七年级数学简单的轴对称图形3
- 格式:pdf
- 大小:1.84 MB
- 文档页数:10
2020-2021学年北师大版七年级数学下册第五章 5.3.3简单的轴对称图形(三) 同步练习题A组(基础题)一、填空题1.(1)已知等腰△ABC中,AB=AC,∠B=60°,则∠A=______.(2)在△ABC中,∠A=∠B=60°,且AB=5 cm,则BC=______cm.2.(1)如图,在等边△ABC中,D,E分别是AB,AC上的点,且AD=CE,则∠BCD+∠CBE=______.(2)如图,在△ABC中,∠B=60°,AB=AC, BC=5,则△ABC的周长为______.3.(1)如图,将边长为6 cm的等边△ABC沿BC方向向右平移后得△DEF,DE,AC相交于点G.若线段CF=4.5 cm,则△GEC的周长是______cm.(2)如图,在△ABC中,BC=16,BO和CO分别是∠ABC和∠ACB的平分线,OD∥AB,OE∥AC,则△ODE的周长为______.4.如图,已知直线l∥l2,将等边三角形如图放置.若∠α=30°,则∠β=______.二、选择题5.如图,l1∥l2,等边△ABC的顶点A,B分别在直线l1,l2上,则∠1+∠2=( ) A.30° B.40°C.50° D.60°6.如图所示,在等边△ABC中,O是三个内角平分线的交点,OD∥AB,OE∥AC,则图中等腰三角形的个数是( )A.7 B.6 C.5 D.47.如图,AD是等边△ABC的中线,AE=AD,则∠EDC的度数为( )A.30° B.20° C.25° D.15°8.下列条件中,不能得到等边三角形的是( )A.有两个内角是60°的三角形B.三边都相等的三角形C.有一个角是60°的等腰三角形D.有两个外角相等的等腰三角形三、解答题9.如图,已知在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为E,F,且DE=DF.求证:△ABC是等边三角形.10.(1)如图,△ABC为等边三角形,AB=AC,P为BC上一点,△APQ为等边三角形.求证:AB∥CQ.(2)如图,△ABC为等边三角形,AE=CD,AD,BE相交于点P,BQ⊥AD于点Q,PQ=3,PE=1.①求证:AD=BE;②求AD的长.B组(中档题)一、填空题11.如图,在△ABC中,AB=AC,D,E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°.若BE=6 cm, DE=2 cm,则BC的长为______.12.如图,点P是∠AOB内任意一点,OP=5 cm,点M和点N分别是射线OA和射线OB上的动点,∠AOB=30°,则△PMN周长的最小值为______.13.如图,已知△ABC和△BDE都是等边三角形,下列结论:①AE=CD;②BF=BG;③BH平分∠AHD;④∠AHC=60°;⑤△BFG是等边三角形;⑥FG∥AD. 其中正确的有______个.二、解答题14.如图,过边长为2的等边三角形的边上一点P作PE⊥AC于点E,Q是BC延长线上一点,当PA=CQ时,连接PQ交AC于点D,求DE的长.C组(综合题)15.如图,△ABC是等边三角形,E是BC边上任意一点,∠AEF=60°,EF交△ABC的外角∠ACD的平分线于点F.求证:AE=EF.参考答案2020-2021学年北师大版七年级数学下册第五章 5.3.3简单的轴对称图形(三) 同步练习题A组(基础题)一、填空题1.(1)已知等腰△ABC中,AB=AC,∠B=60°,则∠A=60°.(2)在△ABC中,∠A=∠B=60°,且AB=5 cm,则BC=5cm.2.(1)如图,在等边△ABC中,D,E分别是AB,AC上的点,且AD=CE,则∠BCD+∠CBE=60°.(2)如图,在△ABC中,∠B=60°,AB=AC, BC=5,则△ABC的周长为15.3.(1)如图,将边长为6 cm的等边△ABC沿BC方向向右平移后得△DEF,DE,AC相交于点G.若线段CF=4.5 cm,则△GEC的周长是4.5cm.(2)如图,在△ABC中,BC=16,BO和CO分别是∠ABC和∠ACB的平分线,OD∥AB,OE∥AC,则△ODE的周长为16.4.如图,已知直线l∥l2,将等边三角形如图放置.若∠α=30°,则∠β=30°.二、选择题5.如图,l1∥l2,等边△ABC的顶点A,B分别在直线l1,l2上,则∠1+∠2=(D) A.30° B.40°C.50° D.60°6.如图所示,在等边△ABC中,O是三个内角平分线的交点,OD∥AB,OE∥AC,则图中等腰三角形的个数是(A)A.7 B.6 C.5 D.47.如图,AD 是等边△ABC 的中线,AE =AD ,则∠EDC 的度数为(D) A .30° B .20° C .25° D .15°8.下列条件中,不能得到等边三角形的是(D) A .有两个内角是60°的三角形 B .三边都相等的三角形C .有一个角是60°的等腰三角形D .有两个外角相等的等腰三角形 三、解答题9.如图,已知在△ABC 中,AB =AC ,D 为AC 的中点,DE ⊥AB ,DF ⊥BC ,垂足分别为E ,F ,且DE =DF.求证:△ABC 是等边三角形.证明:∵DE ⊥AB ,DF ⊥BC , ∴∠AED =∠CFD =90°. ∵D 为AC 的中点,∴AD =DC. 在Rt △ADE 和Rt △CDF 中,⎩⎪⎨⎪⎧AD =DC ,DE =DF , ∴Rt △ADE ≌=Rt △CDF(HL). ∴∠A =∠C.∴BA =BC.∵AB =AC ,∴AB =BC =AC. ∴△ABC 是等边三角形.10.(1)如图,△ABC 为等边三角形,AB =AC ,P 为BC 上一点,△APQ 为等边三角形.求证:AB ∥CQ.证明:∵△ABC 和△APQ 都是等边三角形, ∴AB =AC ,AP =AQ ,∠BAC =∠PAQ =60°. ∴∠BAC -∠PAC =∠PAQ -∠PAC , 即∠BAP =∠CAQ.在△ABP 和△ACQ 中,⎩⎪⎨⎪⎧AB =AC ,∠BAP =∠CAC ,AP =AQ ,∴△ABP ≌△ACQ(SAS). ∴∠ACQ =∠B =∠BAC =60°. ∴AB ∥CQ.(2)如图,△ABC 为等边三角形,AE =CD ,AD ,BE 相交于点P ,BQ ⊥AD 于点Q ,PQ =3,PE =1.①求证:AD =BE ; ②求AD 的长.