的吴氏网基圆直径为 20cm,网格的纵横角距为2º2. 成图原理:(1) 经向大圆弧:A. 一系列通过圆心,走向 SN,分别倾向 E、 W,倾角0º-90º的许多平面的投影大圆组成B. 这些大圆弧与EW直径的交点到直径端点的角距,是其所代表的各平面的倾角值,由圆周到圆心0º-90º(2)纬向小圆弧:A. 由一系列走向 EW ,不过圆心(只有一个过圆心)的直立的小圆投影而成B. 由圆周到圆心9º—90º(3)各经纬弧的交点:是一系列不同倾伏方向,不同倾伏角直线的赤平投影四、平面和直线的赤平投影1. 准备工作2. 平面的赤平投影3. 平面法线的赤平投影(1)法线垂直平面,交角90°(2)倾(伏)向相反,二者关系明确4. 直线的赤平投影五、褶皱要素的赤平投影轴面、枢纽的赤平投影赤平投影赤平投影英文:stereographic projection释文:把面和线投影在投影球的赤道平面上,在构造地质学中用以解决地质构造的角度和方位问题。
⼿把⼿教你应⽤⾚平投影(CAD图解)⼿把⼿教你应⽤⾚平投影(CAD图解)来庆超⼀、序⾔岩质边坡稳定性分析⽅法有许多,但⽆论是平⾯滑动的单⼀楔形断⾯滑体、单滑块和多滑块分析法,还是楔体滑动的仿平⾯分析法、楔体分割法、⽴体分析法、霍克分析法以及《岩⼟⼯程勘察规范》(GB50021-94)推荐法等,在计算边坡稳定性系数时,需要知道滑体控制平⾯(包括结构⾯和坡⾯、坡顶⾯)或直线(包括平⾯的法线)的地质产状,以及平⾯与平⾯、直线与直线、直线与平⾯间夹⾓等。
其中平⾯和直线的产状可以通过现场测量获取,除此之外的⼏何参数,在没有发明极射⾚平投影之前,都是⽤计算法求得,不仅它们的计算公式复杂,⽽且计算过程繁琐,也很容易出错。
如果采⽤极射⾚平投影求解边坡稳定性分析所需的⼏何参数,那就可以简化这些⼏何参数的计算过程,⽽且⼀般情况下只需要在现场测量出各个控制平⾯的地质产状即可。
⼆、极射⾚平投影的基本原理(⼀)投影要素极射⾚平投影(以下简称⾚平投影)以圆球作为投影⼯具,其进⾏投影的各个组成部分称为投影要素,包括:1.投影球(也称投射球):以任意长为半径的球。
2.球⾯:投影球的表⾯称为球⾯。
3.⾚平⾯(也称⾚平投影⾯):过投影球球⼼的⽔平⾯。
4.⼤圆:通过球⼼的平⾯与球⾯相交⽽成的圆,统称为⼤圆(如图⼀(a)中ASBN、PSFN、NESW),所有⼤圆的直径相等,且都等于投影球的直径。
当平⾯直⽴时,与球⾯相交成的⼤圆称为直⽴⼤圆(如图⼀(a)中PSFN);当平⾯⽔平时,与球⾯相交成的⼤圆称为⾚平⼤圆或基圆(如图⼀(a)中NESW);当平⾯倾斜时,与球⾯相交成的⼤圆称为倾斜⼤圆(如图⼀(a)中ASBN)。
5.⼩圆:不过球⼼的平⾯与球⾯相⽽成的圆,统称为⼩圆(如图⼀(b)、(c)中AB、CD、FG、PACB)。
当平⾯直⽴时,与球⾯相交成的⼩圆称为直⽴⼩圆(如图⼀(b)中DC);当平⾯⽔平时,与球⾯相交成的⼩圆称为⽔平⼩圆(如图⼀(b)中AB);当平⾯倾斜时,与球⾯相交成的⼩圆称为倾斜⼩圆(如图⼀(b)中FG或图⼀(c)中PACB)。
手把手教你应用赤平投影(CAD图解)来庆超一、序言岩质边坡稳定性分析方法有许多,但无论是平面滑动的单一楔形断面滑体、单滑块和多滑块分析法,还是楔体滑动的仿平面分析法、楔体分割法、立体分析法、霍克分析法以及《岩土工程勘察规范》(GB50021-94)推荐法等,在计算边坡稳定性系数时,需要知道滑体控制平面(包括结构面和坡面、坡顶面)或直线(包括平面的法线)的地质产状,以及平面与平面、直线与直线、直线与平面间夹角等.其中平面和直线的产状可以通过现场测量获取,除此之外的几何参数,在没有发明极射赤平投影之前,都是用计算法求得,不仅它们的计算公式复杂,而且计算过程繁琐,也很容易出错。
如果采用极射赤平投影求解边坡稳定性分析所需的几何参数,那就可以简化这些几何参数的计算过程,而且一般情况下只需要在现场测量出各个控制平面的地质产状即可。
