初中数学——开放性问题
- 格式:doc
- 大小:513.50 KB
- 文档页数:6
浅谈中考数学“开放性问题”浅谈“开放性问题”所谓的开放性试题是指那些条件不完整,结论不确定的数学问题。
开放题的特征很多,如条件的不确定性,它是开放题的前提;结构的多样性,它是开放题的目标;思维的多向性,它是开放题的实质;解答的层次性,它是开放题的表象;过程的探究性,它是开放题的途径;知识的综合性,它是开放题的深化;情景的模拟性,它是开放题的实践;内涵的发展性,它是开放题的认识.过程开放或结论开放的问题能促使考生积极探究问题情景,鼓励学生多角度、多侧面、多层次地思考问题,有助于充分调动学生的潜在能力.题型1条件开放与探索条件开放探索题的明确特征是缺少确定的条件,问题所需补充的条件不是得出结论的必要条件,所需补充的条件不能由结论推出。
例1.(04苏州) 已知(x1,y1),(x2,y2)为反比例函数y=k/x 图象上的点,当x1<x2<0时,y1<y2,则k的一个值可为___________(只需写出满足条件的一个k的值)【解析】此类开放性试题一般需要结合分类讨论的数学思想进行解题:由于反比例函数的图像有两支,且当k取正、负值时其函数图像所处象限不同,故要进行分类讨论:①k>0且x1<x2<0时,反比例函数的图像分布在第三象限,在此象限,y值随着x值的增加而减小,故不可能;②k且x1<x2<0时,反比例函数的图像分布在第二象限,在此象限,y值随着x值的增加而增大,故只要k,都可以满足题意要求。
本题只要任填一个负数即可。
像本题一样,条件开放性试题主要解题思路是把结论作为条件,采取逆向思维进行探索,执果索因。
题型2结论开放与探索。
给出问题的条件,让解题者根据条件探索相应的结论,并且符合条件的结论往往呈现多样性,或者相应的结论的“存在性”需要解题者进行推断,甚至要求解题者探求条件在变化中的结论,这些问题都是结论开放性问题.它要求解题者充分利用条件进行大胆而合理的猜想,发现规律,得出结论,这类题主要考查解题者的发散性思维和所学基本知识的应用能力。
探索型问题一(开放性问题)【考点透视】习惯上,人们把命题者对解题者的要求,将数学问题分为两类:一类是问题的条件和结论都有确定要求的题型;另一类是条件和结论中至少有一个没有确定要求的题型,并称前者为封闭题型,后者为开放题型.开放性问题的基本形式有:条件开放题(问题的条件不完备);结论开放题(问题的结论不确定或不唯一),这些问题的解决,需解题者经过探索确定结论或补全条件,将开放性问题转化为封闭性问题,然后选择合适的解题途径完成最后的解答. 现在还出现一些其他形式的开放题,如解题策略的开放题和题干结构的开放题. 前者主要侧重于解题方法或策略的选择和设计,后者主要是所给题目不完整,需要解题者把题目补充完整,然后完成解答.开放性问题对于训练和考查学生的发散思维,进而培养学生的创新意识和创新能力是十分有益的.教育部在《2000年初中毕业、升学考试改革的指导意见》中特别指出:数学考试“应设计一定结合情境的问题和开放性问题”.由于各地认真贯彻执行这一指导意见,所以在近年的各地中考中,开放性试题越来越受到命题者的青睐,也越来越受到广大初中教师和学生的重视. 【典型例题】 一、条件开放题解条件开放题,一种是直接补齐条件,使题目结论成立;另一种是需要我们作出探索去补齐条件使题目结论成立. 这两种情况所需补充的条件往往不惟一.例1 (1)如图7.1,△ABC 中,AB=AC ,D 为AC 边上的一点,要使 △ABC ∽△BCD ,还需要添加一个条件,这个条件可以是__________ _______________________(只需填写一个你认为适当的条件即可).(2001年淄博市中考题) (2)如图7.2,在△ABC 和△FED 中,AD=FC ,AB=FE ,当添加条 件:__________________时,就可得到△ABC ≌△FED (只需填写一个你认为正确的条件). (2003年无锡市中考题) 解:(1)BD=BC.(也可以是:∠ABC=∠BDC ;或∠A=∠DBC ;或BC ∶CD=AC ∶BC ;或BC 2=AC •CD 中的某一个)(2)∠A=∠F. (或BC=ED 等) 说明:开放题的一个显著特点是:答案的不唯一性. 第(1)小题中,我们只需给出能使结论成立的一个答案即可.例2 一个二元一次方程和一个二元二次方程组成的二元二次方程组的解是2,4x y =⎧⎨=⎩和2,4x y =-⎧⎨=-⎩,试写出符合要求的方程组____________________________.(只要填写一个即可)(2000年安徽省中考题)分析:我们只要分别构造出一个既含x ,又含y 的一个二元一次方程和一个二元二次方程. 构造方程实际上就是寻找x 与y 之间的关系.解:2,8.y x xy =⎧⎨=⎩说明:方程与函数有着紧密的联系,如果我们把方程组的解看作对应于平面直角坐标系中的两个点A (2,4),B (-2,-4),则我们可以写出过这两个点的一个一次函数的解析式(也是一个二元一次方程)和一个二次函数的解析式(也是一个二元二次方程,这个方程不唯一).B A CD 图7.1AB C DEF 图7.2本题在解法上可以用代数的方法来解,也可用几何的方法来解(形数结合——一种重要的数学思想方法);可以用待定系数法,运用演绎推理的方法来解,也可用直觉思维的方法来解,所以本题既是一个条件开放题,也是一个策略开放题.例3 已知:如图7.3.1,四边形ABCD 是⊙O 的内接四边形,A 是»BD的中点,过A 点的切线与CB 的延长线交于点E.(1)求证:AB •DA=CD •BE ;(2)若点E 在CB 延长线上运动,点A 在»BD上运动,使切线EA 变为割线EFA ,其它条件不变,问具备什么条件使原结论成立?(要求画出示意图,注明条件,不要求证明)(2000年北京海淀区中考题)分析:本题的(2)是一个条件开放题.由于本题的结论与(1)相同,所以这一条件的获得,我们可以从(1)的证明过程中受到启示.(1)证明:连结AC.∵A 是»BD 的中点,∴»»AB AD =,∠ACB=∠ACD.∵EA 切⊙O 于A ,∴∠EAB=∠ACB.又∵∠ABE=∠D ,∴△EAB ∽△ACD ,∴AB ∶CD=EB ∶AD , ∴AB •AD=CD •BE.(2)解:如图7.3.2中,若有△EAB ∽△ACD ,则原结论成立,故我们只需探求使△EAB ∽△ACD 的条件. 由于∠ABE=∠D ,所以只要∠BAE=∠DAC 即可,这只要»»BF CD =即可.所以本题只要»»BF AD =,原结论就成立.说明:探求条件的过程,是一个由果索因的过程,这是数学中的一种重要的解题方法——分析法.例4 如图7.4,AB 、AC 分别是⊙O 的直径和弦,D 为劣弧»AC 上一点,DE ⊥AB 于点H ,交⊙O 于点E ,交AC 于点F ,P 为ED 的延长线上一点.(1)当△PCF 满足什么条件时,PC 与⊙O 相切?为什么?(2)点D 在劣弧»AC 的什么位置时,才能使AD 2=DE ·DF ?为什么? (2002年济南市中考题)分析:(1)连OC.要使PC 与⊙O 相切,则只需∠PCO=900即可.由∠OCA=∠OAC ,∠PFC=∠AFH ,即可寻找出△PCF 所要满足的条件 (2)要使AD 2=DE ·DF ,即AD DFDE AD=,也就是要使△DAF ∽△DEA , 这样问题就较容易解决了.解:(1)当PC=PF (或∠PCF=∠PFC ,或△PCF 是等边三角形)时,PC 与⊙O 相切. 连OC.∵PC=PF ,∴∠PCF=∠PFC ,∴∠PCO=∠PCF+∠OCA=∠PFC+∠OAC=∠AFH+∠AHF=900, ∴PC 与⊙O 相切.图7.3.1图7.3.2 H BAEP O CD F 图7.4(2)当点D 是»AC 的中点时,AD 2=DE ·DF.连结AE.∵»»AD CD=,∴∠DAF=∠DEA. 又∵∠ADF=∠EDA ,∴△DAF ∽△DEA , ∴AD DFDE AD=,即AD 2=DE ·DF. 说明:本题是探索性开放题,在解决这类问题时,我们常从要获得的结论出发来探求该结论成立的条件.如第(1)小题中,若要PC 与⊙O 相切,则我们需要怎样的条件.第(2)小题也是如此.二、结论开放题结论开放题通常是结论不确定或不惟一,解题时,需作出探索来确定结论是否成立或会有那些结论. 例5 如图7.5.1,以等腰三角形ABC 的一腰AB 为直径的⊙O 交BC 于D ,过D 作DE ⊥AC 于E ,可得结论DE 是⊙O 的切线.问:(1)若点O 在AB 上向点B 移动,以O 为圆心,OB 长为半径的圆 仍交BC 于D ,DE ⊥AC 的条件不变,那么上述结论是否还成立?请说明理由.(2)如果AB=AC=5cm, sinA=35,那么圆心O 在AB 的什么位置时,⊙O与AC 相切? (2001年黑龙江省中考题)分析:(1)连OD. ∵OB=OD ,∴∠OBD=∠ODB=∠C ,∴ OD ∥AC , 从而可得OD ⊥DE ,结论仍然成立.(2)若⊙O 与AC 相切,设切点为F ,连OF ,则由Rt △AOF 中可 求得OF=158,即OB=158. 解:(1)结论仍然成立. 如图7.5.2,连OD ,则OD=OB ,∠OBD=∠ODB. 