解:①证明:∵△ABC 为等边三角形, ∴AB =AC ,∠BAC =∠C =60°. 在△BAE 和△ACD 中,⎩⎪⎨⎪⎧BA =AC ,∠BAE =∠C ,AE =CD ,∴△BAE ≌△ACD(SAS). ∴AD =BE.②由ΔBAE ≌ACD ,可知∠ABE =∠PAE.∵∠BPQ =∠BAP +∠ABE =∠BAP +∠PAE =∠BAC =60°,BQ ⊥PQ , ∴∠PBQ =30°,∴PB =2PQ =6. ∴BE =PB +PE =7,∴AD =BE =7.B 组(中档题)一、填空题11.如图,在△ABC 中,AB =AC ,D ,E 是△ABC 内两点,AD 平分∠BAC ,∠EBC =∠E =60°.若BE =6 cm, DE =2 cm ,则BC 的长为8_cm .12.如图,点P 是∠AOB 内任意一点,OP =5 cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,∠AOB =30°,则△PMN 周长的最小值为5_cm .13.如图,已知△ABC 和△BDE 都是等边三角形,下列结论:①AE =CD ;②BF =BG ;③BH 平分∠AHD ;④∠AHC =60°;⑤△BFG 是等边三角形;⑥FG ∥AD. 其中正确的有6个.二、解答题14.如图,过边长为2的等边三角形的边上一点P 作PE ⊥AC 于点E ,Q 是BC 延长线上一点,当PA =CQ 时,连接PQ 交AC 于点D ,求DE 的长.解:过点P 作PF ∥BC 交AC 于点F , ∵△ABC 为等边三角形, ∴△APF 为等边三角形. ∴PF =AP.又∵PE ⊥AF ,∴AE =EF. 又∵AP =CQ ,∴PF =CQ. ∵PF ∥BC ,∴∠FPD =∠CQD.在△PFD 和△QCD 中,⎩⎪⎨⎪⎧∠FPD =∠CQD ,∠PDF =∠QDC ,PF =QC ,∴△PFD ≌△QCD(AAS).∴FD =CD.∴DE =EF +FD =12AF +12CF =12AC.∵AC =2,∴DE =1.C 组(综合题)15.如图,△ABC 是等边三角形,E 是BC 边上任意一点,∠AEF =60°,EF 交△ABC 的外角∠ACD 的平分线于点F.求证:AE =EF.证明:在AB 上截取AG =CE ,连接EG. ∵△ABC 是等边三角形,∴AB =BC ,∠B =∠ACB =60° 又∵AG =CE ,∴BG =BE.∴△BEG 是等边三角形.∴∠BGE =60°.∴∠AGE =120°. ∵CF 平分∠ACD ,∴∠ACF =12(180°-∠ACB)=60°. ∴∠ECF =120°.∴∠AGE =∠ECF.∵∠AEC =∠B +∠GAE =∠AEF +∠CEF , 且∠AEF =∠B =60°,∴∠GAE =∠CEF.又∵AG =EC ,∴△AGE ≌△ECF(ASA). ∴AE =EF.。
第五章生活中的轴对称轴对称图形轴对称分类轴对称角平分线轴对称实例线段的垂直平分线等腰三角形等边三角形生活中的轴对称轴对称的性质轴对称的性质镜面对称的性质图案设计轴对称的应用镶边与剪纸一、轴对称图形1、如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2、理解轴对称图形要抓住以下几点:(1)指一个图形;(2)存在一条直线(对称轴);(3)图形被直线分成的两部分互相重合;(4)轴对称图形的对称轴有的只有一条,有的则存在多条;(5)线段、角、长方形、正方形、菱形、等腰三角形、圆都是轴对称图形;二、轴对称1、对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。
可以说成:这两个图形关于某条直线对称。
2、理解轴对称应注意:(1)有两个图形;(2)沿某一条直线对折后能够完全重合;(3)轴对称的两个图形一定是全等形,但两个全等的图形不一定是轴对称图形;(4)对称轴是直线而不是线段;三、角平分线的性质1、角平分线所在的直线是该角的对称轴。
2、性质:角平分线上的点到这个角的两边的距离相等。
四、线段的垂直平分线1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。
2、性质:线段垂直平分线上的点到这条线段两端点的距离相等.五、等腰三角形1、有两条边相等的三角形叫做等腰三角形;2、相等的两条边叫做腰;另一边叫做底边;3、两腰的夹角叫做顶角,腰与底边的夹角叫做底角;4、三条边都相等的三角形也是等腰三角形。
5、等腰三角形是轴对称图形,有一条对称轴(等边三角形除外),其底边上的高或顶角的平分线,或底边上的中线所在的直线都是它的对称轴。
6、等腰三角形的三条重要线段不是它的对称轴,它们所在的直线才是等腰三角形的对称轴。
7、等腰三角形底边上的高,底边上的中线,顶角的平分线互相重合,简称为“三线合一”。
8、“三线合一”是等腰三角形所特有的性质,一般三角形不具备这一重要性质。
2024--2025学年度七年级数学上册学案2.3简单的轴对称图形(3)【学习目标】1.探索并掌握等腰三角形的轴对称性及有关性质;2.探索并掌握等边三角形的轴对称性及有关性质;3.学会符号语言表示等腰三角形的性质并应用.【自主学习】阅读课本第50至51页的内容,思考并解答下列问题.1.等腰三角形的两个_______相等,等腰三角形的平分线、上的高和上的中线互相重合(简称“三线合一”)几何语言:在△ABC中, AB=AC时,(1)若AD平分∠BAC,那么、(2)若BD=CD,那么、(3)若AD⊥BC,那么、2.等边三角形是______________,并且有____条对称轴.等边三角形的每个内角都等于________.【典型例题】知识点一等腰三角形边、角的性质1.等腰三角形的两边长分别为3cm,6cm,则周长为;2.等腰三角形的一个角是80°,则它的底角是()A.50°B.80°C.20°或80°D.50°或80°知识点二等腰三角形的“三线合一”3.已知:如图△ABC中,AB=AC,AD和BE是高,它们交于点H,且∠BAC=∠ABE,试说明∠ABE=2∠CAD知识点三等边三角形的性质4.△ABC与△BDE都是等边三角形,求证:AE=CD第4题图【当堂达标】1.如图,在△中,点D是边BC上的一点.若则∠C的度数为__________. 2.等腰三角形腰上的高与另一腰的夹角为40度,则这个等腰三角形的顶角为_____.3.