二、极射赤平投影的基本原理(一)投影要素极射赤平投影(以下简称赤平投影)以圆球作为投影工具,其进行投影的各个组成部分称为投影要素,包括:1。
投影球(也称投射球):以任意长为半径的球。
2.球面:投影球的表面称为球面.3.赤平面(也称赤平投影面):过投影球球心的水平面。
4.大圆:通过球心的平面与球面相交而成的圆,统称为大圆(如图一(a)中ASBN、PSFN、NESW),所有大圆的直径相等,且都等于投影球的直径。
当平面直立时,与球面相交成的大圆称为直立大圆(如图一(a)中PSFN);当平面水平时,与球面相交成的大圆称为赤平大圆或基圆(如图一(a)中NESW);当平面倾斜时,与球面相交成的大圆称为倾斜大圆(如图一(a)中ASBN).5.小圆:不过球心的平面与球面相而成的圆,统称为小圆(如图一(b)、(c)中AB、CD、FG、PACB)。
当平面直立时,与球面相交成的小圆称为直立小圆(如图一(b)中DC);当平面水平时,与球面相交成的小圆称为水平小圆(如图一(b)中AB);当平面倾斜时,与球面相交成的小圆称为倾斜小圆(如图一(b)中FG或图一(c)中PACB)。
极射赤平投影CAD图解一、序言岩质边坡稳定性分析方法有许多,但无论是平面滑动的单一楔形断面滑体、单滑块和多滑块分析法,还是楔体滑动的仿平面分析法、楔体分割法、立体分析法、霍克分析法以及《岩土工程勘察规范》(GB50021-94)推荐法等,在计算边坡稳定性系数时,需要知道滑体控制平面(包括结构面和坡面、坡顶面)或直线(包括平面的法线)的地质产状,以及平面与平面、直线与直线、直线与平面间夹角等。
其中平面和直线的产状可以通过现场测量获取,除此之外的几何参数,在没有发明极射赤平投影之前,都是用计算法求得,不仅它们的计算公式复杂,而且计算过程繁琐,也很容易出错。
如果采用极射赤平投影求解边坡稳定性分析所需的几何参数,那就可以简化这些几何参数的计算过程,而且一般情况下只需要在现场测量出各个控制平面的地质产状即可。
二、极射赤平投影的基本原理(一)投影要素极射赤平投影(以下简称赤平投影)以圆球作为投影工具,其进行投影的各个组成部分称为投影要素,包括:1.投影球(也称投射球):以任意长为半径的球。
2.球面:投影球的表面称为球面。
3.赤平面(也称赤平投影面):过投影球球心的水平面。
4.大圆:通过球心的平面与球面相交而成的圆,统称为大圆(如图一(a)中ASBN、PSFN、NESW),所有大圆的直径相等,且都等于投影球的直径。
当平面直立时,与球面相交成的大圆称为直立大圆(如图一(a)中PSFN);当平面水平时,与球面相交成的大圆称为赤平大圆或基圆(如图一(a)中NESW);当平面倾斜时,与球面相交成的大圆称为倾斜大圆(如图一(a)中ASBN)。
5.小圆:不过球心的平面与球面相而成的圆,统称为小圆(如图一(b)、(c)中AB、CD、FG、PACB)。
当平面直立时,与球面相交成的小圆称为直立小圆(如图一(b)中DC);当平面水平时,与球面相交成的小圆称为水平小圆(如图一(b)中AB);当平面倾斜时,与球面相交成的小圆称为倾斜小圆(如图一(b)中FG或图一(c)中PACB)。
6.极射点:投影球上两极的发射点(如图一),分上极射点(P)和下极射点(F)。
由上极射点(P)把下半球的几何要素投影到赤平面上的投影称为下半球投影;由下极射点(F)把上半球的几何要素投影到赤平面上的投影称为上半球设影。
一般采用下半球投影。
7.极点:通过球心的直线与球面的交点称为极点,一条直线有两个极点。
铅直线交球面上、下两个点(也就是极射点);水平直线交基圆上两点;倾斜直线交球面上两点(如图五中A、B)。
(二)平面的赤平投影平面与球面相交成大圆或小圆,我们把大圆或小圆上各点和上极射点(P)的连线与赤平面相交各点连线称为相应平面的赤平投影。