又AB=AC ,∴∠B=∠C ,∴∠ODB=∠C , ∴OD ∥AC.∵DE ⊥AC ,∴OD ⊥DE , ∴DE 是⊙O 的切线.(2)如图7.5.3,若AC 与⊙O 切于点F ,连OF ,则OF ⊥AC ,即△AOF 是直角三角形,∴sinA=355OF OB AO OB ==-, ∴OB=158, 即当OB=158时,⊙O 与AC 相切.说明:本例的两小题都属于结论不确定性的开放性问题. 第(1)小题是直接从题设条件出发探求结论是否成立;第(2)小题是从题设的结论出发来探求结论成立的条件,这也是解决这类问题的常用方法.图7.5.1AOBECD图7.5.2ABCO F图7.5.3例6 如图7.6.1,⊙O 的直径AB ,过半径OA 的中点G 作弦CE ⊥AB ,在»CB上取一点D ,分别作直线CD 、ED ,交直线AB 于点F 、M.(1)求∠COA 和∠FDM 的度数;(2)求证:△FDM ∽△COM ;(3)如图7.6.2,若将垂足G 改取为半径OB 上任意一 点,点D 改取在»EB上,仍作直线CD 、ED ,分别交直线 AB 于点F 、M. 试判断:此时是否仍有△FDM ∽△COM ?证明你的结论. (2003年苏州市中考题)(1)解:∵AB 是⊙O 的直径,CE ⊥AB ,∴»»AC CE,CG=EG. 在Rt △COG 中,∵OG=12OC ,∴∠OCG=30o ,∴∠COA=60o . 又∠CDE 的度数=12¼CAE 的度数=»AC 的度数=∠COA=60o ,∴∠FDM=180o -∠COA=120o .(2)证明:∵∠COM=180o -∠COA=120o ,∴∠COM=∠FDM. 在Rt △CGM 和Rt △EGM 中, GM=GM ,CG=EG ,∴Rt △CGM ≌Rt △EGM , ∴∠GMC=∠GME.又∠DMF=∠GME ,∴∠OMC=∠DMF , ∴△FDM ∽△COM.(3)解:结论仍然成立.∵∠FDM=180o -∠CDE , ∴∠CDE 的度数=12¼CAE 的度数=»AC 的度数=∠COA , ∴∠FDM=180o -∠COA=∠COM.∵AB 为直径,CE ⊥AB ,∴在Rt △CGM 和Rt △EGM 中, GM=GM ,CG=EG ,∴Rt △CGM ≌Rt △EGM , ∴∠GMC=∠GME , ∴△FDM ∽△COM.说明:本题的第(3)小题是在第(2)小题改变条件的情况下,探求结论是否还成立. 在探求时应寻着(2)的解题思路来进行.三、解题策略开放题解题策略开放题,现在更多的是以要求解题者设计解题方案来设计题目.例7 一副三角板由一个等腰直角三角形和一个含300的直角三角形组成,利用这副三角板构成一个含150角的方法很多,请你画出其中两种不同构成的示意图,并在图上作出必要的标注,不写作法.(2000年荆州市中考题)DAF C EDM OG BAF CEMO G B 图7.6.1图7.6.2分析:本题可利用这副三角板中的角做“加减运算”:600-450,或450-300,或600+450-900等来得到150的角. 解:如图所示. 图7.7.1中就包含有两中构造方法, ∠ABD 和∠ACD 都等于15o ;图7.7.2中,∠EFG=15o .请同学们试着拼出其它的图形.说明:这类拼图组合,给出了一定的条件,但解决问题的办法需要我们自己来寻找. 通常解决这类问题的方法不惟一. 用现有的工具去解决问题,这在实际生产和生活中常会遇到.例8 如图,把边长为2cm 的正方形剪成四个全等的直角三角形.请用这四个直角三角形拼成符合下列要求的图形(全部用上,互不重叠且不留空隙),并把你的拼法仿照图1按实际大小画在方格纸内(方格为1cm ×1cm ).(1)不是正方形的菱形(一个); (2)不是正方形的矩形(一个); (3)梯形(一个);(4)不是矩形和菱形的平行四边形(一个); (5)不是梯形和平行四边形的凸四边形(一个);(6)与以上画出的图形不全等的其他凸四边形(画出的图互不全等,能画出几个画几个,至少画三个). (2001年徐州市中考题)解:(1) (2)3)(4)(5) (6)说明:本例是一道设计图形的开放性试题,这类题近几年在全国各地的中考试题中经常出现.设计型开放题,有利于培养学生的发散性思维能力,有利于充分发挥学生的想象力和创造力,这对培养学生的创新意识和创新精神具有着积极的作用,例9有一种“二十四点”游戏,其规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于24.例如对1,2,3,4,可以运算得(1+2+3)×4=24(注意上述运算与4×(1+2+3)应视作相同方法的运算).现有四个有理数3,4,-6,10,用上述规则写出三种不同方法的算式,使其结果等于24,运算如下: (1)_____________________;(2)________________________;(3)_________________________. 另有四个有理数3,-5,7,-13,可通过运算式(4)____________________________,使其结果等于24. (2001年杭州市中考题)分析:“二十四点”游戏,小学生也可参加. 本题将数的范围扩大到整数范围,变成新的游戏,其实就是有理数的运算.本题具有开放性,答案是不唯一的.AB C D E F G图7.7.1 图7.7.1图7.8解:(1)3×[4+(-6)+10]=24;(2)4-(-6)÷3×10=24;(3)(10-4)-3×(-6)=24. (4)[(-5)×(-13)+7]÷3=24.说明:本题将有理数的运算与学生熟知的游戏结合起来,使数学学习更具趣味性.四、题目结构开放题以看作是一个条件开放题.例10 某一学生在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲、乙两地相距40千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/(涂黑部分表示被墨水覆盖的若干文字)请将这道作业题补充完整,并列方程解答.(2001年吉林省中考题)分析:这里“距离”和“速度”都有了,故我们可以考虑从时间上去把本题补完整. 解一:摩托车和运货汽车同时从甲地驶向乙地,则摩托车比运货汽车早到几分钟?设摩托车比运货汽车早到x 分钟,则4040603545x ⎛⎫-⨯= ⎪⎝⎭,x=4021.答:摩托车比运货汽车早到4021分钟. 解二:摩托车和运货汽车分别从甲地和乙地同时相向而行,则几分钟后它们相遇? 设摩托车与运货汽车出发x 分钟后相遇,则(45+35)×60x= 40,x=30. 答:摩托车与运货汽车出发30分钟后相遇.解三:运货汽车从甲地出发10分钟后,摩托车从甲地出发去追赶运货汽车,问在到达乙地前,摩托车能否追上运货汽车?运货汽车走完全程需408357=小时,摩托车走完全程需408459=小时, 摩托车比运货汽车少用88167963-=小时.∵1610906360126-=>, ∴摩托车在运货汽车到达乙地前能追上.解四:摩托车和运货汽车分别从甲、乙两地沿由甲地往乙地的方向同向而行,问经过几小时摩托车可追上运货汽车?设经过x 小时摩托车可追上运货汽车,则 45x=40+35x ,解得x=4.答:经过4小时摩托车可追上运货汽车.说明:由于行程问题是大家比较熟悉的应用问题,所以我们还可以编出很多这样的问题来,同学们不妨试试.习题七一、填空题 1.(1)写出和为6的两个无理数_________________.(2003年绍兴市中考题)(2)若关于x 的方程x 2+kx-12=0的两根均是整数,则k 的值可以是______________.(只要求写出两个) (2001年浙江省中考题) 2.如图,在△ABC 中,以AB 为直径的⊙O 交BC 于点D ,连结AD ,请你添加一个条件,使△ABD ≌△ACD ,并说明全等的理由. 你添加的条件是_________________________.(2002年金华市中考题) 二、解答题3.做一做:用四块如图1的瓷砖聘成一个正方形,使 拼成的图案成轴对称图形.请你在图2、图3 图4中各画出一种拼法(要求三种拼法各不 相同,所画图案中的阴影部分用斜线表示).(2003年无锡市中考题)4.先根据要求编写应用题,再解答你所编写的应用题.编写要求:(1)编写一道行程问题的应用题,使得根据题意列出的方程为120120110x x -=+; (2)所编应用题完整,题意清楚,联系生活实际且解符合实际. (2001年青岛市中考题)5.同学们知道:只有两边和一角对应相等的两个三角形不一定全等.你如何处理和安排这三个条件,使这两个三角形全等.请你仿照方案(1),写出方案(2)、(3)、(4). 解:设有两边和一角对应相等的两个三角形. 方案(1):若这角的对边恰好是这两边中的大边,则这两个三角形全等.(2000年广东省中考题)6.如图,⊙O 与⊙O 1完外切于点T ,PT 为其内公切线,AB 为其外公切线,A 、B 为切点,AB 与TP 相交于点P,根据图中所给出的已知条件及线段,请写出一个正确结论,并加以证明.(2001年杭州市中考题) 7.