如图,等边三角形纸片ABC 的周长为6,E ,F 是边BC 上的三等分点.分别过点E ,F 沿着平行于BA ,CA 的方向各剪一刀,则剪下的△DEF 的周长是( )A.1B.2C.3D.44.如图,P,Q 是△ABC 边上BC 上的两点,且BP=PQ=QC=AP=AQ,求∠BAC 的度数_____ .第1题 第3题5.已知:如图,ΔABC 中,AB =AC ,D 、E 在BC 边上,且AD =AE .试说明BD =CE .6.如图,已知AB=AC,∠A=36°,AB 的中垂线MN 交AC 于点D,交AB 于点M,试说明:BD 平分∠ABC2.3简单的轴对称图形(3)【自主学习】1.底角,顶角,底边,底边;(1)BD =CD ,AD ⊥BC ;(2)AD 平分∠BAC , AD ⊥BC ;(3)AD 平分∠BAC ,BD =CD ;2.轴对称图形,三条,60 °;【典型例题】1.15cm2.D3.先说明∠BAC=2∠CAD 再说明 ∠ABE=2∠CAD4.【当堂达标】1.B2.3.5、3.5或3、43. 50°或130°4.120° A Q C P B 第4题图5.解:∵AD=AE,∴∠ADE=∠AED,∴∠ADB=∠AEC.∵AB=AC,∴∠B=∠C.在△ABD与△ACE中,,∴△ABD≌△ACE(AAS).∴BD=CE。
鲁教版数学七年级上册2.1《轴对称现象》说课稿一. 教材分析鲁教版数学七年级上册2.1《轴对称现象》是学生在学习了平面几何初步知识的基础上,进一步研究轴对称图形的性质和判定。
这一节内容通过丰富的现实情境和几何图形,引导学生探索轴对称现象,培养学生的几何直观能力和空间想象能力。
教材中安排了丰富的活动,让学生在动手操作中感受轴对称,从而更好地理解和掌握轴对称的性质。
二. 学情分析学生在进入七年级之前,已经在小学阶段接触过一些简单的几何图形和性质,对几何学习有了一定的基础。
但是,他们对轴对称现象的理解可能还停留在直观层面,缺乏对轴对称性质的系统认识。
因此,在教学过程中,我需要关注学生的认知基础,通过合理的教学设计,帮助学生建立和完善轴对称的知识体系。
三. 说教学目标1.知识与技能:让学生理解和掌握轴对称的定义和性质,能够判断一个图形是否为轴对称图形。
2.过程与方法:通过观察、操作、交流等活动,培养学生的几何直观能力和空间想象能力。
3.情感态度与价值观:让学生体验数学与生活的联系,培养学生的数学兴趣和探究欲望。
四. 说教学重难点1.重点:轴对称的定义和性质。
2.难点:对轴对称性质的理解和应用。
五. 说教学方法与手段1.教学方法:采用问题驱动、合作探究的教学方法,引导学生主动参与课堂,提高学生的学习积极性。
2.教学手段:利用多媒体课件、几何模型等教学辅助工具,增强课堂教学的趣味性和直观性。
六. 说教学过程1.导入:通过展示一些生活中的轴对称现象,如剪纸、建筑等,引发学生对轴对称的兴趣,从而导入新课。
2.新课讲解:讲解轴对称的定义和性质,通过几何模型和多媒体课件,让学生直观地感受轴对称。
3.例题解析:分析一些典型的轴对称图形,让学生学会判断一个图形是否为轴对称图形。
4.课堂练习:安排一些练习题,让学生巩固所学知识,提高解题能力。
5.总结提升:对本节课的内容进行总结,引导学生发现轴对称与生活的联系。
七. 说板书设计板书设计要简洁明了,能够突出轴对称的主要性质。
北师大版数学七年级下册第五单元5.3简单的轴对称图形课时练习一、选择题(共15小题)1.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边上的高C.顶角平分线所在的直线D.腰上的高所在的直线答案:C解析:解答:对称轴是直线,故B错;须过底边中点,故A错,D错,综上,选C.分析:解决本题关键是首先确定对称轴是直线,其次确定过什么特殊点.2.下面四个图形中,不是轴对称图形的是()A.有一个内角为45度的直角三角形B.有一个内角为60度的等腰三角形C.有一个内角为30度的直角三角形D.两个内角分别为36度和72度的三角形答案:C解析:解答:对于选项A,有一个内角为45度的直角三角形,三个内角分别是45°、90°、45°,是等腰三角形,是轴对称图形;选项B,有一个内角为60°的等腰三角形,三个角度数分别为60°、60°、60°,是等边三角形,是轴对称图形;对于C,有一个内角为30度的直角三角形,三个角度数分别为30°、90°、60°,不是等腰三角形,不是轴对称图形;对于D,两个内角分别为36度和72度的三角形,三个角度数分别为36°、72°、72°,是等腰三角形,是轴对称图形;综上,选C.分析:解决本题关键是判断是不是等腰三角形,是的就是轴对称图形,否则就不是.3.下列4个图形中,不是轴对称图形的是()A.有2个内角相等的三角形B.有1个内角为30°的直角三角形C.有2个内角分别为30°和120°的三角形D.线段答案:B解析:解答:对于选项A,有2个内角相等的三角形,是等腰三角形,是轴对称图形;选项B,有1个内角为30°的直角三角形,三个角度数分别为30°、90°、60°,不是等腰三角形,故不是轴对称图形,故选B;对于C,有2个内角分别为30°和120°的三角形,三个角度数分别为30°、120°、30°,是等腰三角形,是轴对称图形;对于D,线段是以其垂直平分线为对称轴,另一条对称轴是其所在的直线.分析:解决本题关键是找出各图形的对称轴,找不出来的就是答案.4.下列图形中,不一定是轴对称图形的是()A.三角形B.射线C.角D.相交的两条直线答案:A解析:解答:题中给出的四个选项中,射线以其所在直线为对称轴,角以其角平分线所在直线为对称轴,相交的两条直线以其夹角的平分线所在直线为对称轴;故选A分析:解决本题关键是找出各图形的对称轴,找不出来的就是答案.5.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形答案:C解析:解答:题中给出的四个选项中,有三项是等腰三角形,而等腰三角形一定是轴对称图形,剩下的C就是答案,故选C.分析:判断三角形是否是轴对称图形,关键就是看这个三角形是不是等腰三角形.6.角、线段、三角形、圆、长方形和正方形中,一定是轴对称图形的有()A.4个B.5个C.6个D.3个答案:B解析:解答:通过分析可知,角、线段、圆、长方形和正方形都是轴对称图形,故选B.分析:本题关键是对于每一种图形,找到一条对称轴,找不到的就不是轴对称图形.7.