初中数学专题复习开放性题
- 格式:ppt
- 大小:625.50 KB
- 文档页数:8
北师版七年级下册数学复习题及答案学习是快乐的,学习是幸福的,虽然在学习的道路上我们会遇到许多困难,但是只要努力解决这些困难后,你将会感觉到无比的轻松与快乐,可能是经历过磨练过之后。
多看多写,才会进步。
下面就是小编为大家梳理归纳的内容,希望能够帮助到大家。
北师版七年级下册数学复习题及答案【篇一】一、选择题(本大题共8小题,每小题3分,共24分)(每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在题后括号内)1.|-2|=()A.0B.-2C.+2D.1【考点】绝对值.【专题】计算题.【分析】根据一个负数的绝对值是它的相反数求解即可.【解答】解:|-2|=-(-2)=2.故选C.【点评】本题考查了绝对值,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.在5月份的助残活动中,盲聋哑学校收到社会捐款约110000元,将110000元用科学记数法表示为()A.1.1×103元B.1.1×104元C.1.1×105元D.1.1×106元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将110000用科学记数法表示为:1.1×105.故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列各对数中,互为相反数的是()A.-(-2)和2B.+(-3)和-(+3)C.D.-(-5)和-|-5|【考点】相反数.【专题】计算题.【分析】根据互为相反数的两数之和为0可得出答案.【解答】解:A、-(-2)+2=4,故本选项错误;B、+(-3)-(+3)=-6,故本选项错误;C、-2=-,故本选项错误;D、-(-5)-|-5|=0,故本选项正确.故选D.【点评】本题考查相反数的知识,比较简单,注意掌握互为相反数的两数之和为0.4.若(2a-1)2+2|b-3|=0,则ab=()A.B.C.6D.【考点】非负数的性质:偶次方;非负数的性质:绝对值;代数式求值;解二元一次方程组.【专题】计算题.【分析】由于平方与绝对值都具有非负性,根据两个非负数的和为零,其中每一个加数都必为零,可列出二元一次方程组,解出a、b 的值,再将它们代入ab中求解即可.【解答】解:由题意,得,解得.∴ab=()3=.故选D.【点评】本题主要考查非负数的性质和代数式的求值.初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.5.下列式子中:,,,π(2-y2),,7-1,y2+8,,单项式和多项式的个数分别为()A.2个,5个B.2个,4个C.3个,4个D.2个,6个【考点】单项式;多项式.【分析】根据单项式与多项式的定义,结合所给各式进行判断即可.【解答】解:所给式子中单项式有,一共2个;多项式有:,,π(2-y2),7-1,y2+8,一共4个.故选B.【点评】本题考查了单项式与多项式的定义,数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式;几个单项式的和叫做多项式.掌握它们的定义是解题的关键.6.有理数-22,(-2)3,-|-2|,-按从大到小的顺序是()A.-B.(-2)3>-22>-|-2|>-C.-|-2|>-D.-22>(-2)3>->-|-2|【考点】有理数大小比较.【专题】推理填空题;实数.【分析】首先分别求出-22,(-2)3,-|-2|的值各是多少;然后根据有理数大小比较的方法,把有理数-22,(-2)3,-|-2|,-按从大到小的顺序排列起来即可.【解答】解:-22=-4,(-2)3=-8,-|-2|=-2,∵--8,∴->-|-2|>-22>(-2)3.故选:A.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.7.当=2,y=-2时,代数式m3+ny+8的值为2010,则当=-4,y=-时,式子3m-24ny3+5016的值为()A.2009B.2011C.2012D.2013【考点】代数式求值.【分析】将=2,y=-2代入得:8m-2n=2002,等式两边同时乘以-得到-12m+3n=-3003,将=-4,y=-代入得:-12m+3n+5016,将-12m+3n=-3003代入计算即可.【解答】解:将=2,y=-2代入得m×23+n×(-2)+8=2010,整理得:8m-2n=2002,由等式的性质2可知:-12m+3n=-3003.将=-4,y=-代入得:-12m+3n+5016.∵-12m+3n=-3003,∴-12m+3n+5016=-3003+5016=2013.故选:D.【点评】本题主要考查的是求代数式的值,利用等式的性质求得-12m+3n=-3003是解题的关键.8.在一条笔直的公路边,有一些树和路灯,每相邻的两盏灯之间有3棵树,相邻的树与树,树与灯间的距离是10m,如图,第一棵树左边5m处有一个路牌,则从此路牌起向右510m~550m之间树与灯的排列顺序是()A.B.C.D.【考点】规律型:图形的变化类.【分析】根据题意可得,第一个灯的里程数为15m,第二个灯的里程数为55m,第三个灯的里程数为95m…第n个灯的里程数为15+40(n-1)=(40n-25)m,从而可计算出535m处哪个里程数是灯,也就得出了答案.【解答】解:根据题意得:第一个灯的里程数为15m,第二个灯的里程数为55m,第三个灯的里程数为95m…第n个灯的里程数为15+40(n-1)=(40n-25)m,故当n=14时候,40n-25=535m处是灯,则515m、525m、545m处均是树,故应该是树、树、灯、树,故选B.【点评】本题考查了图形的变化类问题,解决本题的关键是从原图中找到规律,并利用规律解决问题.二、填空题:(本大题8个小题,每小题3分,共24分)请把答案直接填在题中横线上.9.如果规定向东为正,那么向西即为负.汽车向东行驶3千米记作+3千米,向西行驶5千米应记作-5千米.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:汽车向东行驶3千米记作3千米,向西行驶5千米应记作-5千米.故答案为:-5千米.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.10.单项式的系数是-,次数是3.【考点】单项式.【专题】计算题.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式定义得:单项式的系数是-,次数是3.故答案为-,3.【点评】本题考查了单项式系数、次数的定义.