如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,给出5个论断: ①CD ⊥AB ;②BE ⊥AC ;③AE=CE ;④∠ABE=30o ;⑤CD=BE. (1)如果论断①②③④都成立,那么论断⑤一定成立吗? 答:____________; (2)从论断①②③④中选取3个作为条件,将论断⑤作为结论,组成一个真命题,那么你选的3个论断是__________________ (只需填论断的序号);(3)用(2)中你选的3个论断作为条件,论断⑤作为结论,组 成一道证明题,画出图形,写出已知、求证,并加以证明.(2003年徐州市中考题) 8.如图,AB=AE ,∠ABC=∠AED ,BC=ED ,点F 是CD 的中点.(1)求证:AF ⊥CD ;(2)在你连接BE 后,还能得出什么新的结论?请写出三个(不要求证明). (2002年江西省中考题)图1 图2 图3 图4 第3题A BP TO O 第6题 A BD C E第7题 B A C D E第8题9.已知在直角坐标系中,直线y=+x轴、y轴分别交于点A、点B,以AB为一边的等腰△ABC的底角为300,请在坐标系中画出△ABC,并求出点C的坐标.(2000年北京市崇文区中考题)10.如图,已知直线MN与以AB为直径的半圆相切于点C,∠A=28o.(1)求∠ACM的度数;(2)在MN上是否存在点D,使AB•CD=AC•BC?为什么?(2001年广州市中考题)参考答案:1.(1(2)1,-1(或4,-4;或11,-11)2.答案不唯一. 添加的条件可以是:①AB=AC;②∠B=∠C;③BD=DC(或D是BC中点);④∠BAD=∠CAD(或AD平分∠BAC)等.3.略.4.所编应用题符合编写要求. 正确设未知数、列方程,正确求出方程的解.5.方案(2):若这角是直角,则这两个三角形全等.方案(3):在两个钝角三角形中,有两边和一角对应相等的两个三角形.方案(4):在两个锐角三角形中,有两边和一角对应相等的两个三角形.6.AB=2PT. 证明略.7.(1)一定. (2)①、③、④. (3)已知,如图,在△ABCD、E分别在AB、AC上,CD⊥AB,AE=CE,∠ABE=30o. 求证:CD=BE. 证明:作EF∥CD交AB于F. ∵AE=CE,∴AF=FD,∴CD=2EF. ∵CD⊥AB,∴EF⊥AB. 在Rt△EFB中,∠EFB=90o,∠EBF=30o,∴BE=2EF,∴CD=BE. 图要正确.8.(1)证明:连结AC、AD,∵AB=AE,∠ABC=∠AED,BC=ED,∴△ABC≌△AED,∴AC=AD. 又∵F为CD的中点,∴AF⊥CD.(2)①BE∥CD;②AF⊥BE;③△ACF≌△ADF;④∠BCF=∠EDF;⑤五边形ABCDE是以直线AF为对称轴的轴对称图形. (还可写出其它的结果)9.如图,C1(6,0),C2(0,-,C3(0),C4(-4,C5(2),C6(2,.10.(1)∵AB是直径,∠ACB=90o. 又∠A=28o,∴∠B=62o.又MN是切线,C为切点,∴∠ACM=62o.(2)在MN上存在符合条件的点D. 证明:过点A作AD⊥MN于D. 在Rt△ABC和Rt△ACD中,MN切半圆ACB于点C,∴∠B=∠ACD,∴△ABC∽△ACD,∴AB BCAC CD=,即AB•CD=AC•BC.A BCMN第10题ACBDEF第7题。
初中数学开放性问题1. 8×86=688,这个算式,把乘数的个位数6放在被乘数之首,十位数8放在被乘数之尾, 得688即乘积,还有没有这样的算式?若有,请写出它们。
2.有一些合数分解成质数的积,等式两边的数码的和相等,如:6036=2×2×3×503,6+ 0+3+6=2+2+3+5+0+3。
数学爱好者史密斯发现493 777 5=3×5×5×65 837,4+9+3+7+7+7+5=3+5+5+6+5+8+3+7,493 777 5恰为史密斯家的电话号码,这个数又是已知的具有上述性质的最大的数。
在10000以内的合数有360个具有这样的性质,请你尽可能多地写出它们。
3.现有四个有理数3,4,-6,10。
将这四个数(每个数用且只用一次)进行加、减、乘、 除四则运算,使其结果等于24,其三种本质不同的运算式如下:(1)__________(2)___________(3)_________ 另有四个数3,-5,7,-13,可通过运算式(4)_____________使其结果等于24。
4.某位老师在讲“实数”时,画了一个图(如图),即“以数轴上的单位长线段作一个正方 形,然后以原点O 为圆心,正方形的对角线长为半径画弧交x 轴于点A ”,作这样的图是用来说明_______。
5.用实际例子说明绝对值的几何意义。
6.定义一种运算“∧”,对任何两个正数a 和b 有ba ab b a +=∧。
验证运算“∧”是否具有 交换律、结合律、对加法的分配律?即 )()()(),()(,c a b a c b a c b a c b a a b b a ∧+∧=+∧∧∧=∧∧∧=∧是否成立?请你给出另一种新的运算定义,使其具有交换律、结合律或者对他运算的分配律。
7.已知1,2,2三个数,请你添上一个数,写出一个比例式:__________。
8.写出一个只含有字母X 的代数式(要求:(1)要使此代数式有意义,字母X 必须取全体 正数;(2)此代数式的值恒为负数):______________________。
中考数学专题之开放性问题解析及练习和答案开放性试题是相对于条件和结论明确的封闭题而言的,是能引起同学们产生联想,并会自然而然地往深处想的一种数学问题.简单来说就是答案不唯一,解题的方向不确定,条件(或结论)不止一种情况的试题.解答这类题目时,需要对问题全方位、多层次、多角度思考审视,尽量找到解决问题的方法.根据开放题的特点主要有如下三种题型:(1)条件开放型;(2)结论开放型;(3)综合开放型.题型之一 条件开放型例1 (2014·巴中)如图,在四边形ABCD 中,点H 是边BC 的中点,作射线AH ,在线段AH 及其延长线上分别取点E ,F ,连接BE ,CF .(1)请你添加一个条件,使得△BEH ≌△CFH ,你添加的条件是 ,并证明. (2)在问题(1)中,当BH 与EH 满足什么关系时,四边形BFCE 是矩形,请说明理由.【思路点拨】(1)根据已知条件和图形可知,两个三角形有一组边和一组角相等,因此根据全等三角形的判定方法添加一个条件,然后加以证明即可;(2)由(1)中三角形的全等,易得四边形BFCE 是平行四边形,然后根据矩形的判定方法,得出EH 与BH 应满足的条件.【解答】(1)添加条件:答案不唯一,如:BE ∥CF 或EH =FH 或∠EBH =∠FCH 或∠BEH =∠CFH 等. 选择EH =FH ,证明如下:证明:∵点H 是边BC 的中点,∴BH =CH . 在△BEH 和△CFH 中,,,BH CH EHB FHC EH FH =⎧⎪∠=∠⎨⎪=⎩,∴△BEH ≌△CFH (SAS ).(2)如图,当BH =EH 时,四边形BFCE 是矩形.理由如下:∵BH =CH ,EH =FH ,∴四边形BFCE 是平行四边形. 又∵BH =EH ,∴EF =B C. ∴四边形BFCE 是矩形.方法归纳:解这种类型的开放性问题的一般思路是:(1)由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,结合图形挖掘条件,逆向追索,逐步探寻.(2)添加的条件,使证明过程越简单越好,且不可自己难为自己.1.(2014·湘潭)如图,直线a 、b 被直线c 所截,若满足 ,则a 、b 平行.2.(2014·内江)如图,在四边形ABCD 中,对角线AC 、BD 交于点O ,AD ∥BC ,请添加一个条件: ,使四边形ABCD 为平行四边形(不添加任何辅助线).3.(2013·六盘水)如图,添加一个条件: ,使△ADE ∽△AC B.(写出一个即可)4.(2014·娄底)先化简241193x x x ⎛⎫⎪⎝-÷--⎭-,再从不等式2x -3<7的正整数解中选一个使原式有意义的数代入求值.5.(2013·邵阳)如图所示,将△ABC 绕AC 的中点O 顺时针旋转180°得到△CDA ,请添加一个条件,使得四边形ABCD 为矩形,并说明理由.题型之二结论开放型例2 (2013·西安模拟)按图所示的流程,输入一个数据x,根据y与x的关系式输出一个数据y,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:(Ⅰ)新数据都在60~100(含60和100)之间;(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大.(1)若y与x的关系是y=x+p(100-x),请说明:当p=12时,这种变换满足上述两个要求;(2)若按关系式y=a(x-h)2+k(a>0)将数据进行变换,请写出一个满足上述要求的这种关系式.(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程)【思路点拨】(1)要验证y=x+12(100-x)是否满足题中的两个要求,就是①看y是否随x增大而增大;②看当20≤x≤100时,y的值是否满足60≤y≤100;(2)由于规定了a>0,要使抛物线y=a(x-h)2+k满足题中条件,必经过(20,60),(100,100)两点,且这两点在对称轴的右边,因此其中满足条件的抛物线可以是以(20,60)为顶点,且经过点(100,100).