等腰三角形、直角三角形、等边三角形、锐角三角形、钝角三角形和等腰直角三角形中,一定是轴对称图形的有()A.3个B.4个C.5个D.2个答案:A解析:解答:通过分析可以得到等腰三角形、等边三角形、等腰直角三角形都是轴对称图形,故选A.分析:本题关键看是不是等腰三角形,在所有三角形中,只要是等腰三角形,就一定是轴对称图形.8.下列字母中:H、F、A、O、M、W、Y、E,轴对称图形的个数是()A.5B.4C.6D.7答案:D解析:解答:从第一个字母研究,只要能够找到一条对称轴,令这个字母沿这条对称轴折叠后,两边的部分能够互相重合,就是轴对称图形,可以得出:字母H、A、O、M、W、Y、E这七个字母,属于轴对称图形,故选D.分析:本题关键是找到一条对称轴,解决方法是针对每一字母逐一研究,涉及到的知识点较为单一.9.下列图形中,不是轴对称图形的是()A.有两个内角相等的三角形B.有一个内角为45度的直角三角形C.有两个内角分别为50度和80度的三角形D.有两个内角分别为55度和65度的三角形答案:D解析:解答:从A 选项开始研究,有两个内角相等的三角形是等腰三角形,等腰三角形是轴对称图形;B 有一个内角为45度的直角三角形是等腰直角三角形,也是等腰三角形,是轴对称图形;C 有两个内角分别为50度和80度的三角形,第三个角是50度,故是等腰三角形,是轴对称图形;故选D .分析:本题关键是判断三角形是不是等腰三角形,解决方法逐一研究,涉及到的知识点较为单一.10.有两条或两条以上对称轴的轴对称图形是( )A .等腰三角形B .角C .等边三角形D .锐角三角形答案:C解析:解答:从A 选项开始研究,等腰三角形只有一条对称轴;角也只有一条对称轴,是角平分线所在的直线;等边三角形有三条对称轴;D 锐角三角形的对称轴数量不确定. ∴选C分析:本题关键是看能否找到该图形的对称轴,解决方法逐一研究,涉及到的知识点较为单一11.如图,Rt △ABC 中,∠C =90°,∠ABC 的平分线BD 交AC 于D ,若AD =5cm ,CD =3cm ,则点D 到AB 的距离DE 是( )A . 5cmB . 4cmC . 3cmD . 2cm答案:C解析:解答:∵点D 到AB 的距离是DE∴DE ⊥AB∵BD 平分∠ABC ,∠C =90°∴把Rt △BDC 沿BD 翻折后,点C 在线段AB 上的点E 处∴DE =CD∵CD =3cm∴DE =3cm选C .分析:本题关键是运用翻折,实现DE 与DC 重合,从而判断DE =DC =3cm .12. △ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,则∠A 等于( )DBA .30°B .45°C .36°D .72°答案:C解析:解答:∵有很多等腰三角形,∴得到很多对称的图形∴根据题意将上图构造出来后如下图所示∴∠A =36°故选C分析:本题关键根据题干把图构造出来,然后进行计算就可以了.13.一个等腰三角形的顶角为钝角,则底角a 的范围是( )A .0°<a <9B .30°<a <90°C .0°<a <45°D .45°<a <90°答案:C解析:解答:∵等腰三角形顶角为钝角∴顶角大于90°小于180°∴两个底角之和大于0°小于90°∴每个底角大于0°小于45°故选C分析:本题关键先将两个底角的和的范围算出来,然后再将每个底角范围出来,注意是大于小于,不包含等于号.14.如图,△ABC 中,AB =AC ,∠A =36°,∠ABC 和∠ACB 的平分线BE 、CD 交于点F ,则图中共有等腰三角形( )A .7个B .8个C .9个D .10个答案:B解析:解答:∵等腰三角形有两个角相等 D A B C AB C E DF∴只要能判断出有两个角相等就行了将原图各角标上后显示如左下:因此,所有三角形都是等腰三角形只要判断出有哪几个三角形就可以了.如右上图,三角形有如下几个:①,②,③;①+②,③+②,①+④,③+④;①+②+③+④;共计8个.故选B分析:本题关键先将每一个三角形的内角算出来,然后再将三角形的个数数出来,注意不重不漏.15.等腰三角形有一个是50°,它的一条腰上的高与底边的夹角是( )A .25°B .40°C .25°或40°D .50°答案:C解析:解答:∵等腰三角形有一个是50°∴有两种可能①是三个角为50°、50°、80°;②是三个角为50°、65°、65°分情况说明如下:①当三个角为50°、50°、80°时,根据图①,可得其一条腰上的高与底边的夹角∠DAB =40°; ②当三个角为50°、65°、65°,根据图②,可得其一条腰上的高与底边的夹角∠DAB =25°故选C① ②分析:本题关键根据题意确定有两种不同的情况.A B B二、填空题(共5小题)16.等腰三角形的对称轴是.答案:底边的垂直平分线解析:解答:∵对称轴是直线∴等腰三角形的对称轴也是直线∵等腰三角形有两条边相等∴这两条边是轴对称后能够重合的两条线段∴这两边的非公共点是轴对称点∴等腰三角形的对称轴是其底边的垂直平分线分析:本题关键是把求等腰三角形的对称轴转化成求线段的对称轴.17.等边三角形有条对称轴,矩形有条对称轴.答案:3|2解析:解答:∵等腰三角形有一条对称轴∴等边三角形可以看成以各个点为顶点的等腰三角形而每一种情况下都分别有一条对称轴∴等边三角形有三条对称轴分析:本题关键是把等边三角形向等腰三角形转化,由此得到有三条对称轴18.不重合的两点的对称轴是.答案:连结这两点所成线段的垂直平分线解析:解答:∵两点之间线段最短∴连结已知不重合两点,得一线段∴原题变成求一条线段的对称轴而线段的对称轴是它的垂直平分线∴不重合的两点的对称轴是连结这两点所成线段的垂直平分线.分析:本题关键是由点想到线段,把原题转化成求线段的对称轴.19.在△ABC中,AB =AC,∠A=80°,则∠B=.答案:50°解析:解答:∵AB=AC∴根据轴对称的性质,将线段BC对折重合后,点A在折痕上∴线段AB、AC关于折痕轴对称设折痕与BC交点为D则△ABD、△ACD关于直线AD轴对称∴∠B=∠C =(180°-∠A)÷2=(180°-80°)÷2=50°分析:本题关键是利用轴对称性质,得到∠B =∠C,再利用三角形内角各可以求得.20.已知M 、N 是线段AB 的垂直平分线上任意两点,则∠MAN 和∠MBN 之间关系是 . 