1.过球心平面的赤平投影随平面的倾斜而变化:倾斜平面的赤平投影为大圆弧(如图二中的NB′S);直立平面的赤平投影是基圆的一条直径(如图一(a)中的NS);水平面的赤平投影就是基圆(如图一中的NESW)。
2.不过球心平面的赤平投影也随平面倾斜而变化:直立平面的赤平投影是基圆内的一条圆弧(如图三KD′H);倾斜平面的赤平投影有以下三种情况:⑴当倾斜小圆在赤平面以下时,投影是一个圆,且全部在基圆之内(如图三FG);⑵当倾斜小圆全部位于上半球时,投影也是一个圆,但全部在基圆之外;⑶当倾斜小圆一部分在上半球,另一部分在下半球时,赤平面以下部分的投影在基圆之内,以上部分的投影在基圆之外。
当球面小圆通过上极射点时,其赤平投影为一条直线(如图一(c)中PACB 的投影为AB);水平小圆的赤平投影在基圆内(如图四中A′B′),A′B′是一个与基圆同心的圆。
(三)直线的赤平投影直线AB的投影点就是其极点A、B和极射点P的连线与赤平面的交点A′、B′。
铅直线的投影点位于基圆中心;过球心的水平直线的投影点就是基圆上两个极点,两点间距离等于基圆直径;倾斜直线的投影点有两个,一点在基圆内,另一个在基圆外,两点呈对蹼点,在赤平投影图上两点的角距相差180°(如图五)。
(四)吴氏网及其CAD制作目前广泛使用的极射赤平投影有等角距投影网和等面积投影网。
等角距投影网是由吴尔福发明的,简称吴氏网;等面积投影网是由施密特发明的,简称施氏网。
两者的主要区别在于:球面上大小相等的小圆在吴氏网上的投影仍然是圆,投影圆的直径角距相等,但由于在赤平面上所处位置不同,投影圆的大小不等,其直径随着投影圆圆心与基圆圆心的距离增大而增大。
而在施氏网上的投影则呈四级曲线,不成圆,但四级曲线所构成的图形面积是相等的,且等于球面小圆面积的一半。
使用吴氏网求解面、线间的角距关系时,旋转操作显示其优越性,不仅作图方便,而且较为精确。
而使用施氏网时,可以作出面、线的极点图或等密度图,能够真实反映球面上极点分布的疏密,有助于对面、线群进行统计分析,但其存在作图麻烦等缺点。
1.吴氏网的结构及成图原理吴氏网(图六)由基圆、南北经向大圆弧(NGS)、东西纬向小圆弧(ACB)等经纬线组成。
标准吴氏网的基圆直径为20cm,经、纬线间的角距为2°。
(1)基圆,由指北方向(N)为0°,顺时针方向刻出360°,这些刻度起着量度方位角的作用;(2)经向大圆弧是由一系列通过球心,走向南北,分别向西和向东倾斜,倾角由0°到90°(角距间隔为2°)的许多赤平投影大圆弧所组成。
这些大圆弧与东西直径线EW的交点到端点(E点和W 点)的距离分别代表各平面的倾角。
如图六中GW表示的大圆弧NGS所代表的平面向西倾斜,倾角为30°。
(3)纬向线是由一系列走向东西的直立平面的赤平投影小圆弧所组成。
这些小圆弧离基圆的圆心O愈远,其所代表的球面小圆的半径角距就愈小,反之离圆心O愈近,则半径角距就愈大。
相邻纬向小圆弧间的角距也是2°,它分割南北直径线的距离,与经向大圆弧分割东西径线的距离是相等的。
如图六所示,ED=SH=WG=NF,角距都为30°。
2.吴氏网的CAD图解绘制吴氏网,其实质就是在赤平大圆上画出经向大圆弧和纬向小圆弧。
那么这些大圆弧和小圆弧都是怎样是绘制出来的呢?在没有CAD制图系统软件以前,人们通过平面几何关系利用圆规、直尺等原始工具绘制,其绘制过程很复杂。
而在CAD制图系统软件下,绘制大圆弧和小圆弧是非常简的,下面就介绍它们的原理和绘制过程。
(1)绘制大圆弧的原理与步骤要绘制大圆弧,应至少知道大圆弧上的三个点N、S、B′(如图二所示),其中N、S点是每条大圆弧都必须经过的,是已知点。
现在只要能确定经向大圆弧与东西径线EW的交点B′,问题就迎刃而解。
①计算OB′长度根据倾斜平面的倾角、基圆的直径,可按下式计算点O与点B′之间的距离(公式一)式中R——基圆的半径;α——大圆弧所代表平面的倾角(°)。