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.11.试写出一个关于的二次三项式,使次数为2的项的系数为2,常数项为-1:22+-1(答案不).【考点】多项式.【专题】开放型.【分析】直接利用多项式的定义结合其次数与系数的确定方法得出符合题意的答案.【解答】解:根据题意可得:22+-1(答案不).故答案为:22+-1(答案不).【点评】此题主要考查了多项式,正确掌握多项式次数与系数的确定方法是解题关键.12.比较大小:(填“>”“<”号)>-|-3|<.【考点】有理数大小比较.【专题】推理填空题;实数.【分析】(1)首先分别求出、-|-3|的值各是多少;然后根据有理数大小比较的方法,判断出它们的大小关系即可.(2)两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:(1)=,-|-3|=-3,∵,∴>-|-3|.(2)|-|=,|-|=,∵,∴-<-.故答案为:>,<.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.13.将多项式23y-4y2+32-按的降幂排列为:23+32--4y2.【考点】多项式.【分析】根据降幂排列的定义,我们把多项式的各项按照的指数从大到小的顺序排列起来即可.【解答】解:多项式23y-4y2+32-按的降幂排列为:23+32--4y2.故答案为:23+32--4y2.【点评】此题考查了多项式的降幂排列的定义.首先要理解降幂排列的定义,然后要确定是哪个字母的降幂排列,这样才能比较准确解决问题.14.在数轴上到-3所对应的点的距离为2个单位长度的点所对应的数是-5或-1.【考点】数轴.【分析】因为所求点在-3的哪侧不能确定,所以应分所求点在-3的点的左侧和右侧两种情况讨论【解答】解:当此点在-3的点的左侧时,此点表示的点为-3-2=-5;当此点在-3的点的右侧时,此点表示的点为-3+2=-1.故答案为:-5或-1.【点评】本题考查的是数轴的特点,解答此类题目时要根据左减右加的原则进行计算.15.近似数4.007万精确到十位;5.8963(精确到0.01)的结果是5.90.【考点】近似数和有效数字.【专题】计算题.【分析】根据近似数的精确度求解.【解答】解:4.007万精确到十位;5.8963(精确到0.01)的结果5.90.故答案为十,5.90.【点评】本题考查了近似数与有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.16.数学家发明了一个魔术盒,当任意数对(a,b)放入其中时,会得到一个新的数:a2+b+1.例如把(3,-2)放入其中,就会得到32+(-2)+1=8.现将数对(-2,3)放入其中得到数m=8,再将数对(m,1)放入其中后,得到的数是66.【考点】有理数的混合运算.【专题】新定义.【分析】根据题中的新定义化简所求式子,计算即可得到结果.【解答】解:数对(-2,3)放入其中得到(-2)2+3+1=4+3+1=8;再将数对(8,1)放入其中得到82+1+1=64+1+1=66.故答案为:8;66.【点评】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.三、解答题(本大题共8个题,共72分)解答应写出文字说明,说理过程或演算步骤.17.直接写出运算结果.(1)5+(-16)=-11(2)=0(3)(-30)-(+4)=-34(4)=-14(5)=(6)-24÷(-2)=8.【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用异号两数相加的法则计算即可得到结果;(2)原式利用0乘以任何数结果为0计算即可得到结果;(3)原式利用减法法则变形,计算即可得到结果;(4)原式利用乘法法则计算即可得到结果;(5)原式利用异号两数相加的法则计算即可得到结果;(6)原式先计算乘方运算,再计算除法运算即可得到结果.【解答】解:(1)原式=-(16-5)=-11;(2)原式=0;(3)原式=-30-4=-34;(4)原式=-6×=-14;(5)原式=2-2=;(6)原式=-16÷(-2)=8.故答案为:(1)-11;(2)0;(3)-34;(4)-14;(5);(6)8.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.(24分)计算.(1)(-2.8)+7.2+5.5+(-4.2)(2)(-7)-(-10)+(-8)-(-2)(3)(4)-72×2(5)(6).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式结合后,相加即可得到结果;(2)原式利用减法法则变形,计算即可得到结果;(3)原式先计算乘法运算,再计算加减运算即可得到结果;(4)原式从左到右依次计算即可得到结果;(5)原式先计算乘方运算,再利用乘法分配律计算,最后算加减运算即可得到结果;(6)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=(-2.8-4.2)+(7.2+5.5)=-7+12.7=5.7;(2)原式=-7+10-8+2=12-15=-3;(3)原式=--=-;(4)原式=72×=30;(5)原式=-1+16+30-27=12;(6)原式=-64+18-24=-70.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.两个数,y在数轴上的位置如图所示,请完成以下填空题.(填“>”、“=”或“<”).(1)<0,y>0.(2)->0,-y<0.(3)+y>0,-y<0.(4)y<0,<0.(5)把,y,-,-y四个数的大小关系用“<”连接起来.-y【考点】数轴;有理数大小比较.【专题】存在型.【分析】(1)直接根据数轴的特点解答即可;(2)根据(1)中、y的符号即可作出判断;(3)根据数轴上、y的位置判断出、y的符号及其绝对值的大小即可;(4)根据(1)中、y的符号即可作出判断;(5)由(1)、(3)中y的符号及+y、-y的符号即可作出判断.【解答】解:(1)∵在原点的左边,y在原点的右边,∴<0,y>0,故答案为:<,>;(2)∵<0,y>0,∴->0,-y<0.故答案为:>,<;(3)∵<0,y>0,y到原点的距离大于到原点的距离,∴+y>0,-y<0.故答案为:>,<;(4)∵<0,y>0,∴y<0,<0.故答案为:<,<;(5)∵<0,y>0,y到原点的距离大于到原点的距离,∴<0∴-y故答案为:-y【点评】本题考查的是数轴的特点,熟知数轴的定义是解答此题的关键.20.