单向全波整流及滤波电路
- 格式:doc
- 大小:54.50 KB
- 文档页数:4
第二节 单相整流滤波电路整流电路是利用二极管的单向导电性将交流电变换为脉动直流电的电路。
根据交流电的相数,整流电路可分为单相整流电路与三相整流电路等,在小功率电路中(1kV A 以下)一般采用单相整流,常见的有单相半波、全波和桥式整流。
本节重点讨论单相半波和桥式整流电路。
一、单相整流电路1.单相半波整流 电路由整流变压器Tr 、整流二极管VD 以及负载电阻R L 组成,如图6-2-1(a )所示。
VD图6-2-1 单相半波整流电路 a )b ) (a )电路图 (b )波形图图6-2-1(a )中,设电源变压器次级电压u 2为t U u ω=sin 222式中,U 2为次级电压的有效值。
当u 2的波形为正半周时,A 端为正,B 端为负,二极管正向导通,忽略二极管的正向导通压降时,负载电压为u o =u 2;当u 2为负半周时,A 端为负,B 端为正,二极管反向截止,电路中电流为零,负载电压u o =0,u 2全部加在二极管两端。
各电压波形如图6-2-1(b )所示,由图可知,负载上得到的是单相脉动直流电压和电流。
由于输出电压u o 仅为电源电压u 2的正半波,所以称为半波整流。
负载上脉动直流电压的大小用平均值Uo 来示,根据数学推导有2U 450U .O ≈ (6-5) 通过负载的电流Io 为L LO O .R U 450R U I 2≈= (6-6) 二极管与负载串联,因此流经二极管的平均电流为L.R U 450I I 2O D == (6-7) 此外,由图6-3(b )可知,二极管反向截止时,管子两端承受的最高反向电压就是u 2的最大值,即2DRM 2U U = (6-8) 在选择二极管时,所选管子的最大整流电流I F 和最高反向工作电压U RM 应大于式(6-7)和式(6-8)的计算值,即L.R U 450I I 2D F =≥ (6-9) 2RM U 2U U =≥DRM (6-10) 实际应用中,应根据I F 和U RM 的计算值查阅半导体器件手册,选择合适的二极管型号。
我国供电,整流输出直流电压是输入交流电压的倍数(无滤波):三相半波整流:1.17。
三相桥式整流:2.34。
单相半波整流:0.45.单相全波和桥式整流:0.9。
电容滤波空载电压是交流的1.4。
对于整流电压的输出电压大小,大家一定不陌生。
很多人会说,输出平均值全波0.9倍,半波0.45倍的交流有效。
但是在设计中,我们常常发现一个事实,例如在半波整流后,输出电压得到的不止0.45倍,9V交流整流后可能有11~12V。
之前我一直很困惑,是我记错了计算倍数吗?翻了很多书籍,公式当然是没错的。
那到底怎么回事?可能之前我们在学校学这个方面知识点的时候太过注重整流电路,而忽略了脉动比的概念,所以造成我们现在很多人对这一简单的知识不是很清晰。
其实这里是由于整流电路后面接的滤波电容有关的,查阅模电知识我们即可了解到,整流后往往会加滤波稳压,而滤波电路会改变整流输出的脉动比,并且和负载有关。
因此最终整流后得到的电压除了跟整流方式有关,还和负载、滤波电容大小有关系。
RL*C的数值直接影响输出电压的大小。
因此滤波电容选择其实不是随意的,而是需要根据负载选取合适的值。
接入滤波电路后,输出电压平均值近似取值为1.2倍,负载开路取1.414倍。
RC=(3-5)T/2 来确定电容容量选择。
其中T表示电网周期。
电容滤波电路适用于负载电流较小情况,而电感滤波电路适用于大负载电流。