答案:∠MAN=∠MBN解析:解答:∵原题当中没有说明点M 、N 在线段AB 的位置,∴可能有以下四种情况:①如图①,点M 、N 在线段AB 两侧时∵M 、N 是线段AB 的垂直平分线上任意两点∴点A 、B 两点关于直线MN 轴对称∴线段MA 、MB 两点关于直线MN 轴对称同理线段NA 、NB 两点关于直线MN 轴对称∴△MAN 与△MBN 关于直线MN 轴对称∴∠MAN =∠MBN②如图①,当点M 、N 在线段AB 同侧时,按照①中逻辑推理,同样可以得到∠MAN =∠MBN ;③如图③,当点N 在线段AB 上时,同理可得∠MAN =∠MBN ;④如图④,当点M 在线段AB 上时,同理可得∠MAN =∠MBN .综上,一定有∠MAN =∠MBN分析:本题关键是考虑到不论点M 、N 与线段AB 的位置如何,求得∠MAN =∠MBN 原理相同,这是关键点.三、解答题(共5小题)21.如图1,在一条河同一岸边有A 和B 两个村庄,要在河边修建码头M ,使M 到A 和B 的距离之和最短,试确定M 的位置;答案:所求点如下图所示 ①AB ②A ③A ④A B lAB解答:∵两点之间线段最短∴需要能将AM 、BM 两边转化到一条直线上∴用轴对称可以办到求点M 的位置的具体步骤如下:①作点A 关于直线BC 的轴对称点A ’②连结A ’B 交BC 于点M③连结AM则点M 就是所求作的点,能够使M 到A 和B 的距离之和最短.解析:分析:本题关键是要分析出如何求点M 的方法,这是关键点.22.如图所示,P 和Q 为△ABC 边AB 与AC 上两点,在BC 上求作一点M ,使△PQM 的周长最小.答案:所求点如下图所示解答:∵△PQM 的三条边中PQ 已经确定∴只需要另外两边之和最短∵两点之间线段最短BB∴需要能将其它两边转化到一条直线上∴用轴对称可以办到求点M的位置的具体步骤如下:①作点P关于直线BC的轴对称点P’②连结P’Q交BC于点M③连结PM则点M就是所求作的点,能够使PQM的周长最小.解析:分析:本题关键是要分析出如何求点M的方法,这是关键点.23.圆、长方形、正方形都是轴对称图形,说出他们分别有几条对称轴.答案:无数条|2条|4条解答:∵对于圆来说,过圆心的任意一条直线,都能够将这个圆分成能够互相重合的两部分∴过圆心的直线,都是圆的对称轴∴圆有无数条对称轴∵对于长方形来说,过其中心平行于边的直线,都能够把它分成能够互相重合的两部分∴长方形有2条对称轴∵对于正方形来说,属于长方形的对称轴,对其也成立;∴正方形首先有2条对称轴又∵正方形的每一条对角线所在的直线,也能够把这个正方形分成能够互相重合的两部分∴正方形另外还有2条对称轴综上,正方形有4条对称轴解析:分析:本题关键是要分析出每一种图形对称轴的由来,这是关键点.24.已知等腰三角形的一边长等于4,一边长等于9,求它的周长.答案:22解答:∵等腰三角形的一边长等于4,一边长等于9,∴等腰三角形的三边长为4,4,9或4,9,9;当三边长为4,4,9时,4+4<9不能构成三角形,舍去;当三边长为4,9,9时,能够构成三角形,此时,周长为4+9+9 =22答:它的周长是22.解析:分析:本题关键是要考虑到是否能够构成三角形,这是易错点.25.如图,长方形ABCD中,AB=2,点E在BC上并且AE=EC,若将矩形纸片沿AE折叠,使点B恰好落在AC上,则AC的长为多少?答案:4解答:如图,设点B 落在AC 上后,为点F .则有△AFE ≌△ABE∴∠AFE =∠B =90° AF =AB =2∴FE ⊥AC∵AE =EC∴CF =AF =2∴AC =CF +AF =4答:AC 的长为4.解析:分析:本题考察轴对称的性质,关键是把握住对称一定全等,全等三角形的对应线段相等.AB。
北师大版数学七年级下册5.3《简单的轴对称图形》精选练习一、选择题1.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边上的高C.顶角平分线所在的直线D.腰上的高所在的直线2.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形3.有两条或两条以上对称轴的轴对称图形是()A.等腰三角形B.直角三角形C.等边三角形D.锐角三角形4.等腰三角形的周长为80cm,若以它的底边为边的等边三角形周长为30cm,则该等腰三角形的腰长为()A.35cmB.25cmC.30cmD.40cm5.等腰三角形有一个是50°,它的一条腰上的高与底边的夹角是()A.25°B.40°C.25°或40°D.50°6.△ABC中,AB =AC,点D在AC上,且BD=BC=AD,则∠A等于()A.30°B.45°C.36°D.72°7.下列图形中,不是轴对称图形的是()A.有两个内角相等的三角形B.有一个内角为45度的直角三角形C.有两个内角分别为50度和80度的三角形D.有两个内角分别为55度和65度的三角形8.等腰三角形、直角三角形、等边三角形、锐角三角形、钝角三角形和等腰直角三角形中,一定是轴对称图形的有()A.3个B.4个C.5个D.2个9.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形10.下列4个图形中,不是轴对称图形的是()A.有2个内角相等的三角形B.有1个内角为30°的直角三角形C.有2个内角分别为30°和120°的三角形D.线段11.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边上的高C.顶角平分线所在的直线D.腰上的高所在的直线12.已知等腰三角形一腰上的高与另一腰的夹角为60°,则这个等腰三角形的顶角是()A.30°B.60°C.150°D.30°或150°二、填空题13.等腰三角形顶角的平分线、底边上的中线、底边上的高________(也称“_____________”),它们所在的直线都是等腰三角形的_______________;14.等腰三角形有一个是50°,它的一条腰上的高与底边的夹角是______________;15.在△ABC中,AB =AC,∠A=80°,则∠B= .16.等边三角形有条对称轴,矩形有条对称轴.17.如图,∠BAD=∠DAC=9°,AD⊥AE,且AB+AC=BE,则∠B= .18.如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是(请将所有正确结论的序号都填上).三、解答题19.已知等腰三角形的一边长等于5cm,另一边长等于9cm,求它的周长;20.如图,在△ABC中,AB=AC,BD=CD,DE⊥AB于E,DF⊥AC于F.求证:DE=DF;21.已知等腰三角形的一边长等于4,一边长等于9,求它的周长.22.如图,在△ABC中,AB=AC,BF=CD,BD=CE,∠FDE=α,探索α与∠B的关系。