数a,b,c在数轴上对应的点的位置如图所示,化简-|a|+|b+c|-|b|.【考点】整式的加减;数轴;绝对值.【分析】首先利用数轴得出a<0【解答】解:由数轴可知a<0则-|a|+|b+c|-|b|=-(-a)+b+c-b=a+c.【点评】此题考查整式的加减,数轴以及绝对值的意义,根据绝对值的意义化简是解决问题的关键.21.已知a,b互为相反数,c,d互为倒数,的绝对值是2,求代数式的值.【考点】代数式求值;相反数;绝对值;倒数.【分析】根据题意可知:a+b=0,cd=1,=±2,然后代入计算即可.【解答】解:∵a,b互为相反数,∴a+b=0.∵c,d互为倒数,∴cd=1.∵的绝对值是2,∴=±2.当=2时,原式=2×22-0+2=10,当=-2时,原式=2×(-2)2+0-2=6.综上所述,代数式的值为10或6.【点评】本题主要考查的是求代数式的值,根据题意得到a+b=0,cd=1,=±2是解题的关键.22.下表是小明记录的今年雨季一周河水的水位变化情况(上周末的水位达到警戒水位).星期一二三四五六日水位变化/米+0.20+0.81-0.35+0.03+0.28-0.36-0.01注:正号表示水位比前一天上升,负号表示水位比前一天下降.(1)本周哪一天河流的水位?哪一天河流的水位最低?它们位于警戒水位之上还是之下?与警戒水位的距离分别是多少米?(2)与上周相比,本周末河流水位是上升了还是下降了?【考点】有理数的加法;正数和负数.【专题】计算题.【分析】(1)先设标准水位,再计算出这一周中每一天的水位,即可得出答案;(2)将这些数据相加,和为正,表示跟上周相比,本周的水位上升了;和为负,表示跟上周相比,本周的水位下降了.【解答】解:(1)设警戒水位为0,则:星期一:+0.20米,星期二:+1.01米,星期三:+0.66米,星期四:+0.69米,星期五:+0.97米,星期六:+0.61米,星期日:+0.60米.所以本周星期二河流水位,位于警戒水位之上1.01米,星期一河流的水位最低,位于警戒水位之上0.20米.(2)跟上周相比,本周的水位上升了.、【点评】本题考查了有理数的加法以及正负数所表示的意义.23.某地电话拨号入网有两种收费方式:(A)计时制:0.05元/分;(B)包月制:50元,此外,每种另加收通信费0.02元/分.(1)某用户某月上网时间为小时,请分别写出两种收费方式下该用户应支付的费用;(2)若某用户估计一个月上网时间为20小时,你认为采用哪种方式较合算.【考点】列代数式;代数式求值.【分析】A种方式收费为:计时费+通信费;B种方式付费为:包月费+通信费.根据等量关系列出代数式求出结果,比较后得出结论.【解答】解:(1)A:0.05×60+0.02×60=4.2(元),B:50+0.02×60=50+1.2(元);(2)当=20时,A:84元;B:74元,∴采用包月制较合算.【点评】本题考查列代数式、代数式求值解决实际问题的能力.解决问题的关键是找到所求的量的等量关系,需注意把时间单位统一.24.按右边图示的程序计算,(1)若开始输入的n的值为20,则最后输出的结果y为多少?(2)若开始输入的n的值为4,则最后输出的结果y为多少?【考点】代数式求值.【分析】观察图形,可知n和y的关系式为:y=,因此将n的值代入就可以计算出y的值.如果计算的结果y<0,则需要把结果再次代入关系式求值,直到算出的y值>0为止,即可得出y的值.【解答】解:(1)当n=20时,y=,∴最后输出的结果为190;(2)当n=4时,,当n=6时,,当n=15时,,∴最后输出的结果为105.【点评】解答本题的关键就是弄清楚题图给出的计算程序.本题(2)中由于代入4计算出y的值是6,但6<100,不是要输出的y的值,这是本题易出错的地方,还应将=6代入y=,继续计算,直到算出的y 值>0为止.【篇二】一、选择题(本大题共8小题,每小题3分,共24分)(每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填在题后括号内)1.|-2|=()A.0B.-2C.+2D.12.在5月份的助残活动中,盲聋哑学校收到社会捐款约110000元,将110000元用科学记数法表示为()A.1.1×103元B.1.1×104元C.1.1×105元D.1.1×106元3.下列各对数中,互为相反数的是()A.-(-2)和2B.+(-3)和-(+3)C.D.-(-5)和-|-5|4.若(2a-1)2+2|b-3|=0,则ab=()A.B.C.6D.5.下列式子中:,,,π(2-y2),,7-1,y2+8,,单项式和多项式的个数分别为()A.2个,5个B.2个,4个C.3个,4个D.2个,6个6.有理数-22,(-2)3,-|-2|,-按从大到小的顺序是()A.-B.(-2)3>-22>-|-2|>-C.-|-2|>-D.-22>(-2)3>->-|-2|7.当=2,y=-2时,代数式m3+ny+8的值为2010,则当=-4,y=-时,式子3m-24ny3+5016的值为()A.2009B.2011C.2012D.20138.在一条笔直的公路边,有一些树和路灯,每相邻的两盏灯之间有3棵树,相邻的树与树,树与灯间的距离是10m,如图,第一棵树左边5m处有一个路牌,则从此路牌起向右510m~550m之间树与灯的排列顺序是()A.B.C.D.二、填空题:(本大题8个小题,每小题3分,共24分)请把答案直接填在题中横线上.9.如果规定向东为正,那么向西即为负.汽车向东行驶3千米记作+3千米,向西行驶5千米应记作__________.10.单项式的系数是__________,次数是__________.11.试写出一个关于的二次三项式,使次数为2的项的系数为2,常数项为-1:__________.12.比较大小:(填“>”“<”号)__________-|-3|__________.13.将多项式23y-4y2+32-按的降幂排列为:__________.14.在数轴上到-3所对应的点的距离为2个单位长度的点所对应的数是__________.15.近似数4.007万精确到__________位;5.8963(精确到0.01)的结果是__________.16.数学家发明了一个魔术盒,当任意数对(a,b)放入其中时,会得到一个新的数:a2+b+1.例如把(3,-2)放入其中,就会得到32+(-2)+1=8.现将数对(-2,3)放入其中得到数m=__________,再将数对(m,1)放入其中后,得到的数是__________.三、解答题(本大题共8个题,共72分)解答应写出文字说明,说理过程或演算步骤.17.直接写出运算结果.(1)5+(-16)=__________(2)=__________(3)(-30)-(+4)=__________(4)=__________(5)=__________(6)-24÷(-2)=__________.18.