(电流较大时R较小,C较难选择)练习:1.若U2为电源变压器副边电压的有效值,则半波整流电容滤波电路和全波整流电容滤波电路在空载时的输出电压均为1.414U。
()2.对于全波整流电路,已知变压器副边电压有效值U2为10V,RC=(3-5)T/2 (T为电网电压的周期)。
测得输出电压平均值UO(AV)可能的数值为A. 14VB. 12VC. 9VD. 4.5V选择合适答案填入空内。
(1)正常情况UO(AV)≈ ;(2)电容虚焊时UO(AV)≈ ;(3)负载电阻开路时UO(AV)≈ ;(4)一只整流管和滤波电容同时开路,UO(AV)≈ 。
整流电路的原理整流电路是一种将交流电转换为直流电的电路。
在现代的电子设备中,由于需要使用直流电,因此整流电路的应用很广泛。
本文将介绍整流电路的原理。
一、整流电路基本构成整流电路通常由四个基本元件组成:变压器、二极管、滤波电容器和负载。
变压器是将交流电转换为所需电压的必要元件,它可以将高压低流量的交流电转换成低压大流量的交流电。
二极管是整流电路中最重要的元件,它可以使电流单向流动。
二极管只有在正向电压作用下才能导电,在反向电压作用下则会发生击穿而烧坏。
滤波电容器可以减小电压的波动,使输出电压更加稳定,并滤掉电路中的高频噪声。
负载是整流电路的最后一个元素,它能够消耗电路输出的电能。
二、整流电路工作原理整流电路的工作原理非常简单,它通过二极管只允许正半周电压通过的特性,将输入的交流电转换为单向的脉冲电压,然后再通过滤波电容器将电压波动降低,从而得到更加稳定的直流电。
如果将一个桥式整流电路连接到高压交流电源上,输入电压的正半周电流将通过一组二极管,而负半周电流则通过另一组二极管,最后输出的电压将近似于直流电压。
这种转换原始的交流电为直流电的过程称为整流。
三、整流电路的分类1. 单相半波整流电路单相半波整流电路如图1所示,它只有一个二极管,用于将交流电转换为单向的电流。
由于只有一半的电压被利用,因此它的效率较低。
图1 单相半波整流电路2. 单相全波整流电路单相全波整流电路如图2所示,它包括四个二极管,在每个半周期内都会采用负载电压输出。
这种电路比半波整流电路更加有效,因为负载电压的峰值会比半波整流电路的峰值高一倍。
图2 单相全波整流电路3. 三相桥式整流电路三相桥式整流电路如图3所示,它包括六个二极管,是一种经常用于高功率应用中的电路。
图3 三相桥式整流电路四、整流电路的应用整流电路广泛应用于电子设备中,例如手机充电器、数码相机、电动车充电器等。
在交流电网中,整流电路也被用于变压器、电机驱动器、大型电容器充电器以及其他类似的设备中。
单相桥式整流与滤波电路的安装和测试教案第一章:教学目标与内容简介1.1 教学目标1. 了解单相桥式整流电路的原理与特点;2. 学会桥式整流电路的安装与测试方法;3. 掌握单相桥式整流与滤波电路的应用场景。
1.2 教学内容1. 单相桥式整流电路的基本原理;2. 桥式整流电路的元件与连接方式;3. 单相桥式整流与滤波电路的安装步骤;4. 电路测试与故障排查方法。
第二章:单相桥式整流电路原理与特点2.1 电路原理1. 桥式整流电路的电路图;2. 桥式整流电路的工作原理;3. 桥式整流电路的输出电压与电流。
2.2 电路特点1. 桥式整流电路的优点;2. 桥式整流电路的缺点。
第三章:桥式整流电路的安装与连接3.1 元件准备1. 元器件清单与参数;2. 元器件的识别与检测。
3.2 电路安装1. 印刷电路板的设计与制作;2. 元器件的焊接与布线;3. 电路的调试与修改。