故该解析式不难求出.【解答】(1)当p=12时,y=x+12(100-x).即y=12x+50.∴y随着x的增大而增大,即p=12时,满足条件(Ⅱ);又当20≤x≤100时,12×20+50≤y≤12×100+50.即60≤y≤100.即满足条件(Ⅰ).综上可知,当p=12时,这种变换满足要求.(2)由题意可知,只要满足:①h≤20;②若x=20,100时,y的对应值m,n能落在60~100之间,则这样的关系式都符合要求.如取h=20,y=a(x-20)2+k.∵a>0,∴当20≤x≤100时,y随着x的增大而增大,令x=20,y=60,得k=60.令x=100,y=100,得a×802+k=100.则a=1 160.∴y=1160(x-20)2+60.方法归纳:所谓结论性开放题就是给出问题的条件,让解题者根据条件寻找相应的结论,且符合条件的结论往往呈现多样化,这类问题就是结论开放型问题.其解题思路是:从已知条件出发,沿着不同方向、不同层次进行观察、分析、验证得到相应的结论.1.(2014·滨州)写出一个运算结果是a6的算式.2.(2013·赤峰)请你写出一个大于0而小于1的无理数.3.(2014·邵阳)如图,已知点A,F,E,C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.4.(2013·内蒙古)存在两个变量x与y,y是x的函数,该函数同时满足两个条件:①图象经过(1,1)点;②当x>0时,y随x的增大而减小,请各写出一个满足条件的一次函数、反比例函数和二次函数的解析式.5.(2014·台州)为了估计鱼塘中成品鱼(个体质量在0.5 kg及以上,下同)的总质量,先从鱼塘中捕捞50条成品鱼.称得它们的质量如下表:然后做上记号再放回水库中,过几天又捕捞了100条成品鱼,发现其中2条带有记号.(1)请根据表中数据补全下面的直方图(各组中数据包括左端点不包括右端点).(2)根据图中数据分组.估计从鱼塘中随机捕一条成品鱼,其质量落在哪一组的可能性最大?(3)根据图中数据分组,估计鱼塘里质量中等的成品鱼,其质量落在哪一组内? (4)请你用适当的方法估计鱼塘中成品鱼的总质量(精确到1 kg ).题型之三 综合开放型例3 (2013·绍兴有改动)看图说故事.请你编写一个故事,使故事情境中出现的一对变量x ,y 满足图示的函数关系,要求: (1)指出变量x 和y 的含义;(2)利用图中的数据和变化规律提出两个问题,并解答这两个问题.【思路点拨】根据情景说明函数关系,注意只有两个变量,涉及其他的量必须是常量.提出问题时要紧扣图象和(1)中实际意义来提出.【解答】(1)本题答案不唯一,如下列解法:某市出租车计费方法是当载客行驶里程为x (千米),则车费为y (元).该函数图象就是表示y 随x 的变化过程. (2)①出租车的起步价是多少元?当x >3时,求y 关于x 的函数关系式; ②若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程. 解:①由图象得:出租车的起步价是8元. 设当x >3时,y 与x 的函数关系式为y =kx +b , 由函数图象,得83,125.k b k b =+⎧⎨=+⎩解得2,2.k b =⎧⎨=⎩ 故y 与x 的函数关系式为:y =2x +2. ②当y =32时,32=2x +2.解得x =15. 答:这位乘客乘车的里程是15千米.方法归纳:这是一道自编自解的综合开放型的问题,解题时要认真分析已给出的条件,经过适当的尝试,符合要求的答案定会产生.1.看图说故事.请你编写一个故事,使故事情境中出现的一对变量x、y满足图示的函数关系,要求:(1)指出变量x和y的含义;(2)利用图中的数据说明这对变量变化过程的实际意义,其中必须涉及“速度”这个量.2.A,B两地间的距离为15千米,甲从A地出发步行前往B地,20分钟后,乙从B地出发骑车前往A地,且乙骑车比甲步行每小时多走10千米.乙到达A地后停留40分钟,然后骑车按原路原速返回,结果甲、乙两人同时到达B 地.请你就“甲从A地到B地步行所用时间”或“甲步行的速度”提出一个用分式方程解决的问题,并写出解题过程.3.如图是一个反比例函数图象的一部分,点A(1,10),B(10,1)是它的两个端点.(1)求此函数的解析式,并写出自变量x的取值范围;(2)请你举出一个能用本题的函数关系描述的生活实例.参考答案题型之一 条件开放型1.答案不唯一,如∠1=∠22.(答案不唯一)AD =BC (或AB ∥DC )3.∠ADE =∠C (答案不唯一)4.原式=()()431333x x x x x ---÷+--=()()43·334x x x x x --+--=13x +. 解不等式2x -3<7得x <5. 取x =1时,原式=113+=14. 提示:本题最后答案不唯一,x 不能取±3,4.5.本题答案不唯一,如:∠B =90°或∠BAC +∠BCA =90°,或OB =OA =OC 或AB 2+BC 2=AC 2等. 以∠B =90°为例说明.理由: ∵AB =CD ,AD =BC ,∴四边形ABCD 是平行四边形. 又∵∠B =90°,∴□ABCD 为矩形.题型之二 结论开放型1.答案不唯一,如:2a 6-a 6,a 2×a 4,(a 2)3,a 8÷a 2(a ≠0)2.答案不唯一,如:2,3,4π3.(1)△ABE ≌△CDF ,△ABC ≌△CD A. (2)∵AF =CE ,∴AE =CF . ∵AB ∥CD ,∴∠BAE =∠DCF . 又∵∠ABE =∠CDF ,∴△ABE ≌△CDF .4.根据题意,函数可以是一次函数,反比例函数或二次函数.例如: ① 此函数的解析式为y =kx(k >0), ∵此函数经过点(1,1),∴k =1. ∴此函数可以为:y =1x; ②设此函数的解析式为y =kx +b (k <0), ∵此函数经过点(1,1),∴k +b =1,k <0. ∴此函数可以为:y =-x +2,y =-2x +3,…; ③设此函数的解析式为y=a(x-m)2+n(a<0,m≤0),∵此函数经过点(1,1),∴a(1-m)2+n=1(a<0,m≤0).∴此函数可以为:y=-x2+2,y=-2x2+3,y=-(x+1)2+5,….5.(1)如图所示.(2)其质量落在0.5 kg~0.8 kg范围内的可能性最大;(3)质量落在0.8~1.1 kg范围内;(4)方法一:用去尾平均数估计:去尾平均数x=0.680.715 1.018 1.25 1.6147⨯+⨯+⨯+⨯+⨯≈0.87(kg).50×50×0.87=2 175(kg).水库中成品鱼的总质量约为2 175 kg.方法二:平均数x=(0.5×1+0.6×8+0.7×15+1.0×18+1.2×5+1.6×1+1.9×2)×150=0.904(kg).50×50×0.904=2 260(kg).水库中成品鱼的总质量约为2 260 kg.方法三:利用组中值计算平均数:x=0.65240.9518 1.255 1.551 1.85250⨯+⨯+⨯+⨯+⨯=0.884(kg).50×50×0.884=2 210(kg).水库中成品鱼的总质量约为2 210 kg.方法四:用众数(中位数)估计水库中成品鱼的总质量:50×50×1.0=2 500(kg).水库中成品鱼的总质量约为2 500 kg.题型之三综合开放型1.答案不唯一,如:(1)该函数图象表示小明开车离出发地的路程y(单位:km)与他所用的时间x(单位:min)的关系;(2)小明以0.4 km/min的速度匀速开了5 min,在原地休息了6 min,然后以0.5 km/min的速度匀速开车回出发地.2.答案不唯一,如:甲从A地到B地步行所用时间是多久?设甲从A地到B地步行所用时间为x小时,由题意得301x-=15x+10.化简得2x2-5x-3=0,解得x1=3,x2=-1 2 .经检验知x=3符合题意,∴x=3.∴甲从A地到B地步行所用时间为3小时.3.(1)设y =k x, ∵A (1,10)在图象上,∴10=1k.即k =10. ∴y =10x(1≤x ≤10). (2)答案不唯一.例如:小明家离县城10 km ,某天小明骑自行车以x km /h 的速度去县城,那么小明从家去县城所需的时间y =10x(h ).。
初中数学教学中开放性问题的巧妙应用策略开放性问题是指没有固定答案,需要学生自主探索、思考和解决的问题。
在初中数学教学中,巧妙运用开放性问题可以提高学生的数学思维能力、问题解决能力和创新能力。
下面是一些建议的应用策略:1. 引导学生从实际问题中提出开放性问题:在数学教学中,可以引入一些实际生活中的问题,让学生思考并提出相关的开放性问题。
引导学生思考生活中的某个问题,如“如何合理安排家庭支出”,让学生从不同角度提出不同的解决方案,培养学生的创新思维和解决问题的能力。
2. 鼓励学生进行数学探究活动:在课堂上,可以组织学生进行小组探究活动,让学生合作探究某个数学问题,提出自己的解决方案,并互相讨论,交流思路。
通过合作探究,学生能够培养合作意识、分析问题的能力,并提高解决问题的效果。