(24分)计算.(1)(-2.8)+7.2+5.5+(-4.2)(2)(-7)-(-10)+(-8)-(-2)(3)(4)-72×2(5)(6).19.两个数,y在数轴上的位置如图所示,请完成以下填空题.(填“>”、“=”或“<”).(1)__________0,y__________0.(2)-__________0,-y__________0.(3)+y__________0,-y__________0.(4)y__________0,__________0.(5)把,y,-,-y四个数的大小关系用“<”连接起来.__________.20.数a,b,c在数轴上对应的点的位置如图所示,化简-|a|+|b+c|-|b|.21.已知a,b互为相反数,c,d互为倒数,的绝对值是2,求代数式的值.22.下表是小明记录的今年雨季一周河水的水位变化情况(上周末的水位达到警戒水位).星期一二三四五六日水位变化/米+0.20+0.81-0.35+0.03+0.28-0.36-0.01注:正号表示水位比前一天上升,负号表示水位比前一天下降.(1)本周哪一天河流的水位?哪一天河流的水位最低?它们位于警戒水位之上还是之下?与警戒水位的距离分别是多少米?(2)与上周相比,本周末河流水位是上升了还是下降了?23.某地电话拨号入网有两种收费方式:(A)计时制:0.05元/分;(B)包月制:50元,此外,每种另加收通信费0.02元/分.(1)某用户某月上网时间为小时,请分别写出两种收费方式下该用户应支付的费用;(2)若某用户估计一个月上网时间为20小时,你认为采用哪种方式较合算.24.按右边图示的程序计算,(1)若开始输入的n的值为20,则最后输出的结果y为多少?(2)若开始输入的n的值为4,则最后输出的结果y为多少?。
趣味数学题63例1.请问几分钟时,盒内为半满状态?有一个魔术盒子,里面装有鸡蛋,魔法一施展,每分钟鸡蛋的数目就增加一倍,10分钟后,盒内盛满了鸡蛋,请问几分钟时,盒内为半满状态?2.请问最少要拿出几只袜子抽屉中有十只黑袜子和十只白袜子,假若你在黑暗中开抽屉,伸手拿袜子;请问最少要拿出几只袜子,才能确定拿到了一双?3.它何时才能爬出枯井?一只猴子陷落在一口三十尺深的枯井中,如果它每天能够向上爬三尺,再向下滑一尺,以这种速度,它何时才能爬出枯井?4.最高要化费多少分钟?假设三只猫能在三分钟内杀死三鼠,请问一百只猫杀死一百只老鼠,最高要化费多少分钟?5.他们谁最大?谁最小?扎扎比菲菲大,但比胡安小.菲菲比乔乔和马修大。
马修比卡罗斯和乔乔小。
胡安比菲菲和马修大,但比卡罗斯小。
他们谁最大?谁最小?6.请用+、-、×、÷、()等运算符号1.请用+、-、×、÷、()等运算符号把五个3连接起来,组成算式,使它们的得数分别是0、1、2、3、4、5、6、7、8、9、10。
2.请你在四个5之间添上运算符号,使运算结果分别等于0、1、2、3、4、5、6、7。
3.下面的算式只写了数字,忘记写运算符号,请你选用+、-、×、÷、()、[ ]这几种符号填进算式之中,使等式成立。
1 2 3=11 2 3 4=11 2 3 4 5=11 2 3 4 5 6=11 2 3 4 5 6 7=11 2 3 4 5 6 7 8=11 2 3 4 5 6 7 8 9=17.这只狗共奔跑了多少千米路?甲和乙从东西两地同时出发,相对而行,两地相距10千米。
甲每小时走3千米,乙每小时走2千米,几小时两人相遇?如果甲带了一只狗,和甲同时出发,狗以每小时5千米的速度向乙奔去,遇到乙后即回头向甲奔去;遇到甲又回头向乙奔去,直到甲乙两人相遇时狗才停住。
问这只狗共奔跑了多少千米路?8.下面算式里“华杯”代表的两位数是多少华罗庚是1910年出生的,下面算式里“华杯”代表的两位数是多少?1910+华杯9.赛马场有这幺一个赛马场,跑道上A马一分钟可跑2圈,B马能跑3圈,C马则跑4圈。
开放性试题及答案1、用剪刀将形状如图1所示的矩形纸片ABCD 沿着直线CM 剪成两部分,其中M 为AD 的中点.用这两部分纸片可以拼成一些新图形,例如图2中的Rt △BCE 就是拼成的一个图形.(1)用这两部分纸片除了可以拼成图2中的Rt △BCE外,还可以拼成一些四边形.请你试一试,把拼好的四边形分别画在图3、图4的虚框内.(2)若利用这两部分纸片拼成的Rt △BCE 是等腰直角三角形,设原矩形纸片中的边AB 和BC 的长分别为a 厘米、b 厘米,且a 、b 恰好是关于x 的方程01)1(2=++--m x m x 的两个实数根,试求出原矩形纸片的面积.2、电脑CPU 蕊片由一种叫“单晶硅”的材料制成,未切割前的单晶硅材料是一种薄型圆片,叫“晶圆片”。
现为了生产某种CPU 蕊片,需要长、宽都是1cm 的正方形小硅片若干。
如果晶圆片的直径为10.05cm 。
问一张这种晶圆片能否切割出所需尺寸的小硅片66张?请说明你的方法和理由。
(不计切割损耗)E B A C B A M C D M 图3 图4 图1 图2 第21题图3、在一张长12cm、宽5cm的矩形纸片内,要折出一个菱形.李颖同学按照取两组对边中点的方法折出菱形EFGH(见方案一),张丰同学沿矩形的对角线AC折出∠CAE=∠DAC,∠ACF=∠ACB 的方法得到菱形AECF(见方案二),请你通过计算,比较李颖同学和张丰同学的折法中,哪种菱形面积较大?4、如图,若把边长为1的正方形ABCD的四个角(阴影部分)剪掉,得一四边形A1B1C1D1.试问怎样剪,才能使剩下的图形仍为正方形,且剩下图形的面积为原正方形面积的95,请说明理由(写出证明及计算过程).5、甲船在点O处发现乙船在北偏东600的B处以每小时a海里的速度向北航行,甲船的速度是每小时3a海里,问甲船应以什么方向航行才能追上乙船。
A DEHFB CG(方案一)A DEFB C(方案二)第23题图6、已知:如图,AB是⊙O的直径,E是AB上的点,过点E作CG⊥AB,F是直线CG上任意上点,连结AF交⊙O于D,连结DC、AC、AG。