第四章:单相桥式整流与滤波电路的测试与故障排查4.1 电路测试1. 测试仪器与设备;2. 测试方法与步骤;3. 测试结果的分析与处理。
4.2 故障排查1. 故障现象的观察与描述;2. 故障原因的分析与判断;3. 故障的排除与修复。
第五章:单相桥式整流与滤波电路的应用实例5.1 应用场景介绍1. 桥式整流电路在家用电器中的应用;2. 桥式整流电路在工业设备中的应用。
5.2 实例分析1. 实例电路图与工作原理;2. 实例电路的安装与调试;3. 实例电路的性能分析与优化。
第六章:安全操作与维护6.1 安全操作1. 电路测试与实验操作规范;2. 焊接操作的安全注意事项;3. 故障排查时的安全防护措施。
6.2 电路维护1. 电路的日常检查与保养;2. 电路故障的预防与处理;3. 电路升级与改造的方法。
第七章:桥式整流电路的性能优化7.1 电路性能指标1. 整流电路的效率与输出电压;2. 滤波电路的滤波效果与频率响应。
7.2 性能优化方法1. 提高整流电路的效率;2. 改善滤波电路的性能;3. 电路参数的优化与调整。
单相全波整流电路波形单相全波整流电路是一种常用的电路配置,用于将交流电转换为直流电。
它通过将负半周的电压进行翻转,使其与正半周的电压方向一致,从而实现全波整流的目的。
在这篇文章中,我们将会详细介绍单相全波整流电路的原理和波形,并提供一些使用和设计上的指导意义。
单相全波整流电路的原理非常简单明了。
它主要由一个变压器、四个二极管和一个负载组成。
交流电源通过变压器进行降压,然后经过四个二极管进行整流。
四个二极管中的两个二极管连接到变压器的一侧,被称为正半波整流二极管;另外两个二极管连接到变压器的另一侧,被称为负半波整流二极管。
负载则直接连接在整流电路的输出端。
在正半周的周期内,正半波整流二极管导通,电流从负载流过。
在负半周的周期内,负半波整流二极管导通,电流同样从负载流过。
通过这样的翻转机制,整个交流电信号都被完全利用,从而实现了全波整流。
接下来我们来看一下单相全波整流电路的波形。
在正半周期内,电压为正,整流电路的输出电压与输入电压相同。
在负半周期内,电压为负,因此负半波整流二极管会将输入电压翻转,使得负半周期内的输出电压方向与输入电压一致。
总体而言,单相全波整流电路经过整流处理后,输出的波形为一段段的脉冲电压,其幅值等于输入电压的峰值,并且具有相同的频率。
这样的波形相对于单相半波整流电路来说更加平滑稳定。
对于单相全波整流电路的应用和设计,我们有一些指导意义要提供。
首先,根据负载的特性和电流要求,选择合适的变压器和二极管。
其次,考虑到输出电压的稳定性,可以采用滤波电容和稳压电路进行进一步处理。
此外,在设计中应该考虑到电路的安全性和可靠性,确保电路的耐电压等级和电流容量符合要求。
综上所述,单相全波整流电路是一种常见且实用的电路配置,可以将交流电转换为直流电。
通过对其原理和波形的了解,我们可以更好地应用和设计这种电路。
希望这篇文章能对大家有所指导和帮助。
详解4种整流、5种滤波电路1、变压电路通常直流稳压电源使用电源变压器来改变输入到后级电路的电压。
电源变压器由初级绕组、次级绕组和铁芯组成。
初级绕组用来输入电源交流电压,次级绕组输出所需要的交流电压。
通俗的说,电源变压器是一种电→磁→电转换器件。
即初级的交流电转化成铁芯的闭合交变磁场,磁场的磁力线切割次级线圈产生交变电动势。
次级接上负载时,电路闭合,次级电路有交变电流通过。
变压器的电路图符号见图2-3-1。