3. 提供多样化的解决方法:在开放性问题的探究过程中,鼓励学生提出不同的解决方法,并进行比较和讨论。
通过比较,学生可以发现不同解决方法之间的优缺点,培养学生的批判性思维和判断能力。
也可以提高学生解决问题的灵活性和创新性。
4. 引导学生进行证明和推理活动:在初中数学教学中,可以设置一些开放性问题,要求学生进行证明和推理。
通过证明和推理,学生可以深入理解数学概念和定理,并培养学生的逻辑思维和推理能力。
5. 布置数学研究课题:可以给学生提供一些数学研究课题,要求学生自主选择和研究,并提交研究报告。
通过研究课题,可以培养学生的独立思考能力和创新能力,并提高学生的数学素养和综合应用能力。
巧妙运用开放性问题可以激发学生的学习兴趣,培养学生的数学思维能力和创新能力。
在实际教学中,教师要善于引导学生进行探究和思考,激发学生的自主学习和解决问题的能力。
初中数学教学中开放性问题的巧妙应用策略在初中数学教学中,开放性问题可以激发学生的思考能力、创新能力和解决问题的能力,提高学生的数学思维水平。
下面将介绍一些巧妙的应用策略。
一、启发学生思考的扩展问题在教学过程中,老师可以通过提出一些扩展问题,引导学生深入思考。
在讲解平行线的性质时,可以提出以下问题:1. 两条平行线割一条传统则其内错综复杂的情况,可以要求学生自己使用直尺和圆规在纸上作图,思考并解释这种情况的特点。
2. 两条平行线割一条传统时,分别可以得到几个内角相等的三角形?学生可以进行系统性的探索和总结,然后给出结论。
通过这些问题的提出,学生不仅能够巩固对平行线性质的理解,还能够培养他们的探究能力和综合能力。
甲、乙两个小组分别用相同数量的砖头铺地,甲组铺得面积是铺得乙组面积的2倍,问甲组和乙组各自铺了多少块砖头?通过这个问题的提出,学生需要运用比例的概念和计算方法来解决,培养他们的实际应用能力和解决问题的能力。
三、引导学生探究的探究性问题直角三角形中,斜边的平方等于直角边的平方和直角边的平方的差,你能发现规律吗?请你证明这个规律。
通过这个问题的提出,学生可以通过自己的探究和思考,解决问题并得到规律,培养他们的探究能力和证明能力。
四、拓展学生思维的创新性问题在食品包装盒的设计中,为了减少材料的使用量,设计师可以引入哪些数学概念和方法?请举例说明。
在初中数学教学中,教师要灵活运用开放性问题,根据学生的实际情况和学习水平合理安排问题,并引导学生进行思考、探究和创新,提高他们的数学思维水平和解决问题的能力。
教师还需要注重问题的引导和激励,及时给学生提供必要的指导和帮助,使他们能够正确地解决问题,并有所收获。
这样,才能真正实现初中数学教学的有效开展。
初中数学教学中开放性问题的巧妙应用策略初中数学教学中,开放性问题是一种能够激发学生思维、培养学生创造力和解决问题能力的重要手段。
如何巧妙地应用开放性问题,成为了许多数学教师面临的挑战。
本文将从教学目标设定、问题设计和教学方法等方面介绍一些巧妙应用开放性问题的策略,希望能够帮助数学教师更好地利用开放性问题进行数学教学。
一、教学目标设定在利用开放性问题进行数学教学时,首先需要明确教学目标。
开放性问题的特点是能够激发学生的探究欲望和解决问题的能力,因此在设定教学目标时,可以注重学生的思维能力培养和问题解决能力的培养。
也可以结合教材内容和学生的实际情况,设计一些能够扩展学生知识面、提高学习兴趣的开放性问题。
在教学目标设定上,可以明确培养学生的数学思维能力、创造力和解决问题的能力为主要目标,同时结合教材内容,设计一些能够引发学生思考和探究的开放性问题,如:有一个3x3的格子,每个格子里填一个数字,使得每一行、每一列和对角线上的数字之和相等,该如何填数字呢?这样的问题可以激发学生的思考和想象,培养学生解决问题的能力。
二、问题设计在巧妙应用开放性问题的策略中,问题设计是非常关键的一环。
一个好的开放性问题能够引发学生的兴趣,激发学生的思考,同时也能够将教学内容贯穿达到教学目的。
在设计开放性问题时,需要考虑以下几点:1.问题的趣味性:趣味性是吸引学生的一个重要因素。
一个有趣的问题能够激发学生的好奇心和求知欲,让他们乐于思考和探究。
在设计开放性问题时,可以考虑一些与学生生活相关或者具有挑战性的问题,如:如何用最少的切割次数将一个圆形饼切成相等的8份?2.问题的启发性:一个好的开放性问题应该能够引发学生的思考和探究,激发学生的创造力和解决问题的能力。
在设计问题时,可以考虑一些具有启发性的问题,如:小明说:一个正整数,如果它的十位数字加上个位数字等于它的个位数字,那么它的平方就是个位数字和十位数字组成的两位数。
请你找出小明说的这个正整数。
探讨初中数学开放性问题教学的应用策略我们需要明确什么是开放性问题。
开放性问题是指没有唯一答案,探讨的空间广阔的问题。
在数学中,开放性问题是指没有标准解法或者多种解法的问题。
在教学中,开放性问题能够引导学生思考,激发其创造性思维,培养其解决问题的能力,对学生的数学素养提高有着重要的作用。
那么,如何在初中数学教学中应用开放性问题呢?一、激发学生兴趣,引导学生思考在引导学生思考的教师要给学生提供一些启发性的问题,让学生通过自己的思考和探索得出结果。
比如在教学中,可以给学生一道开放性问题:“用1-9这9个数字组成一个乘法口诀表,使得每行、每列的积都是36”,让学生通过自己的思考,去寻找各种可能的解答。
这样不仅能够让学生在思考中得到乐趣,还能够培养学生的解决问题的能力。
通过这种方式引导学生思考和解决问题,能够激发学生的兴趣和提高学生的学习积极性。
二、培养学生的问题解决能力在初中数学开放性问题教学中,一项重要的应用策略就是要培养学生的问题解决能力。
开放性问题教学可以引导学生通过不同的途径去解决问题,培养学生的观察、思考、分析、推理和判断等思维能力。
在教学中,教师可以设置一些具有启发性的问题,让学生通过自己的思考和探索去解决问题,这样能够培养学生的问题解决能力。
在教学中,可以给学生一个开放性问题:“一个正整数 n 的各个数字的和为 36,且n 与 n 的各位数字乘积相等,求 n 的值”,让学生通过自己的观察和分析得出结论。
通过这样的问题,不仅能够培养学生的观察和分析能力,还能够激发学生对数学的兴趣,提高学生的学习积极性。
三、鼓励学生发散性思维,培养学生的创造性思维。
初中数学教学中开放性问题的巧妙应用策略初中数学教学中,开放性问题是培养学生创新思维和解决问题能力的重要方式之一。
开放性问题的特点在于没有确定的答案,需要学生自己动脑筋思考和探索,这不仅培养了学生的逻辑思维和分析能力,还能激发学生的学习兴趣和创造力。
下面是初中数学教学中开放性问题的巧妙应用策略。
一、设置情境引发学生思考在教学中,通过设置一些情境或故事,来引发学生思考和解决问题。
在讲解平行线和角的关系时,可以提出下面的问题:在一张纸上画两条平行线,再画一条与其中一条直线交于一点的线段,问这个线段和另一条平行线之间的夹角是多少?让学生动手实践,体验实际情况,从而引发他们对这个问题的思考。
通过设置情境,可以激发学生的兴趣和求知欲,培养他们的观察力和问题解决能力。
在引发学生思考后,可以引导学生进行观察、分析和总结,最后引出相关的知识点和规律,巩固学生的学习成果。
二、提出开放性问题激发学生思维三、组织小组活动培养合作精神在教学中,可以进行小组活动,让学生合作解决开放性问题。
通过小组活动,可以培养学生的合作精神和团队意识,提高学生的综合能力和解决问题的能力。
在进行小组活动时,可以根据学生的不同兴趣和特点,设置不同的开放性问题,让学生根据自己的兴趣和能力进行选择,并进行深入的思考和研究。
通过互相讨论和合作,在小组中分享自己的观点和解决方法,让学生充分发挥自己的才能和智慧,共同解决问题。
四、引导学生总结归纳思考结果在教学中,可以引导学生总结和归纳他们的思考结果。
通过总结和归纳,可以提高学生的分析和概括能力,巩固和深化学生的学习成果。
在总结和归纳过程中,可以提出一些相关的问题,引导学生进行自主思考和分析,让学生从不同的角度进行思考和总结,形成全面和深入的理解。
通过总结和归纳,可以帮助学生将零散的知识点和技巧有机地组合起来,形成完整的知识体系。
中考数学复习专题三:开放性问题一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.二、解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等。
三、中考考点精讲考点一:条件开放型条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求.例1 (•义乌市)如图,在△ABC中,点D是BC的中点,作射线AD,在线段AD及其延长线上分别取点E、F,连接CE、BF.添加一个条件,使得△BDF≌△CDE,并加以证明.你添加的条件是.(不添加辅助线).考点:全等三角形的判定。
专题:开放型。