中考冲刺:创新、开放与探究型问题—巩固练习(提高)【巩固练习】一、选择题1. 下列图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑥个图形中平行四边形的个数为()A、55B、42C、41D、292.如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D 重合,折痕与AD交与点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设P n﹣1D n﹣2的中点为D n﹣1,第n次将纸片折叠,使点A与点D n﹣1重合,折痕与AD交于点P n(n>2),则AP6的长为()A.512532⨯B.69352⨯C.614532⨯D.711352⨯3.下面两个多位数1248624…、6248624…,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( ) A.495 B.497 C.501 D.503二、填空题4. 如图所示,一个4×2的矩形可以用3种不同的方式分割成2或5或8个小正方形,那么一个5×3的矩形用不同的方式分割后,小正方形的个数可以是____ ____.5. 一园林设计师要使用长度为4L 的材料建造如图1所示的花圃,该花圃是由四个形状、大小完全一样的扇环面组成,每个扇环面如图2所示,它是以点O 为圆心的两个同心圆弧和延长后通过O 点的两条直线段围成,为使得绿化效果最佳,还须使得扇环面积最大.(1)使图①花圃面积为最大时R -r 的值为 ,以及此时花圃面积为 ,其中R 、r 分别为大圆和小圆的半径;(2)若L =160 m ,r =10 m ,使图面积为最大时的θ值为 .6.如图所示,已知△ABC 的面积1ABC S =△,在图(a)中,若11112AA BB CC AB BC CA ===,则11114A B C S =△; 在图(b)中,若22213AA BB CC AB BC CA ===,则222A B C 13S =△;在图(c),若33314AA BB CC AB BC CA ===,则333716A B C S =△.…按此规律,若88819AA BB CC AB BC CA ===,则888A B C S =△________.三、解答题7.如图所示,∠ABM 为直角,C 为线段BA 的中点,D 是射线BM 上的一个动点(不与点B 重合),连接AD ,作BE ⊥AD ,垂足为E ,连接CE ,过点E 作EF ⊥CE ,交BD 于F .(1)求证:BF =FD ;(2)∠A 在什么范围内变化时,四边形ACFE 是梯形?并说明理由;(3)∠A在什么范围内变化时,线段DE上存在点G,满足条件14DG DA?并说明理由.8.如图(a)、(b)、(c),在△ABC中,分别以AB,AC为边,向△ABC外作正三角形、正四边形、正五边形,BE,CD相交于点O.(1)①如图(a),求证:△ADC≌△ABE;②探究:图(a)中,∠BOC=________;图(b)中,∠BOC=________;图(c)中,∠BOC=________;(2)如图(d),已知:AB,AD是以AB为边向△ABC外所作正n边形的一组邻边;AC,AE是以AC为边向△ABC外所作正n边形的一组邻边.BE,CD的延长相交于点O.①猜想:图(d)中,∠BOC=________________;(用含n的式子表示)②根据图(d)证明你的猜想.9. 如图(a),梯形ABCD中,AD∥BC,∠ABC=90°, AD=9,BC=12,AB=a,在线段BC上任取一点P(P 不与B,C重合),连接DP,作射线.PE⊥DP,PE与直线AB交于点E.(1)试确定CP=3时,点E的位置;(2)若设CP=x(x>0),BE=y(y>0),试写出y关于自变量x的函数关系式;(3)若在线段BC上能找到不同的两点P1,P2,使按上述作法得到的点E都与点A重合,试求出此时a的取值范围.10. 点A,B分别是两条平行线m,n上任意两点,在直线n上找一点C,使BC=k·AB.连接AC,在直线AC上任取一点E,作∠BEF=∠ABC,EF交直线m于点F.(1)如图(a),当k=1时,探究线段EF与EB的关系,并加以说明;说明:①如果你经过反复探索没有解决问题,请写出探索过程(要求至少写三步);②在完成①之后,可以自己添加条件(添加的条件限定为∠ABC为特殊角),在图(b)中补全图形,完成证明.(2)如图(c),若∠ABC=90°,k≠l,探究线段EF与EB的关系,并说明理由.【答案与解析】一、选择题1.【答案】C;【解析】找出规律:∵图②平行四边形有5个=1+2+2,图③平行四边形有11个=1+2+3+2+3,图④平行四边形有19=1+2+3+4+2+3+4,∴图⑥的平行四边形的个数为1+2+3+4+5+6+2+3+4+5+6=41.故选C.2.【答案】A;【解析】由题意得,AD=12BC=52,AD1=AD﹣DD1=158,AD2=25532⨯,AD3=37532⨯,AD n=21532nn+⨯,故AP1=54,AP2=1516,AP3=26532⨯…APn=12532nn-⨯,故可得AP6=512532⨯.故选A.3.【答案】A ;【解析】根据题意,当第1位数字是3时,按操作要求得到的数字是3624862486248…,从第2位数字起每隔四位数重复一次6248,因为(100-1)被4整除得24余3,所以这个多位数前100位的所有数字之间和是3+(6+2+4)+(6+2+4+8)×24=495,答案选A . 二、填空题4.【答案】4或7或9或12或15;【解析】 一个5×3的矩形可以有下面几种分割方式,如图所示.5.【答案】(1)R -r 的值为4L ,以及此时花圃面积为24L ; (2)θ值为240π.【解析】要使花圃面积最大,则必定要求扇环面积最大.设扇环的圆心角为θ,面积为S ,根据题意得:2()180180R rL R r θπθπ=++- ()2()180R r R r πθ+=+-g ,∴180[2()]()L R r R r θπ--=+∴2222()360360360R r S R r θπθππθ=-=-22180[2()]()360()L R r R r R r ππ--=-+gg1[2()]()2L R r R r =---g 21()()2R r L R r =--+-22()416L L R r ⎡⎤=---+⎢⎥⎣⎦.∵02L R r <-<, ∴S 在4LR r -=时取最大值为216L .∴花圃面积最大时R -r 的值为4L,最大面积为224164L L ⨯=.(2)∵当4LR r -=时,S 取大值, ∴1604044L R r -===(m),40401050R r =+=+=(m),∴180[2()]180(160240)240()60L R r R r θπππ---⨯===+.6.【答案】1927. 【解析】1111111-3=224A B C S =⨯⨯△222A B C 2111-3=333S =⨯⨯△3331-3=4416A B C S =⨯⨯△…8888157191-3==998127A B C S =⨯⨯△2131-3=111(1)AnBnCn n nS n n n =⨯⨯-+++△三、解答题 7.【答案与解析】解:(1)Rt △AEB 中,∵AC =BC ,∴CE =12AB . ∴CB =CE .∴∠CEB =∠CBE .∵∠CEF =∠CBF =90°,∴∠BEF=∠EBF.∴EF=BF.