2、整流电路经过变压器变压后的仍然是交流电,需要转换为直流电才能提供给后级电路,这个转换电路就是整流电路。
在直流稳压电源中利用二极管的单项导电特性,将方向变化的交流电整流为直流电。
(1)半波整流电路半波整流电路见图2-3-2。
其中B1是电源变压器,D1是整流二极管,R1是负载。
B1次级是一个方向和大小随时间变化的正弦波电压,波形如图 2-3-3(a)所示。
0~π期间是这个电压的正半周,这时B1次级上端为正下端为负,二极管D1正向导通,电源电压加到负载R1上,负载R1中有电流通过;π~2π期间是这个电压的负半周,这时B1次级上端为负下端为正,二极管D1反向截止,没有电压加到负载R1上,负载R1中没有电流通过。
在2π~3π、3π~4π等后续周期中重复上述过程,这样电源负半周的波形被“削”掉,得到一个单一方向的电压,波形如图2-3-3(b)所示。
由于这样得到的电压波形大小还是随时间变化,我们称其为脉动直流。
设B1次级电压为E,理想状态下负载R1两端的电压可用下面的公式求出:整流二极管D1承受的反向峰值电压为:由于半波整流电路只利用电源的正半周,电源的利用效率非常低,所以半波整流电路仅在高电压、小电流等少数情况下使用,一般电源电路中很少使用。
(2)全波整流电路由于半波整流电路的效率较低,于是人们很自然的想到将电源的负半周也利用起来,这样就有了全波整流电路。
全波整流电路图见图2-3-6。
相对半波整流电路,全波整流电路多用了一个整流二极管D2,变压器B1的次级也增加了一个中心抽头。
“单向全波整流及滤波电路”教学设计方案
说课
一、授课内容
(一)教材内容:授课内容是由中国铁路出版社出版的、由董秀峰编著的《模拟电子技术》教材第七章直流稳压电源的第一节、第二节“单向桥式全波整流电路及滤波电路”中的内容。
(二)内容分析:
整流及滤波是本章直流稳压电源教学中的教学重点。
整流及滤波的概念虽然不复杂,但学生还是不容易掌握,容易混乱,且各种电子设备中稳压电源部分故障达到整个硬件故障近50%左右,整流及滤波实用性比较强。
因此,整流及滤波是电子电路教学的重点内容,学生必须重点掌握,并能灵活运用,解决实际问题。
(三)教学重点:
1、单相桥式全波整流电路
2、电容滤波电路
(四)教学难点:
滤波电路的定量计算。
(五)教学特色:借助实物演示实验,使理论与实践紧密结合,学生有了直观感性认识;借助多媒体,采用启发式教学,从案例分析,启发思路。
(六)教学目标:
1、知识目标:
(1)理解单相桥式全波整流及滤波电路的组成;
(2)掌握单相桥式全波整流及滤波电路的工作原理、参数计算。
2、能力目标:
(1)在直流稳压电源中出现故障能够分析查找故障点并排除;
(2)培养学生分析问题,解决问题的实际能力。
3、情感目标:
(1)通过课堂的学习交流,创造良好的学习氛围,增强师生感情,增强班级凝聚力;
(2)以实际稳压电源演示实验,学生有了感性认识,使学生体验掌握整流及滤波概念后成功的快感,增强自信心。
二、说教法:
1、展示直流稳压电源实物,介绍直流稳压电源在各种电子产品中应用,看实际稳压电源演示实验,学生有了感性认识,激发了学习兴趣;采用启发式教学,再提出问题,由问题驱动引出概念,引出知识点,再讲授整流、滤波工作原理及分析方法。
2、坚持以“学生能力形成为核心”,在保证知识的系统性、完整性及严谨性的基础上,发挥教师的主导作用,讲授书本上学不到知识,传授本人实践方面经验,充分激发学生的学习兴趣,能够学以致用,使学生主动学习,实现师生方面很好的良性互动。
教案。