分析:由已知可证∠ECD﹦∠FBD,又∠EDC﹦∠FDB,因为三角形全等条件中必须是三个元素,并且一定有一组对应边相等.故添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF 或∠DEC=∠DFB等);解答:解:(1)添加的条件是:DE=DF(或CE∥BF或∠ECD=∠DBF或∠DEC=∠DFB等).(2)证明:在△BDF和△CDE中∵∴△BDF≌△CDE.点评:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.考点二:结论开放型:给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题.这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍.例2 (•宁德)如图,点E、F分别是AD上的两点,AB∥CD,AB=CD,AF=DE.问:线段CE、BF有什么数量关系和位置关系?并加以证明.考点:全等三角形的判定与性质;平行线的性质;平行线的判定与性质。
专题复习:开放型问题一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.二、解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等。
考点一:条件开放型例1:写出一个过点(0,3),且函数值y随自变量x的增大而减小的一次函数关系式:.(填上一个答案即可)练习:已知(x1,y1),(x2,y2)为反比例函数kyx图象上的点,当x1<x2<0时,y1<y2,则k的一个值可为.(只需写出符合条件的一个k的值)考点二:结论开放型例2:请写一个图象在第二、四象限的反比例函数解析式:.练习:四川雅安发生地震后,某校九(1)班学生开展献爱心活动,积极向灾区捐款.如图是该班同学捐款的条形统计图.写出一条你从图中所获得的信息:.(只要与统计图中所提供的信息相符即可得分)考点三:条件和结论都开放的问题例3:如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1S2+S3(用“>”、“=”、“<”填空);(2)写出如图中的三对相似三角形,并选择其中一对进行证明.练习:如图,△ABC与△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,D在AB上,连结BE.请找出一对全等三角形,并说明理由.【课堂讲解】1.如图,在四边形ABCD中,AB∥CD,要使得四边形ABCD是平行四边形,应添加的条件是______(只填写一个条件,不使用图形以外的字母和线段).2.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是_______(写出一个即可).3.如图,已知△ABC中,AB=AC,点D、E在BC上,要使△ABD≌ACE,则只需添加一个适当的条件是___________.(只填一个即可)4.若反比例函数y=kx的图象在其每个象限内,y随x的增大而增大,则k的值可以是_______.(写出一个k的值)5.若函数y=1mx的图象在同一象限内,y随x增大而增大,则m的值可以是________(写出一个即可).6. 如图,梯形ABCD中,AD∥BC,点M是AD的中点,不添加辅助线,梯形满足条件时,有MB=MC(只填一个即可).7. 直线l过点M(-2,0),该直线的解析式可以写为________.(只写出一个即可)8. 如图,要使平行四边形ABCD是矩形,则应添加的条件是_______(添加一个条件即可).9. 请举反例说明命题“对于任意实数x,x2+5x+5的值总是整数”是假命题,你举的反例是(写出一个x的值即可)10.如图,点B、E、C、F在一条直线上,AB∥DE,BE=CF,请添加一个条件,使△ABC≌△DEF.11.如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件,使得△EAB≌△BCD.12.如图,已知∠B=∠C,添加一个条件使△ABD≌△ACE(不标注新的字母,不添加新的线段),你添加的条件是.13.如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是(填一个即可)14.如图所示,弦AB、CD相交于点O,连结AD、BC,在不添加辅助线的情况下,请在图中找出一对相等的角,它们是.15.如图,AB是⊙O的弦,OC⊥AB于点C,连接OA、OB.点P是半径OB上任意一点,连接AP.若OA=5cm,OC=3cm,则AP的长度可能是cm(写出一个符合条件的数值即可)16.如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t<16),连接EF,当△BEF是直角三角形时,t (s)的值为.(填出一个正确的即可)17.已知(x1,y1),(x2,y2)为反比例函数kyx图象上的点,当x1<x2<0时,y1<y2,则k的一个值可为.(只需写出符合条件的一个k的值)18. 已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.19. 如图,在△ABC中,点D、E分别在边BC、AC上,连接AD、DE,且∠1=∠B=∠C.(1)由题设条件,请写出三个正确结论:(要求不再添加其他字母和辅助线,找结论过程中添加的字母和辅助线不能出现在结论中,不必证明)答:结论一:;结论二:;结论三:.(2)若∠B=45°,BC=2,当点D在BC上运动时(点D不与B、C重合),①求CE的最大值;②若△ADE是等腰三角形,求此时BD的长.(注意:在第(2)的求解过程中,若有运用(1)中得出的结论,须加以证明)20. 在菱形ABCD中,∠ABC=60°,E是对角线AC上一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.(1)若E是线段AC的中点,如图1,易证:BE=EF(不需证明);(2)若E 是线段AC 或AC 延长线上的任意一点,其它条件不变,如图2、图3,线段BE 、EF 有怎样的数量关系,直接写出你的猜想;并选择一种情况给予证明.【课堂训练】1.如图,点D 在△ABC 的边AC 上,要判定△ADB 与△ABC 相似,添加一个条件,不正确的是( )A .∠ABD=∠CB .∠ADB=∠ABC C. CD CB BD AB = D. ACAB AB AD =2. 如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O 为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB 的两个交点之间的距离为23且这两个交点与抛物线的顶点是抛物线的内接格点三角形的三个顶点,则满足上述条件且对称轴平行于y 轴的抛物线条数是( )A .16B .15C .14D .133. 如图,在四边形ABCD 中,点H 是BC 的中点,作射线AH ,在线段AH 及其延长线上分别取点E ,F ,连结BE ,CF .(1)请你添加一个条件,使得△BEH ≌△CFH ,你添加的条件是 ,并证明.(2)在问题(1)中,当BH 与EH 满足什么关系时,四边形BFCE 是矩形,请说明理由.4. 复习课中,教师给出关于x 的函数y =2kx 2﹣(4kx +1)x ﹣k +1(k 是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x>1时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.5. 猜想与证明:如图1摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为DM=DE.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.6. 已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C 重合).以AD为边作正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;2对角线AE,DF相交于点O,连接OC.求OC的长度.②若正方形ADEF的边长为27. 在△ABC中,∠ACB=90°,∠A<45°,点O为AB中点,一个足够大的三角板的直角顶点与点O重合,一边OE经过点C,另一边OD与AC交于点M.(1)如图1,当∠A=30°时,求证:MC2=AM2+BC2;(2)如图2,当∠A≠30°时,(1)中的结论是否成立?如果成立,请说明理由;如果不成立,请写出你认为正确的结论,并说明理由;(3)将三角形ODE绕点O旋转,若直线OD与直线AC相交于点M,直线OE与直线BC相交于点N,连接MN,则MN2=AM2+BN2成立吗?答:(填“成立”或“不成立”)个性化教案(真题演练)1. (2013•昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s 的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t<16),连接EF,当△BEF是直角三角形时,t(s)的值为.(填出一个正确的即可)1对1出门考(_______年______月______日周_____)1. 