∵∠BEF+∠FED=90°,∠EBD+∠EDB=90°.∴∠FED=∠EDF.∴EF=FD.∴BF=FD.(2)由(1)得BF=FD,而BC=CA,∴CF∥AD,即AE∥CF.若AC∥EF,则AC=EF,∴BC=BF.∴BA=BD,∠A=45°.∴当0°<∠A<45°或45°<∠A<90°时,四边形ACFE为梯形.(3)作GH⊥BD,垂足为H,则GH∥AB.∵DG=14DA,∴DH=14DB.又F为BD的中点,∴H为DF的中点.∴GH为DF的中垂线.∴∠GDF=∠GFD.∵点G在ED上,∴∠EFD≥∠GFD.∵∠EFD+∠FDE+∠DEF=180°,∴∠GFD+∠FDE+∠DEF≤180°.∴3∠EDF≤180°.∴∠EDF≤60°.又∠A+∠EDF=90°,∴30°≤∠A<90°.∴30°≤∠A<90°时,DE上存在点G,满足条件DG=14 DA,8.【答案与解析】(1)证法一:∵△ABD与△ACE均为等边三角形,∴AD=AB,AC=AE,且∠BAD=∠CAE=60°.∴∠BAD+∠BAC=∠CAE+∠BAC,即∠DAC=∠BAE.∴△ADC≌△ABE.证法二:∵△ABD与△ACE均为等边三角形,∴AD=AB,AC=AE,且∠BAD=∠CAE=60°.∴△ADC可由△ABE绕着点A按顺时针方向旋转60°得到.∴△ABE ≌△ADC .②120°,90°,72°. (2)①360n°. ②证法一:依题意,知∠BAD 和∠CAE 都是正n 边形的内角,AB =AD ,AE =AC , ∴∠BAD =∠CAE =(2)180n n-°.∴∠BAD -∠DAE =∠CAE -∠DAE , 即∠BAE =∠DAC . ∴△ABE ≌△ADC . ∴∠ABE =∠ADC .∵∠ADC+∠ODA =180°, ∴∠ABO+∠ODA =180°.∴∠ABO+∠ODA+∠DAB+∠BOC =360°. ∴∠BOC+∠DAB =180°. ∴∠BOC =180°-∠DAB =(2)180360180n n n--=°°°. 证法二:延长BA 交CO 于F ,证∠BOC =∠DAF =180°-∠BAD .证法三:连接CE .证∠BOC =180°-∠CAE .9.【答案与解析】解:(1)作DF ⊥BC ,F 为垂足.当CP =3时,四边形ADFB 是矩形,则CF =3. ∴点P 与点F 重合.又∵BF ⊥FD ,∴此时点E 与点B 重合.(2)(i)当点P 在BF 上(不与B ,F 重合)时,(见图(a))∵∠EPB+∠DPF =90°,∠EPB+∠PEB =90°, ∴∠DPF =∠PEB .∴Rt △PEB ∽△ARt △DPF .∴BE FPBP FD=. ① 又∵ BE =y ,BP =12-x ,FP =x-3,FD =a ,代入①式,得312y x x a-=- ∴1(12)(3)y x x a =--,整理, 得21(1536)(312)y x x x a=-+<< ②(ii)当点P 在CF 上(不与C ,F 重合)时,(见上图(b))同理可求得BE FPBP FD=. 由FP =3-x 得21(1536)(03)y x x x a=-+<<.∴ 221(1536)(03)1(1536)(312).x x x ay x x a⎧--+<<⎪⎪=⎨⎪--+<<⎪⎩(3)解法一:当点E 与A 重合时,y =EB =a ,此时点P 在线段BF 上. 由②式得21(1536)a x x a=--+. 整理得2215360x x a -++=. ③∵在线段BC 上能找到两个不同的点P 1与P 2满足条件, ∴方程③有两个不相等的正实根.∴△=(-15)2-4×(36+a 2)>0. 解得2814a <. 又∵a >0, ∴902a <<. 解法二:当点E 与A 重合时,∵∠APD =90°,∴点P 在以AD 为直径的圆上.设圆心为M ,则M 为AD 的中点. ∵在线段BC 上能找到两个不同的点P 1与P 2满足条件, ∴线段BC 与⊙M 相交.即圆心M 到BC 的距离d 满足02ADd <<. ④ 又∵AD ∥BC , ∴d =a . ∴由④式得902a <<. 10.【答案与解析】解:(1)EF =EB .证明:如图(d),以E 为圆心,EA 为半径画弧交直线m 于点M ,连接EM .∴EM =EA ,∴∠EMA =∠EAM . ∵BC =k ·AB ,k =1, ∴BC =AB .∴∠CAB =∠ACB .∵m ∥n ,∴∠MAC =∠ACB ,∠FAB =∠ABC .∴∠MAC=∠CAB.∴∠CAB=∠EMA.∵∠BEF=∠ABC,∴∠BEF=∠FAB.∵∠AHF=∠EHB,∴∠AFE=∠ABE.∴△AEB≌△MEF.∴EF=EB.探索思路:如上图(a),∵BC=k·AB,k=1,∴BC=AB.∴∠CAB=∠ACB.∵m∥n,∴∠MAC=∠ACB.添加条件:∠ABC=90°.证明:如图(e),在直线m上截取AM=AB,连接ME.∵ BC=k·AB,k=1,∴ BC=AB.∵∠ABC=90°,∴∠CAB=∠ACB=45°.∵ m∥n,∴∠MAE=∠ACB=∠CAB=45°,∠FAB=90°.∵ AE=AE,∴△MAE∽△BAE.∴ EM=EB,∠AME=∠ABE.∵∠BEF=∠ABC=90°,∴∠FAB+∠BEF=180°.又∵∠ABE+∠EFA=180°,∴∠EMF=∠EFA.∴ EM=EF.∴ EF=EB.(2)EF=1k EB.说明:如图(f),过点E作EM⊥m,EN⊥AB,垂足为M,N.∴∠EMF=∠ENA=∠ENB=90°.∵ m∥n,∠ABC=90°,∴∠MAB=90°.∴四边形MENA为矩形.∴ ME=NA,∠MEN=90°.∵∠BEF=∠ABC=90°.∴∠MEF=∠NEB.∴△MEF∽△NEB.∴ME EF EN EB=,∴AN EF EN EB=在Rt△ANE和Rt△ABC中,tanEN BCBAC kAN AB∠===,∴1EF EBk=.。
开放型问题一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.二、解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等。
三、中考考点精讲考点一:条件开放型条件开放题是指结论给定,条件未知或不全,需探求与结论相对应的条件.解这种开放问题的一般思路是:由已知的结论反思题目应具备怎样的条件,即从题目的结论出发,逆向追索,逐步探求.例1 (2015•某某某某,第13题3分)如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是.考点:全等三角形的判定。
