数学七年级上册有理数的加法(1)
- 格式:pptx
- 大小:2.80 MB
- 文档页数:30
人教版数学七年级上册1.3.1《有理数的加法》(第1课时)教学设计一. 教材分析《有理数的加法》是人教版数学七年级上册第一章第三节的第一课时,本节课主要介绍有理数的加法运算。
学生在学习这一节之前,已经掌握了有理数的概念、加法运算的法则,以及绝对值的概念。
本节课的内容为学生以后学习更高级的数学知识打下基础。
二. 学情分析面对刚从小学升入初中的学生,他们对数学知识有一定的了解,但还需要进一步的引导和培养。
在学习本节课之前,学生已经掌握了有理数的概念和加法运算的法则,但可能对有理数加法的实质理解不够深入,需要通过实例和练习来进一步巩固。
三. 教学目标1.让学生掌握有理数的加法运算方法,理解有理数加法的实质。
2.培养学生运用有理数加法解决实际问题的能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.教学重点:有理数的加法运算方法,有理数加法的实质。
2.教学难点:有理数加法在实际问题中的应用。
五. 教学方法1.采用讲授法,讲解有理数加法的运算方法和实质。
2.采用案例分析法,分析实际问题中有理数加法的应用。
3.采用小组讨论法,培养学生的团队合作能力和逻辑思维能力。
六. 教学准备1.准备相关的教学案例和练习题,用于讲解和巩固有理数加法知识。
2.准备教学PPT,用于展示和讲解有理数加法的运算方法和实质。
3.准备黑板,用于板书和展示例题。
七. 教学过程1.导入(5分钟)通过一个简单的实例,引导学生复习有理数的概念和加法运算的法则,为新课的学习做好铺垫。
2.呈现(10分钟)讲解有理数加法的运算方法和实质,结合PPT和板书,让学生清晰地理解有理数加法的运算过程。
3.操练(10分钟)让学生进行一些有关有理数加法的练习题,巩固所学知识。
教师在这个过程中要引导学生正确进行运算,并及时给予反馈。
4.巩固(10分钟)通过一些实际问题,让学生运用有理数加法知识解决问题。
教师要引导学生将所学知识与实际问题相结合,提高学生的应用能力。
课时1 有理数的加法知识点1(有理数加法法则)1.计算(﹣1)+(+3)的结果是()A.﹣1B.1C.2D.32.计算(﹣3)+(﹣9)的结果是()A.﹣12B.﹣6C.6D.123.[2017辽宁锦州凌海月考]下列各式中,计算结果为正的是()A.(﹣7)+(+4)B.2.7+(﹣3.5)C.(﹣13)+25D.0+(﹣14)4.一个数是11,另一个数比11的相反数大2,那么这两个数的和为()A.24B.﹣24C.2D.﹣25.[2017安徽合肥文博中学模拟]如果两个数的和为负数,那么这两个数()A.同为正数B.同为负数C.至少有一个正数D.至少有一个负数6.在1,﹣1,﹣2这三个数中,任意两数之和的最大值是()A.1B.0C.﹣1D.37.(1)(﹣13)+0=________;(2)4.5+(﹣4.5)=________.8.12的相反数与﹣7的绝对值的和是______.9.绝对值小于4的所有整数的和是______.10.计算:(1)5+(﹣12);(2)(﹣0.8)+3.69;(3)(﹣12)+(+15);(4)(﹣213)+(﹣119).知识点2(有理数加法的应用)11.[2017湖北十堰中考]气温由﹣2℃上升3℃后是()A.1℃B.3℃C.5℃D.﹣5℃12.[2017江西中考]中国人最先使用负数.魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为______.13.一建筑工地星期一和星期二仓库水泥的进货量和出货量如下,其中进货为正,出货为负(单位:吨).进出货情况库存变化星期一﹢5 ﹣2星期二﹢3 ﹣4合计(1)分别列出算式表示这两天水泥进货和出货的合计量,并算出结果;(2)星期一该建筑工地仓库的水泥库存是增加了还是减少了?星期二呢?14.某银行某个时间段内办理储蓄业务情况如下:取出950元,存人500元,取出800元,存入1200元,取出1025元,存人2500元,取出200元.银行的存款是增加了还是减少了?如果增加了,增加了多少?如果减少了,减少了多少?你能用有理数的加法表示出来吗?参考答案1.C【解析】因为(﹣1)+(+3)=3-1=2.