频数分布直方图
- 格式:ppt
- 大小:944.00 KB
- 文档页数:5
频数(率)分布直方图能量储备为了直观地表示一组数据的分布情况,可以以频数分布表为基础,绘制频数分布直方图.●频数分布直方图简称直方图,它是条形统计图的一种.●获得一组数据的频数分布情况的一般步骤:(1)计算最大值与最小值的差;(2)决定组距和组数;(3)列频数分布表;(4)画频数分布直方图.●画等距分组的频数分布直方图的方法:(1)画两条互相垂直的轴:横轴和纵轴;(2)在横轴上划分一些相互衔接的线段,每条线段表示一组,在线段的左端点标明这组的下限,在线段的右端点标明其上限;(3)在纵轴上划分刻度,并用自然数标记;(4)以横轴上的每条线段为底各作一个小长方形立于横轴上,使各小长方形的高等于相应的频数.通关宝典★基础方法点方法点1:画频数分布直方图时,组距和组数的确定没有固定的标准,要凭借经验和所研究的具体问题确定. 组数参考最大值-最小值组距来确定.例题:为了了解某地区七年级学生的身高情况,随机抽取了60名七年级学生,测得他们的身高(单位:cm)分别为:156162163172160141152173180174157174145160153165156167161172178156166155140157167156168150164163155162160168147161157162165160166164154161158164151169169162158163159164162148170161(1)将数据适当分组,并绘制相应的频数分布直方图;(2)试求身高落在155 cm ≤x <170 cm 范围内的学生的百分比.解:(1)在样本数据中,最大值是180,最小值是140,它们的差是180-140=40,当组距为5时,405=8,即分为8组. 列频数分布表如下:由此绘制频数分布直方图.(2)由图可知,身高落在155 cm ≤x <170 cm 范围内的学生人数为12+20+10=42(人),所以其所占的百分比为4260×100%=70%., ★★易混易误点易混易误点1: 对统计图的意义理解不准确而出错例题:统计某班48名学生的一次外语测试成绩,分数取整数,绘制出频数分布直方图(如图10210所示),从左到右小长方形的高的比为1∶3∶6∶4∶2,则分数在70.5到80.5之间的人数为________.解析:设第一组的频数为a ,则其他小组的频数依次为3a ,6a ,4a ,2a ,由已知条件得a +3a +6a +4a +2a =48,解得a =3,所以6a =18.所以分数落在70.5到80.5之间的人数为18.答案:18蓄势待发考前攻略主要考查频数分布表和频数分布直方图.在中考中对直方图的读图、识图,利用图形获取信息的能力以及数形结合的思想方法是考查的重点.题型主要是解答题,多以时代热点问题为背景命题,属中档题.完胜关卡。
●考点名称:直方图●频数分布直方图的定义:在统计数据时,按照频数分布表,在平面直角坐标系中,横轴标出每个组的端点,纵轴表示频数,每个矩形的高代表对应的频数,称这样的统计图为频数分布直方图。
相关概念:组数:在统计数据时,我们把数据按照不同的范围分成几个组,分成的组的个数称为组数。
组距:每一组两个端点的差。
●频数分布直方图的特点:①能够显示各组频数分布的情况;②易于显示各组之间频数的差别。
●作直方图的目的有:作直方图的目的就是通过观察图的形状,判断生产过程是否稳定,预测生产过程的质量。
1判断一批已加工完毕的产品;搜集有关数据。
直方图将数据根据差异进行分类,特点是明察秋毫地掌握差异。
2在公路工程质量管理中,作直方图的目的有:①估算可能出现的不合格率;②考察工序能力估算法③判断质量分布状态;④判断施工能力;●直方图绘制注意事项:a. 抽取的样本数量过小,将会产生较大误差,可信度低,也就失去了统计的意义。
因此,样本数不应少于50个。
b. 组数 k 选用不当,k 偏大或偏小,都会造成对分布状态的判断有误。
c. 直方图一般适用于计量值数据,但在某些情况下也适用于计数值数据,这要看绘制直方图的目的而定。
d. 图形不完整,标注不齐全,直方图上应标注:公差范围线、平均值的位置(点画线表示)不能与公差中心M相混淆;图的右上角标出:N、S、C p或 CPK.●制作频数分布直方图的方法:①集中和记录数据,求出其最大值和最小值。
数据的数量应在100个以上,在数量不多的情况下,至少也应在50个以上。
我们把分成组的个数称为组数,每一个组的两个端点的差称为组距。
②将数据分成若干组,并做好记号。
分组的数量在5-12之间较为适宜。
③计算组距的宽度。
用最大值和最小值之差去除组数,求出组距的宽度。
④计算各组的界限位。
各组的界限位可以从第一组开始依次计算,第一组的下界为最小值减去最小测定单位的一半,第一组的上界为其下界值加上组距。
第二组的下界限位为第一组的上界限值,第二组的下界限值加上组距,就是第二组的上界限位,依此类推。