专题:开放型.分析:添加DC=BC,利用SSS即可得到两三角形全等;添加∠DAC=∠BAC,利用SAS即可得到两三角形全等.解答:解:添加条件为DC=BC,在△ABC和△ADC中,,∴△ABC≌△ADC(SSS);若添加条件为∠DAC=∠BAC,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS).故答案为:DC=BC或∠DAC=∠BAC点评:此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.对应训练1.(2015•某某,第13题3分)如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是.(只需写一个,不添加辅助线)考点:全等三角形的判定.专题:开放型.分析:由已知AB=BC,及公共边BD=BD,可知要使△ABD≌△CBD,已经具备了两个S了,然后根据全等三角形的判定定理,应该有两种判定方法①SAS,②SSS.所以可添∠ABD=∠CBD 或AD=CD.解答:解:答案不唯一.①∠ABD=∠CBD.在△ABD和△CBD中,∵,∴△ABD≌△CBD(SAS);②AD=CD.在△ABD和△CBD中,∵,∴△ABD≌△CBD(SSS).故答案为:∠ABD=∠CBD或AD=CD.点评:本题主要考查了全等三角形的判定定理,能灵活运用判定进行证明是解此题的关键.熟记全等三角形的判定方法有:SSS,SAS,ASA,AAS.考点二:结论开放型:给出问题的条件,让解题者根据条件探索相应的结论并且符合条件的结论往往呈现多样性,这些问题都是结论开放问题.这类问题的解题思路是:充分利用已知条件或图形特征,进行猜想、类比、联想、归纳,透彻分析出给定条件下可能存在的结论,然后经过论证作出取舍.例2 (2015·某某甘孜、阿坝,第27题10分)已知E,F分别为正方形ABCD的边BC,CD 上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE 成立.试探究下列问题:(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE和BF,若点M,N,P,Q分别为AE,EF,FD,AD 的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.考点:四边形综合题..专题:综合题.分析:(1)由四边形ABCD为正方形,CE=DF,易证得△ADF≌△DCE(SAS),即可证得AF=DE,∠DAF=∠CDE,又由∠ADG+∠EDC=90°,即可证得AF⊥DE;(2)由四边形ABCD为正方形,CE=DF,易证得△ADF≌△DCE(SAS),即可证得AF=DE,∠E=∠F,又由∠ADG+∠EDC=90°,即可证得AF⊥DE;(3)首先设MQ,DE分别交AF于点G,O,PQ交DE于点H,由点M,N,P,Q分别为AE,EF,FD,AD的中点,即可得MQ=PN=DE,PQ=MN=AF,MQ∥DE,PQ∥AF,然后由AF=DE,可证得四边形MNPQ是菱形,又由AF⊥DE即可证得四边形MNPQ是正方形.解答:(1)上述结论①,②仍然成立,理由为:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,,∴△ADF≌△DCE(SAS),∴AF=DE,∠DAF=∠CDE,∵∠ADG+∠EDC=90°,∴∠ADG+∠DA F=90°,∴∠AGD=90°,即AF⊥DE;(2)上述结论①,②仍然成立,理由为:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°,在△ADF和△DCE中,,∴△ADF≌△DCE(SAS),∴AF=DE,∠E=∠F,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE;(3)四边形MNPQ是正方形.理由为:如图,设MQ,DE分别交AF于点G,O,PQ交DE于点H,∵点M,N,P,Q分别为AE,EF,FD,AD的中点,∴MQ=PN=DE,PQ=MN=AF,MQ∥DE,PQ∥AF,∴四边形OHQG是平行四边形,∵AF=DE,∴MQ=PQ=PN=MN,∴四边形MNPQ是菱形,∵AF⊥DE,∴∠AOD=90°,∴∠HQG=∠AOD=90°,∴四边形MNPQ是正方形.点评:此题属于四边形的综合题,考查了正方形的判定与性质、全等三角形的判定与性质以及三角形中位线的性质.注意证得△ADF≌△DCE(SAS),掌握三角形中位线的性质是关对应训练2.(2015•某某某某,第20题8分)某运动品牌对第一季度A、B两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图所示:(1)一月份B款运动鞋的销售量是A款的45,则一月份B款运动鞋销售了多少双?(2)第一季度这两款运动鞋的销售单价保持不变,求三月份的总销售额(销售额=销售单价×销售量);(3)结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议。
浅谈初中数学常见开放性问题及其解法作者:温依来源:《科教导刊》2009年第32期摘要本文主要从数学开放性问题的类型、特点、作用及初中数学常见开放性问题的解法等方面进行阐述。
关键词初中数学开放性问题解法中图分类号:G633.6文献标识码:A数学开放性问题是指那些条件不完整、结论不确定、解法不限制的数学问题。
相对于传统型的数学问题来讲,开放性问题的本质是问题本身条件不完备、结论不确定、不唯一,需要解题者自己去探索。
而这种类型的题目,在教学中,可很好地开发学生的思维,培养学生的创新精神,从而提高其数学素养。
当前,随着新课改的深入实施,初中数学试题不仅对双基的考查表现出素材广、形式多的特点,而且还着眼于学生的应变能力的考查;且从近几年全国各地中考数学试题的设置看来,初中数学开放性试题的比重在逐年加大。
因此,本文将重点谈谈初中数学开放性问题的解法,以供参考。
1 数学开放性问题的类型目前,初中数学开放性问题可分为条件开放型、结论开放型、策略开放型、设计开放型、举例开放型、实践开放型、信息开放型、解法开放型、综合开放型、情景开放型等十种类型的试题。
2 数学开放性问题的特点数学开放性问题有别于传统的数学题型,其有的条件不完整,有的结论多样,有的解法不固定,有的答案不唯一等,需要解题者能运用观察、对比、验证、分析、综合、抽象、概括、判断等数学方法,从而寻求到问题的答案。
因此,数学开放性问题具有以下几个特征:首先,数学开放性问题的条件不完备,有时不足,有时多余,不再如传统封闭性题型有现成模式套用;解题时,方法多种多样,多余的条件,使得解题的策略更具开放性。
其次,数学开放性问题答案的不确定性和多样性,在解题时,需要学生运用发散性思维,通过多角度观察,在自身能力范围内解决问题,从而探索出开放性题型的多个解决方法,体现出层次性。