写出一个你喜欢的实数k 的值 ,使得反比例函数xk y 2-=的图象在每一个象限内,y 随x 的增大而增大.2. 写出一个x 的值,使|x ﹣1|=x ﹣1成立,你写出的x 的值是 .3. 存在两个变量x 与y ,y 是x 的函数,该函数同时满足两个条件:①图象经过(1,1)点;②当x >0时,y 随x 的增大而减小,这个函数的解析式是 (写出一个即可).4. 如图,在△ABC 中,点D 是BC 的中点,作射线AD ,在线段AD及其延长线上分别取点E 、F ,连接CE 、BF .添加一个条件,使得△BDF ≌△CDE ,并加以证明.你添加的条件是 .(不添加辅助线).5. 先化简22)1111(2-÷+--x x x x ,然后从﹣2≤x≤2的范围内选择一个合适的整数作为x 的值代入求值.6. 在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a ,b 两个情境:情境a :小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b :小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a ,b 所对应的函数图象分别是 、 (填写序号);(2)请你为剩下的函数图象写出一个适合的情境.评语: 3A 作业:周一: 周二:周三: 周四:周五:作业要求在 月 日之前完成。
初中数学教学中的开放性问题教学开放性问题在数学教学中起着重要的作用。
通过引导学生展开思维和探究,开放性问题能够培养学生的创新能力和解决问题的能力,激发他们对数学的兴趣和学习动力。
本文将探讨初中数学教学中的开放性问题教学方法与技巧。
一、开放性问题的定义与特点开放性问题是指问题有多种可能的解决方法和答案,并且需要学生通过深入思考、探索性的学习和发散性的思考来解决。
与此相对的是封闭性问题,封闭性问题只能通过特定的方法或公式得到确定的答案。
开放性问题的特点是多样性、不确定性和探索性。
这些问题没有固定的答案,可以有多种解决方法和思路,需要学生发散思维,探索解决的过程。
二、开放性问题教学的价值与意义1. 培养学生的创新意识与创造能力。
开放性问题鼓励学生思考和探索,激发他们的创新意识,培养创造能力。
2. 促进学生的主动学习与自主发展。
学生在解决开放性问题过程中需要主动动手、主动寻找答案,从而培养自主学习与自主发展的能力。
3. 激发学生的学习兴趣与动力。
开放性问题能够引起学生对数学的兴趣,激发他们对数学的学习动力,促进他们更深入地探索和学习数学知识。
4. 培养学生的合作意识与团队合作能力。
在解决开放性问题的过程中,学生可以进行合作探讨和交流,培养他们的合作意识与团队合作能力。
三、开放性问题教学的方法与技巧1. 设计具有挑战性的问题。
问题的设计应该具有一定的难度,能够引起学生的思考和兴趣。
2. 引导学生积极思考。
鼓励学生提出自己的问题、思考自己的策略,并有机会分享和展示自己的想法和解决方法。
3. 提供资源和引导。
为学生提供必要的资源和信息,引导他们进行独立的探索和学习。
4. 鼓励学生合作探究。
引导学生进行小组合作或团队合作,共同解决问题,促进学生之间的交流和合作。
5. 注重过程与方法。
在教学中要注重让学生理解问题的解决过程和方法,而不只是关注答案的正确与否。
6. 提供反馈和评价。
为学生提供及时的反馈和评价,鼓励他们不断改进和完善自己的解决方法。
初中数学教学中开放性问题的巧妙应用策略
开放性问题是指没有唯一的答案,可以有不同的解决方法和思路的问题。
在初中数学教学中,开放性问题可以激发学生的思维和创造力,提高学习效果和兴趣。
本文将介绍一些巧妙的应用策略。
一、引导学生发现问题
在课堂上,教师可以针对某一具体情境或实例,提出一些发现性问题,如:你们能发现哪些规律?哪些数字有特殊的性质?有没有什么共同点?这些问题需要学生自己思考和探索,通过讨论和交流,逐渐发现问题,并尝试解决。
二、提供多元化的解题方法
针对同一问题,可以提供多元化的解题方法,如通过画图、列方程、做表格等方式。
这样可以满足不同的学生学习风格和能力,也可以培养学生的多种思维方式和问题解决能力。
三、给予适当的提示
当学生在解决开放性问题中遇到困难时,教师可以给予适当的提示。
比如提供一些引导性问题,或者让学生从实例中找出规律。
但需要注意的是,提示不能太明显,要让学生有足够的空间和时间去思考和尝试。
四、引导学生探究学习方法
开放性问题中,学生需要通过自己的思考和尝试,发现问题并解决问题。
这也是一种探究性学习方式,教师可以引导学生探究学习方法,如如何分析问题,如何选择合适的解题方法等,从而培养学生自主学习、主动探究的能力。
五、提高学生的交流能力
开放性问题需要学生之间进行交流和讨论,教师可以引导学生在解题过程中积极参与讨论,分享思路和解题经验,从而提高学生的交流能力和合作精神。
探讨初中数学开放性问题教学的应用策略开放性问题是指没有唯一答案或答案有多种的问题,它可以唤起学生的思维和创造力,激发学生的学习热情。
初中数学的开放性问题可以分为概念性问题、实践性问题和探究性问题三类。
如何在教学中引导学生解决开放性问题,需要教师运用一些有效的应用策略。
一、激发学生的兴趣教师可以利用多媒体、实验等方式,让学生更好地理解数学知识的实践意义,引导学生在数学实践探究中感受到它的乐趣与魅力。
同时,教师可以将开放性问题与生活实际结合起来,让学生发现生活中存在的数学问题,引导学生探究其中的数学规律和本质。
通过这种方式,可以激发学生对数学的兴趣和好奇心,使得学生们愿意去探究和尝试未知的数学问题。
二、引导学生自主思考引导学生自主思考是解决开放性问题的关键。
教师可以提出具体的开放性问题,让学生自主构思解题思路,思考如何解决问题。
同时,教师也可以引导学生进行讨论和交流,从不同的角度、不同的角度看待问题,寻找不同的解题方法。
通过这种方式,可以激发学生独立思考、自主学习的能力,更好地进行数学探究活动。
三、注重实践环节实践环节是开放性问题探究的基础。
教师可以利用实际生活中的例子,如游戏、设计和统计,来进行数学探究活动。
在实践中,学生可以通过观察、发现、探究和实验等环节,找出问题的本质和解决方法,增强他们的实践能力和解决问题的能力。
同时,实践活动也可以增强学生的动手能力和操作实践的意识。
四、教师引导和指导教师在引导学生探究的过程中,应该注重方法和思路的指引,同时也需要引导学生发现问题的规律与本质,帮助学生体会这些规律或本质的重要性。
教师还可以给予学生反馈意见,引导学生对自己的思考进行评价和反思,帮助学生不断提高探究和解决问题的能力。
通过这种方式,教师可以帮助学生建立正确的学习思想和方法,不断提升他们的自主学习和创新能力。
总之,在初中数学开放性问题教学的应用策略中,教师要注重创造情境,激发学生的兴趣;注重引导学生自主思考,帮助学生发现问题的本质和规律;重视实践环节,在实践中进行问题探究;注重教师的引导和指导,帮助学生建立正确的学习思想和方法,达到优化学习的效果。
初中数学教学中开放性问题的巧妙应用策略在初中数学教学中,开放性问题是一种很有价值的问题类型。
相比封闭性问题,开放性问题具有更高的挑战性和拓展性,可以激发学生的思考能力和创新能力,并且可以让学生感受到数学的美妙和趣味。
下面介绍一些在初中数学教学中开放性问题的巧妙应用策略。
1、以实际问题为背景,引导学生发现问题初中生对具体的实际问题比较感兴趣,因此,生动的实例以及相关的问题可以有效引导学生思考。
比如,教学中可以以购物、旅游、运动等生活场景为背景,引出相关的开放性问题,例如:如何在市场上选择性价比最高的商品?如何规划一次自驾旅行的行程?如何让运动员的得分最高?这些问题看似简单,但涉及的数学知识点却是非常丰富的,需要学生在实践中去探索和解决。
2、鼓励学生多角度思考,寻找解决方案开放性问题不同于一般的计算题,它需要学生多角度思考,提供多种解决方案。
教师可以启发学生思考不同的途径和方法,例如:可以尝试用图形法、代数法、图表法等多种方法去解决问题,或者采用排除法、归纳法、演绎法等证明问题解答的方法,通过这些探究和思考,学生不仅能够得到答案,还可以提高自己的创新能力和思维能力。
3、开展小组合作式学习,在合作中发现问题开放性问题需要学生探究解答方法,而小组合作式学习可以让学生在交流中发现问题、解决问题,还可以提高学生的沟通能力,增强学生对数学知识点的理解程度。
在教学时,教师可以根据教学任务,将学生分成小组,在小组中分头探究问题解答方法,然后再互相分享、交流,整理并归纳汇总各组的解决方案,让学生感受到合作学习的乐趣和价值。
4、引导学生归纳、总结,促进知识迁移学生解决了开放性问题,但是知识点的运用并不是孤立的,可以与其他知识点进行迁移。
教师可以引导学生对所解决的问题做出总结,并将结果与其他知识点进行联系,加深学生的学习印象,提高学生的知识综合应用能力。
例如,在解决一道几何问题后,可以引导学生总结几何知识中的特征属性和运用方法,进而与代数知识等进行联系,增强知识迁移能力。
开放性问题
1. 如图,在四边形ABCD中,点H是BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连结BE,CF.