《轴对称图形》教学设计《轴对称图形》教学设计15篇作为一名为他人授业解惑的教育工作者,时常需要准备好教学设计,借助教学设计可以让教学工作更加有效地进行。
那么应当如何写教学设计呢?以下是店铺收集整理的《轴对称图形》教学设计,欢迎阅读与收藏。
《轴对称图形》教学设计1学习目标1、让学生观察、欣赏民间艺术的剪纸作品,以及服饰、工艺品与建筑等图案,感知显示世界中普遍存在的对称现象。
2、通过“折一折,剪一剪”“猜一猜,剪一剪”“画一画”和图形分类等操作活动,使学生体会对称图形的特征,能在方格纸上画出简单图形的轴对称图形学习重点认识对称现象,绘制对称图形。
过程与方法教师活动一、组织活动,揭示课题1、教师动手操作,学生认真观察。
引导学生观察自己所带的纸,告诉学生:这些都是平面图形。
(1)教师取一张白纸、对折。
(2)在白纸的一边画上一个图案。
(如图1)二、认识对称图形1、展示民间剪纸艺术。
(出示课本上剪纸图)3、认识对称轴。
(1)告诉学生,刚才对折时出现的折痕,是这幅图的对称轴。
对称有什么功能呢?(2)把图形沿着对称轴对折,发现对称轴左右两边的图形完全重合。
4、猜一猜,剪一剪。
(课本12页的下半页部分)5、看一看,说一说。
考察学生是否体会对称图形的特征,并根据特征把图形分为对称图形和非对称图形两类。
出示图形三、课堂活动1、课文第13页“在生活中你见过哪些图形是对称的?”2、课文第14野“试一试”的第1、2和3题。
四、巩固练习1、课内外作业。
课本第14页“试一试”的第4题。
2、选用作业。
五、作业设计1、给对称图形打“√”。
学生活动学生观察。
学生动手折纸。
各人取出一张纸,对折,并画上图案(参照课文)。
学生动手操作、观察。
说说折纸后自己的发现。
用剪刀剪下图形,再打开。
(3)让学生自己试一试。
(1)课本第13页的上半部分内容。
除琴外,其他都是对称图形,因为琴把上4个把儿不对称。
所以不能算是对称图形。
(2)判断并分析。
学生独立完成;板书设计轴对称图形教学反思学生在课前的准备工作做得比较充分,已经初步了解了如何在剪纸的过程中利用对折剪纸。
鲁教版数学七年级上册2.3《简单的轴对称图形》说课稿一. 教材分析鲁教版数学七年级上册2.3《简单的轴对称图形》这一节内容,主要让学生了解轴对称图形的概念,学会判断一个图形是否为轴对称图形,以及如何寻找图形的对称轴。
这部分内容是初中数学的基础知识,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析面对七年级的学生,他们对数学知识的掌握已经有了一定的基础,但仍然需要通过具体实例来帮助他们理解抽象的概念。
在学习本节内容时,学生需要具备一定的观察能力和动手操作能力,能够通过观察、实践来发现图形的对称性质。
三. 说教学目标1.知识与技能:让学生掌握轴对称图形的概念,学会判断一个图形是否为轴对称图形,并能找出图形的对称轴。
2.过程与方法:通过观察、操作、交流等过程,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 说教学重难点1.重点:轴对称图形的概念及其判断方法。
2.难点:如何寻找图形的对称轴,以及理解轴对称图形在实际应用中的意义。
五. 说教学方法与手段1.教学方法:采用问题驱动、实例引导、合作学习的方法,让学生在实践中掌握知识。
2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学,提高学生的学习兴趣和效果。
六. 说教学过程1.导入新课:通过展示一些生活中的对称现象,如剪纸、建筑等,引导学生发现对称的美,激发他们对本节内容的兴趣。
2.探究新知:介绍轴对称图形的概念,让学生通过观察实例,发现轴对称图形的特征,学会判断一个图形是否为轴对称图形。
3.动手实践:让学生分组合作,寻找教室内的对称轴,找出教室内的轴对称图形。
4.讲解示范:教师讲解如何寻找图形的对称轴,并通过几何画板软件进行示范。
5.巩固练习:布置一些有关轴对称图形的练习题,让学生独立完成,检验他们对方程的理解和掌握程度。
6.课堂小结:对本节内容进行总结,强调轴对称图形的特点和判断方法。
鲁教版数学七年级上册2.3《简单的轴对称图形》教学设计一. 教材分析《简单的轴对称图形》是鲁教版数学七年级上册2.3节的内容,主要介绍轴对称图形的概念,性质以及应用。
通过本节课的学习,学生能够理解轴对称图形的定义,识别生活中的轴对称图形,并运用轴对称性质解决实际问题。
二. 学情分析七年级的学生已经具备了一定的空间想象能力和抽象思维能力,他们对平面几何有一定的了解。
但是,对于轴对称图形的概念和性质,学生可能还比较陌生。
因此,在教学过程中,需要引导学生从实际生活中的例子出发,逐步抽象出轴对称图形的概念,并理解其性质。
三. 教学目标1.知识与技能:学生能够理解轴对称图形的定义,识别生活中的轴对称图形,运用轴对称性质解决实际问题。
2.过程与方法:学生通过观察、操作、思考、交流等过程,培养空间想象能力和抽象思维能力。
3.情感态度与价值观:学生感受数学与生活的紧密联系,增强学习数学的兴趣和信心。
四. 教学重难点1.重点:轴对称图形的概念和性质。
2.难点:轴对称图形的性质的应用。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生从实际出发,理解轴对称图形的概念。
2.启发式教学法:引导学生观察、思考、交流,自主探索轴对称图形的性质。
3.实践操作法:让学生动手操作,加深对轴对称图形性质的理解。
六. 教学准备1.教具:准备一些生活中常见的轴对称图形,如剪纸、图片等。
2.学具:学生每人准备一张白纸,一把剪刀。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的轴对称图形,如剪纸、图片等,引导学生观察并提问:“这些图形有什么共同的特点?”学生回答后,教师总结出轴对称图形的定义。
2.呈现(10分钟)教师通过PPT或黑板,呈现一些轴对称图形的性质,如对称轴、对称点等,并引导学生思考这些性质的含义和应用。