故选C.2.A【解析】(﹣3)+(﹣9)=﹣(3+9)=﹣12.故选A.3.C【解析】(﹣7)+(+4)=﹣(7﹣4)=﹣3,故A不合题意;2.7+(﹣3.5)=﹣(3.5﹣2.7)=﹣0.8,故B不合题意;(﹣13)+25=25-13=115,故C符合题意;0+(﹣14)=﹣14,故D不合题意.故选C.4.C【解析】另一个数为(﹣11)+2=﹣9,所以这两个数的和为11+(﹣9)=2.故选C.5.D【解析】如果两个数的和为负数,这两个数可能都是负数,也可能一个是正数,一个是负数,但负数的绝对值大.故选D.6.B【解析】在1,﹣1,﹣2这三个数中,任意两个数的和可以是1+(﹣1)=0,1+(﹣2)=﹣(2﹣1)=:﹣1,(﹣1)+(﹣2)=:﹣(2+1)=﹣3,因为0>﹣1>﹣3,所以0最大.故选B.7.(1)﹣13;(2)0【解析】(1)—个数同0相加,仍得这个数,所以(﹣13)+0=﹣13;(2)互为相反数的两个数相加,和为0,所以4.5+(﹣4.5)=0.8.﹣5【解析】因为12的相反数是﹣12,﹣7的绝对值是7,所以12的相反数与﹣7的绝对值的和是(﹣12)+7=﹣(12﹣7)=﹣5.9.0【解析】因为绝对值小于4的所有整数为﹣3,﹣2,﹣1,0,1,2,3,所以它们的和为(﹣3)+(﹣2)+(﹣1)+0+1+2+3=0.10.【解析】(1)5+(﹣12)=5-12=412(2)(﹣0.8)+3.69=3.69﹣0.8=2.89(3)(﹣12)+(﹢15)=﹣(12-15)=﹣310(4)(﹣213)+(﹣119)=﹣(213+119)=﹣34911.A【解析】由题意,得﹣2+3=+(3﹣2)=1(℃).故选A.12.﹣3【解析】根据题意,得(+2)+(﹣5)=﹣3,故题图②中所得的数值为﹣3.13.【解析】⑴这两天水泥进货的合计量为(﹢3)+(﹢5)=8(吨).这两天水泥出货的合计量为(﹣2)+(﹣4)=﹣6(吨).(2)因为(+5)+(﹣2)=3(吨),所以星期一该建筑工地仓库的水泥库存增加了3吨.因为(+3)+(﹣4)=﹣1(吨),所以星期二该建筑工地仓库的水泥库存减少了1吨.14.【解析】设存入为正,取出为负,则(﹣950)+500+(﹣800)+1200+(﹣1025)+2500+(﹣200)=1225(元).答:银行的存款增加了,增加了1225元.。
七年级上册第二章《有理数及其运算》第四节:有理数的加法(一)一、备课标(一)内容标准:课标要求:理解有理数的加法运算律,能运用运算律简化运算。
能运用有理数的加法运算解决简单的问题(二)十大核心概念:本节课初步学会在具体情境中从数学的角度发现和提出问题,探索具体问题中的数量关系并能根据数量关系进行有理数加法运算,加深学生对运算本身意义的理解。
发展灵活运用数学知识解决实际问题能力。
十大核心概念在本节课中突出培养的是符号意识数感运算能力二、备重点、难点(一)教材分析:本节课是七年级上册第二章《有理数及其运算》第四节第一课时的内容。
本节对于有理数的运算,首先在于运算的意义的理解,即首先要回答为什么要进行运算。
为此,必须让学生通过具体的问题情境,认识到运算的作用,加深学生对运算本身意义的理解,同时也让学生体会到运算的应用,从而培养学生一定的应用意识和能力。
教科书基于学生学习了相反数和绝对值基础之上,提出了本课时的具体学习任务:探索有理数的加法运算法则,进行有理数的加法运算。
(二)教学重点、难点内容:重点:有理数加法法则的探索过程,利用有理数的加法法则进行计算难点:探索异号两数相加的法则三、备学情(一)学习条件和起点能力分析:1.学习条件分析:(1)必要条件:学生在小学已经学习过算术四则运算,而初中的有理数运算是以小学算术四则运算为基础的,不同的是有理数运算多了一个符号问题。
符号法则是有理数运算法则的重要组成部分,也是学生学习本章知识和今后学习其他与计算有关的内容时容易出错的知识点之一。
(2)支持性条件:教科书基于学生学习了相反数和绝对值基础之上,提出了本课时的具体学习任务,本节课渗透探索、归纳等思想方法。
数学学习中学生已经经历了很多合作学习的过程,具备了一定的合作学习的经验,具备了一定数学交流的能力。
2.起点能力分析:学生学习数学是一种认识过程,要遵循一般的认识规律,而七年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大。