(1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是,并证明.
(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由.
分析:(1)根据全等三角形的判定方法,可得出当EH=FH,BE∥CF,∠EBH=∠FCH 时,都可以证明△BEH≌△CFH,
(2)由(1)可得出四边形BFCE是平行四边形,再根据对角线相等的平行四边形为矩形可得出BH=EH时,四边形BFCE是矩形.
解答:(1)答:添加:EH=FH,证明:∵点H是BC的中点,∴BH=CH,
在△△BEH和△CFH中,,∴△BEH≌△CFH(SAS);
(2)解:∵BH=CH,EH=FH,
∴四边形BFCE是平行四边形(对角线互相平分的四边形为平行四边形),
∵当BH=EH时,则BC=EF,
∴平行四边形BFCE为矩形(对角线相等的平行四边形为矩形).
2. 猜想与证明:
如图1摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD 上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.
拓展与延伸:
(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为DM=DE.
(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF 的中点,试证明(1)中的结论仍然成立.
分析:猜想:延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜边的中线等于斜边的一半证明.
(1)延长EM交AD于点H,利用△FME≌△AMH,得出HM=EM,再利用
直角三角形中,斜边的中线等于斜边的一半证明,
(2)连接AE,AE和EC在同一条直线上,再利用直角三角形中,斜边的中线
等于斜边的一半证明,
解答:猜想:DM=ME
证明:如图1,延长EM交AD于点H,
∵四边形ABCD和CEFG是矩形,
∴AD∥EF,
∴∠EFM=∠HAM,
又∵∠FME=∠AMH,FM=AM,
在△FME和△AMH中,
∴△FME≌△AMH(ASA)
∴HM=EM,
在RT△HDE中,HM=EM,
∴DM=HM=ME,
∴DM=ME.
(1)如图1,延长EM交AD于点H,
∵四边形ABCD和CEFG是矩形,
∴AD∥EF,
∴∠EFM=∠HAM,
又∵∠FME=∠AMH,FM=AM,
在△FME和△AMH中,
∴△FME≌△AMH(ASA)
∴HM=EM,
在RT△HDE中,HM=EM,
∴DM=HM=ME,
∴DM=ME,
故答案为:DM=ME.
(2)如图2,连接AE,
∵四边形ABCD和ECGF是正方形,
∴∠FCE=45°,∠FCA=45°,
∴AE和EC在同一条直线上,
在RT△ADF中,AM=MF,
∴DM=AM=MF,
在RT△AEF中,AM=MF,
∴AM=MF=ME,
∴DM=ME.
3. 如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.
(1)求证:△BOE≌△DOF;
(2)若OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.
分析:(1)由DF与BE平行,得到两对内错角相等,再由O为AC的中点,得到OA=OC,又AE=CF,得到OE=OF,利用AAS即可得证;
(2)若OD=AC,则四边形ABCD为矩形,理由为:由OD=AC,得到OB=AC,
即OD=OA=OC=OB,利用对角线互相平分且相等的四边形为矩形即可得
证.
解答:(1)证明:∵DF∥BE,
∴∠FDO=∠EBO,∠DFO=∠BEO,
∵O为AC的中点,即OA=OC,AE=CF,
∴OA﹣AE=OC﹣CF,即OE=OF,
在△BOE和△DOF中,
,
∴△BOE≌△DOF(AAS);
(2)若OD=AC,则四边形ABCD是矩形,理由为:
证明:∵△BOE≌△DOF,
∴OB=OD,
∴OA=OB=OC=OD,即BD=AC,
∴四边形ABCD为矩形.
4. 在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.
(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;
(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)
(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;
(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.
分析:(1)AE=DF,AE⊥DF.先证得△ADE≌△DCF.由全等三角形的性质得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;
(2)是.四边形ABCD是正方形,所以AD=DC,∠ADE=∠DCF=90°,DE=CF,所以△ADE≌△DCF,于是AE=DF,∠DAE=∠CDF,因为∠CDF+∠ADF=90°,∠DAE+
∠ADF=90°,所以AE⊥DF;
(3)成立.由(1)同理可证AE=DF,∠DAE=∠CDF,延长FD交AE于点G,再由等角的余角相等可得AE⊥DF;
(4)由于点P在运动中保持∠APD=90°,所以点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,再由勾股定理可得
OC的长,再求CP即可.
解答:(1)AE=DF,AE⊥DF.理由:∵四边形ABCD是正方形,
∴AD=DC,∠ADC=∠C=90°.∵DE=CF,∴△ADE≌△DCF.
∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+
∠ADF=90°.∴AE⊥DF;
(2)是;
(3)成立.
理由:由(1)同理可证AE=DF,∠DAE=∠CDF
延长FD交AE于点G,
则∠CDF+∠ADG=90°,
∴∠ADG+∠DAE=90°.
∴AE⊥DF;
(4)如图:
由于点P在运动中保持∠APD=90°,
∴点P的路径是一段以AD为直径的弧,
设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,
在Rt△ODC中,OC=,
∴CP=OC﹣OP=.
5. 复习课中,教师给出关于x的函数y=2kx2﹣(4kx+1)x﹣k+1(k是实数).
教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.
学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:
①存在函数,其图象经过(1,0)点;
②函数图象与坐标轴总有三个不同的交点;
③当x>1时,不是y随x的增大而增大就是y随x的增大而减小;
④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.
教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.
分析:①将(1,0)点代入函数,解出k的值即可作出判断;
②首先考虑,函数为一次函数的情况,从而可判断为假;
③根据二次函数的增减性,即可作出判断;
④当k=0时,函数为一次函数,无最大之和最小值,当k≠0时,函数为抛物线,求出
顶点的纵坐标表达式,即可作出判断.
解答:解:①真,将(1,0)代入可得:2k﹣(4k+1)﹣k+1=0,
解得:k=0.
运用方程思想;
②假,反例:k=0时,只有两个交点.运用举反例的方法;
③假,如k=1,﹣=,当x>1时,先减后增;运用举反例的方法;
④真,当k=0时,函数无最大、最小值;
k≠0时,y最==﹣,
∴当k>0时,有最小值,最小值为负;
当k<0时,有最大值,最大值为正.运用分类讨论思想.。