3.操练(10分钟)学生分组进行实践活动,每组选择一个轴对称图形,用剪刀将图形剪下来,观察并讨论其对称轴、对称点等性质。
第03讲简单的轴对称图形—垂直平分线和角平分线(7类热点题型讲练)1.理解线段的垂直平分线的概念;2.掌握线段的垂直平分线的性质定理及逆定理;(重点)3.能运用线段的垂直平分线的有关知识进行证明或计算.(难点)4.经历角的平分线性质的发现过程,初步掌握角的平分线的性质定理;(重点)5.能运用角的平分线性质定理解决简单的几何问题.(难点)知识点01线段的垂直平分线(简称中垂线)定义:垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线.性质:线段垂直平分线上的点到这条线段两个端点的距离相等.作法:作已知线段的垂直平分线.知识点02角平分线的性质1.角是轴对称图形,角平分线所在的直线是它的对称轴.2.性质:角平分线上的点到这个角的两边的距离相等.3.作已知角的角平分线.题型01根据线段垂直平分线的性质求解【例题】(2024八年级下·全国·专题练习)如图,在()ABC AB AC < 中,BC 边上的垂直平分线DE 交BC 于点D ,交AC 于点E ,15cm AC =,ABE 的周长为24cm ,则AB 的长为.【变式训练】1.(2024·山东滨州·一模)如图,在ABC 中,90A ∠=︒,分别以点B 和点C 为圆心,大于12BC 的长为半径画弧,两弧相交于M ,N 两点;作直线MN 交AB 于点E .若16AB =,8AC =,则BE 长为.2.(23-24八年级下·四川雅安·阶段练习)如图所示,在ABC 中,DM EN 、分别垂直平分AB 和AC ,交BC 于D E 、.(1)若50DAE ∠=︒,求BAC ∠的度数;(2)若ADE V 的周长为19cm ,求BC 的长度.题型02线段垂直平分线的实际应用【例题】(23-24八年级下·河北保定·阶段练习)如图,政府计划在,,A B C 三个村庄附近建立一所小学,且小学到三个村庄的距离相等,则小学应建在()A .ABC 三边垂直平分线的交点B .ABC 三条角平分线的交点C .ABC 三条高所在直线的交点D .ABC 三条中线的交点【变式训练】1.(23-24八年级下·河南郑州·阶段练习)如图,A ,B ,C 表示三个居民小区,为丰富居民们的文化生活,现准备建一个文化广场,使它到三个小区的距离相等,则文化广场应建在()A .AC ,BC 两边垂直平分线的交点处B .AC ,BC 两边中线的交点处C .AC ,BC 两边高线的交点处D .A ∠,B ∠两内角平分线的交点处题型03作垂线(尺规作图)【例题】(23-24八年级下·广东佛山·期中)如图,在ABC 中,90C ∠=︒.(1)尺规作图:作边AB 的垂直平分线,交BC 与点D ,交AB 于点E (保留作图痕迹,不写作法)(2)若38ABC ∠=︒,求CAD ∠的度数.【变式训练】1.(23-24八年级上·江苏徐州·期中)如图,某社区要在居民区A ,B 所在的直线上建一图书室E ,并使图书室E 到本社区两所学校C 和D 的距离相等.已知CA AB ⊥,DB AB ⊥,垂足分别为A ,B ,且 2.5km AB =,1.5km CA =, 1.0km BD =.(1)请用直尺和圆规在图中作出点E (不写作法,保留作图痕迹);(2)求图书室E 到居民区A 的距离.2.(23-24八年级上·辽宁鞍山·阶段练习)如图,某居民小区在三栋住宅楼A ,B ,C 之间修建了供居民散步的三条绿道,小区物业打算在绿道内部修建一个凉亭,按照设计要求,凉亭到三条绿道的距离相等,请在图中标注凉亭的位置,保留作图痕迹,并说明设计理由.题型04根据角平分线的性质定理求解【例题】(23-24八年级下·广东茂名·期中)如图,OP 平分AOB ∠,PC OB ⊥,如果6PC =,那么点P 到OA 的距离等于【变式训练】1.(23-24八年级下·江西吉安·阶段练习)如图,AD 是ABC 的角平分线,DE AB ⊥于点E ,若6,2AC DE ==,则ACD 的面积为.2.(23-24八年级下·河南郑州·阶段练习)如图,已知P 是AOB ∠平分线上一点,15AOP ∠=︒,CP OB ∥交OA 于点C ,PD OB ⊥,垂足为D ,且6PC =,则OPC 的面积等于.题型05根据角平分线的性质定理证明【例题】(23-24八年级上·广东广州·期中)如图,四边形ABCD 中,90B C ∠=∠=︒,点E 为BC 上一点,DE 平分ADC ∠,且AE 平分BAD ∠.(1)求证:ED AE ⊥;(2)求证:点E 为BC 的中点.【变式训练】1.(23-24八年级上·湖北恩施·期末)教材第56页拓广探索12题:(1)如图,在ABC 中,AD 是它的角平分线①求证:ABD ACD S AB S AC=△△;②另一方面,我们进一步探索,可以证明ABDACD S BD S CD= .请你选择上述两结论中的其中一个进行证明;(2)由(1)的探索我们可以得到关于ABC 的角平分线AD 的一个性质,请你总结这个性质(结合图1表述);(3)运用你所得到的结论完成下列证明:如图2,AD 是BAC ∠的平分线,CE AD ∥交BA 的延长线于点E .求证:BD BA CD EA=.2.(22-23八年级上·上海普陀·期中)如图,在ABC 中,AD 是BAC ∠的平分线.(1)在线段AD 上任意取一点F ,过点F 作MN AD ⊥,交AB 于点M ,交AC 于点N ,通过这样的作图能得到结论MF FN =,那么依据是_________.(2)如果=60B ∠︒,CE 平分ACB ∠交AB 于点E ,且AD 、CE 相交于点F ,求证:FE FD =.(3)如果100ACB ∠=︒,在边AB 上截取一点E ,连接CE ,使20ACE ∠=︒,连接DE .请直接写出ADE ∠的度数.题型06角平分线的性质实际应用【例题】(23-24八年级下·陕西西安·阶段练习)如图,某市有一块由三条马路围成的三角形绿地,现决定在其中修建一个亭子,使亭子中心到三条马路的距离相等,则亭子应建在()A .在边AC ,BC 两条高的交点处B .在边AC ,BC 两条中线的交点处C .在边AC ,BC 两条垂直平分线的交点处D .在ABC ∠和ACB ∠两条角平分线的交点处【变式训练】1.