②以基圆的圆心为圆心,OB′长为半径画一个圆,该圆与基圆的东西径向线EW交于B′点。
③过N、S、B′三个点画一个圆,并剪掉基圆外部分,大圆弧也就绘制完成。
(2)绘制小圆弧的原理与步骤要绘制半径角距为的小圆弧,同样也应至少知道小圆弧上的三个点(如图六所示的A、C、B 三个点)。
根据吴氏网的结构与原理,可以通过CAD制图确定A、C、B三个点的位置。
①确定点C,首先用公式一计算点O与点C间距离,但其中为小圆弧的半径角距;然后以基圆的圆心为圆心,OC长为半径画圆,该圆与基圆的南北径向线NS交于C点。
②以基圆的圆心为基点,将南北径线ON分别逆时针和顺时针旋转角度,得两条直线,分别与基圆交于A、B点。
③过A、C、B三个点画一个圆,并剪掉基圆外部分,小圆弧也就绘制完成。
三、赤平投影网CAD图解的应用利用传统标准吴氏网对平面、直线进行投影时,一般步骤是:把透明纸(或透明胶片等)蒙在吴氏网上,画基圆及“十”字网心,并用针固定于网心上,使透明纸能够绕网心旋转。
然后在透明纸上标出E、S、W、N,以正北(N)为0°,顺时针数到360°。
东西直径EW确定倾角,一般是圆周为0°,至圆心为90°。
这样做具有以下缺点:一是较麻烦,二是当旋转透明纸时,容易从针孔处发生破裂而移位;三就是准确性不高;四是效率低。
如果用CAD制图,则可避免上述不足,且使作图更简化,用不着吴氏网中的那么多的经、纬线,只需要画出基圆及其南北径线和东西径线。
1.平面赤平投影的CAD图解(如图七)例1:一平面产状126°∠30°,绘制其赤平投影图。
(1)绘制一直径为20cm的基圆,同时画出铅直和水平两条直径,并标出E、S、W、N。
后面的例子均需要这一步,画法与之相同,所以不再重复。
(2)平面的倾向是126°,则其走向为36°。
将南北径线绕基圆的圆心O顺时针旋转36°到达AB 位置,与基圆交于A、B两点,则AB就是平面的走向线。
(3)以基圆的圆心O为基点,将射线ON顺时针旋转126°到达OD位置,与基圆相交于点D,则OD即为该平面的倾向线。
(4)用公式一计算线段OC长度。
以基圆的圆心O为圆心,OC为半径画圆,交OD于C点。
(5)采用三点法,即过A、C、B三点画圆,并切掉基圆外部分,所得大圆弧ACB即为该平面的赤平投影。
2.直线赤平投影的CAD图解(如图八)例2:一直线产状330°∠40°,绘制其赤平投影图。
(1)将ON绕圆心O顺时针旋转330°后到达OA位置,与基圆交于点A,则OA即为该直线的倾伏向。
(2)用公式一计算OA′值。
以基圆的圆心O为圆心,OA′为半径画圆,交OA于A′点,则点A′即为该直线的赤平投影。
3.平面法线赤平投影的CAD图解(如图九)例3:一平面产状为105°∠40°,绘制其法线的赤平投影。
(1)按例1所述方法,绘制产状为105°∠40°平面的赤平投影大圆弧NB′S。
(2)平面法线的倾角与平面的倾角之和等于90°,因此平面法线的倾角为50°。
用公式一计算OA′。
以基圆的圆心O为圆心,OA′为半径画圆,交B′O的延长线于A′点,则A′点为该平面法线的赤面投影,也称其为平面的极点。
由于平面法线倾向与平面倾向相反,相差180°,平面法线的倾角与平面的倾角之和等于90°,因此也可根据平面法线产状与平面产状间的这种关系,首先计算法线的产状为285°∠50°,然后再按例2方法绘制法线的赤平投影。
4.相交两条直线所构成平面的产状例4:已知两直线180°∠20°和90°∠32.3°相交,用赤平投影法求解这两条直线所构成平面的产状(如图十(a)、(b))。
(1)为很好地利用CAD制图解决这个问题,引入两条直线倾角与平面倾角间的关系式:tan2βsin2γ=tan2α1+tanα2-2tanα1tanα2cosγ (公式二)式中β——两条相交直线所构成平面的倾角(°);α1、α2——分别为两条直线的倾伏角(°);γ——两条直线倾向夹角(°)。