(23-24八年级下·陕西西安·阶段练习)如图,直线a ,b ,c ,表示三条相互交叉的公路,交点为三个小区,现拟建一个超市,要求它到三个小区的距离都相等,则可以供选择的地址有()A .1处B .2处C .3处D .4处题型07作角平分线(尺规作图)【例题】(23-24八年级下·辽宁沈阳·阶段练习)如图1,两条交叉马路OM ,ON 中间区域建有A ,B 两个温室花房.现要在两条马路OM ,ON 之间的空场处建鲜花交易中心P ,使得交易中心P 到两条马路OM ,ON 的距离相等,且到两个温室花房A ,B 的距离也相等.如何确定交易中心P 的位置?如图2,利用尺规作图求作点P (不写作法,保留作图痕迹).【变式训练】1.(2024·广东茂名·一模)如图,已知ABC ,CA CB =,ACD ∠是ABC 的一个外角.(1)请用尺规作图法,求作射线CP ,使CP 平分ACD ∠.(保留作图痕迹,不写作法)(2)证明:CP AB ∥.2.(23-24九年级下·湖北恩施·阶段练习)如图,AB CD ∥,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以E ,F 为圆心,大于12EF 长为半径作圆弧,两条圆弧交于点P ,作射线AP ,交CD 于点M .(1)若110ACD ∠=︒,求MAB ∠的度数;(2)若CN AM ⊥,垂足为N ,求证:ACN MCN △≌△.一、单选题1.(23-24八年级上·浙江温州·阶段练习)如图,100,BAC AB AC ∠=︒>.若MP 和NQ 分别垂直平分AB 和AC ,则PAQ ∠的度数是()A .20︒B .60︒C .50︒D .40︒2.(22-23八年级上·湖北武汉·期末)如图,ABC 中,90BAC ∠=︒,534BC AC AB ===,,,点D 是ABC ACB ∠∠,的角平分线的交点,则点D 到BC 的距离为()A .1B .2C .3D .3.53.(22-23九年级上·浙江杭州·期中)如图在ABC 中,边AB ,AC 的垂直平分线交于点P ,连结BP ,CP ,若50A ∠=︒,则BPC ∠=()A .100︒B .95︒C .90︒D .50︒4.(2024·海南省直辖县级单位·模拟预测)如图,在ABC 中,AB AC =,54B ∠=︒,以点C 为圆心,CA 长为半径作弧交AB 于点D ,分别以点A 和点D 为圆心,大于12AD 长为半径作弧,两弧相交于点E ,作直线CE ,交AB 于点F ,则ACF ∠的度数是()A .25︒B .20︒C .18︒D .15︒5.(23-24七年级下·江苏苏州·阶段练习)如图,在ABC 中,90BAC ∠=︒,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法正确的是()①ABE 的面积BCE =△的面积;②=AFG AGF ∠∠;③2FAG ACF ∠=∠;④AF FB =.A .①③④B .①②④C .①②③D .③④二、填空题6.(22-23八年级上·甘肃平凉·期末)如图,在ABC 中,DE 是AC 的垂直平分线,3cm AE =,ABD △的周长为13cm ,则ABC 的周长.7.(23-24九年级下·北京·阶段练习)如图,在Rt ABC 中,90B Ð=°,以点A 为圆心,适当长为半径画弧,分别交AB 、AC 于点D ,E ,再分别以点D ,E 为圆心,大于12DE 长为半径画弧,两弧交于点F ,作射线AF 交边BC 于点G ,若1BG =,4AC =,则ACG 的面积为8.(23-24八年级上·山东日照·期末)如图,ABC 的面积是12,8AB =,CAB ∠的平分线交BC 于点D ,M ,N 分别是线段AD ,AC 上的动点,则CM MN +的最小值是.9.(23-24八年级下·陕西咸阳·阶段练习)如图,在ABC 中,100A ∠=︒,点D 是BC 上的一点,BD ,CD 的垂直平分线分别交AB ,AC 于点E ,F ,则EDF ∠=.10.(2023·四川泸州·二模)如图,已知线段6AB =,点P 为线段AB 上一动点,以PB 为边作等边PBC ,以PC 为直角边,CPE ∠为直角,在PBC 同侧构造Rt PCE △,点M 为EC 的中点,连接AM ,则AM 的最小值为三、解答题11.(23-24九年级上·山东青岛·阶段练习)A 、B 是两个村庄,12L L 、是两条马路.为发展经济,提高农民收入,镇政府决定建立一个蔬菜批发市场,选址要使市场到两条马路和两个村庄的距离都相等.请你用尺规在图中找出市场的位置.(不用写作法,但是要保留作图痕迹)12.(23-24八年级上·重庆江津·期中)如图,在ABC 中,AD BC ⊥,EF 垂直平分AC ,交AC 于点F ,交BC 于点E ,且BD DE =,连接AE .(1)求证:AB EC =;(2)若ABC 的周长为42cm ,16cm AC =,求DC 的长.13.(23-24八年级下·广东深圳·阶段练习)如图,在ABC 中,AB 的垂直平分线EF 交BC 于点E ,交AB 于点F ,D 为线段CE 的中点,BE AC =.(1)求证:AD BC ⊥.(2)若75BAC ∠=︒,求B ∠的度数.14.(22-23八年级上·辽宁营口·期中)感知:如图1,AD 平分BAC ∠,180B C ∠+∠=︒.90B Ð=°探究:如图2,AD 平分BAC ∠,180B C ∠+∠=︒.90B ∠<︒,求证:DB DC =.15.(23-24八年级下·河南郑州·阶段练习)如图,在ABC 中,AC CB ≠,DM 、EN 分别垂直平分AC 和BC ,交AB 于点M 、N ,垂足分别为点D 、E ,分别延长DM 和EN ,相交于点F .八年级的小明同学非常喜欢钻研数学问题,在学习线段垂直平分线时,他发现MCN ∠与ACB ∠存在一定的数量关系,于是他通过举例的方式进行研究:(1)当100ACB ∠=︒时,MCN ∠=________;当80ACB ∠=︒时,MCN ∠=________.(2)当ACB m ∠=时,求MCN ∠的度数(用含m 的代数式表示,写出推理过程).(3)当50DFE ∠=︒时,MCN ∠=________°.16.(23-24八年级上·湖北武汉·阶段练习)已知等边ABC ,点N 是边AB 上一点,以BN 为边向外作等边BNM ,连AM 、CN .(1)如图1,求证:AM CN =;(2)如图2,若CN AB⊥,判断BC与MN的关系并证明;(3)如图3,在(2)下,连MC,以MC为边向下作等边MCP,设MC交AB于G,连PG,求证:12PMG PCGS S=△△.。