最后,数学开放性题型的解决策略具有创新性,在解题时,不再有单一和死板的解题模式可遵循,甚至需要打破原有的解题模式,去探寻多种解题方法,由变求变,从而很好地体现现代数学气息。
开放性问题【专题点拨】开放探索问题是指已知条件、解题依据、解题方法、问题结论这四项要素中,缺少解题要素两个或两个以上,或者条件、结论有待探求、补充等.【解题策略】在解决开放探索问题的时候,需解题者经过探索确定结论或补全条件,将开放性问题转化为封闭性问题,然后选择合适的解题途径完成最后的解答.【典例解析】类型一:条件开放型问题例题1:(2016·某某省滨州市·14分)如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题;函数及其图象.【分析】(1)分别令y=0,x=0,即可解决问题.(2)由图象可知AB只能为平行四边形的边,易知点E坐标(﹣7,﹣)或(5,﹣),由此不难解决问题.(3)分A、C、M为顶点三种情形讨论,分别求解即可解决问题.【解答】解:(1)令y=0得﹣x2﹣x+2=0,∴x2+2x﹣8=0,x=﹣4或2,∴点A坐标(2,0),点B坐标(﹣4,0),令x=0,得y=2,∴点C坐标(0,2).(2)由图象可知AB只能为平行四边形的边,∵AB=EF=6,对称轴x=﹣1,∴点E的横坐标为﹣7或5,∴点E坐标(﹣7,﹣)或(5,﹣),此时点F(﹣1,﹣),∴以A,B,E,F为顶点的平行四边形的面积=6×=.(3)如图所示,①当C为顶点时,CM1=CA,CM2=CA,作M1N⊥OC于N,在RT△CM1N中,==,∴点M1坐标(﹣1,2+),点M2坐标(﹣1,2﹣).②当M3为顶点时,∵直线AC解析式为y=﹣x+1,线段AC的垂直平分线为y=x,∴点M3坐标为(﹣1,﹣1).③当点A为顶点的等腰三角形不存在.综上所述点M坐标为(﹣1,﹣1)或(﹣1,2+)或(﹣1.2﹣).【点评】本题考查二次函数综合题、平行四边形的判定和性质、勾股定理等知识,解题的关键是熟练掌握抛物线与坐标轴交点的求法,学会分类讨论的思想,属于中考压轴题.变式训练1:(2016·某某某某)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)(1)求抛物线的解析式;(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P 的坐标和四边形ABPC的最大面积.(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.类型二:结论开放型问题例题2:(2016·某某随州·3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c >0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个 B.3个 C.4个 D.5个【解析】二次函数图象与系数的关系.(1)正确.根据对称轴公式计算即可.(2)错误,利用x=﹣3时,y<0,即可判断.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),列出方程组求出a、b即可判断.(4)错误.利用函数图象即可判断.(5)正确.利用二次函数与二次不等式关系即可解决问题.【解答】解:(1)正确.∵﹣ =2,∴4a+b=0.故正确.(2)错误.∵x=﹣3时,y<0,∴9a﹣3b+c<0,∴9a+c<3b,故(2)错误.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),∴解得,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵a<0,∴8a+7b=2c>0,故(3)正确.(4)错误,∵点A(﹣3,y1)、点B(﹣,y2)、点C(,y3),∵﹣2=,2﹣(﹣)=,∴<∴点C离对称轴的距离近,∴y3>y2,∵a<0,﹣3<﹣<2,∴y1<y2∴y1<y2<y3,故(4)错误.(5)正确.∵a<0,∴(x+1)(x﹣5)=﹣3/a>0,即(x+1)(x﹣5)>0,故x<﹣1或x>5,故(5)正确.∴正确的有三个,故选B.变式训练2:(2016·某某某某·3分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值X围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个类型三:解题策略开放型例题3:(2014 年某某襄阳)如图 Z3-1,在△ABC 中,点D,E 分别在边 AC,AB 上,BD 与 CE 交于点 O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC 是等腰三角形?(用序号写出所有成立的情形)(2)选择其中的成立条件进行证明。
方案设计型试题例1、(常州)七(2)班共有50名学生,老师安排每人制作一件A 型或B 型的陶艺品,学校现有甲种制作材料36kg ,乙种制作材料29kg ,制作A 、B 两种型号的陶(1)设制作型陶艺品件,求的取值范围;(2)请你根据学校现有材料,分别写出七(2)班制作A 型和B 型陶艺品的件数. 分析:本题的背景是与人们的生活息息相关的现实问题,本题的条件较多,要分清楚每个量之间的关系,还有,弄清楚这些陶艺品并不能将料全部用完后,本题目就较容易解决了。
解:(1)由题意得:⎩⎨⎧⋯⋯⋯⋯≤+-⋯⋯⋯≤+-②x x ①x x 27)50(3.0364.0)50(9.0 由①得,x ≥18,由②得,x ≤20,所以x 的取值得范围是18≤x ≤20(x 为正整数) (2)制作A 型和B 型陶艺品的件数为:①制作A 型陶艺品32件,制作B 型陶艺品18件; ②制作A 型陶艺品31件,制作B 型陶艺品19件; ③制作A 型陶艺品30件,制作B 型陶艺品20件; 说明:1.本题考察的是不等式组的应用及解不等式。
练习一1、(黑龙江)某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于万元,但不超过万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:(1)该公司对这两种户型住房有哪几种建房方案?(2)该公司如何建房获得利润最大?(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?注:利润=售价-成本2.(哈尔滨)双蓉服装店老板到厂家选购A、B两种型号的服装,若购进A种型号服装9件,B种型号服装10件,需要1810元;若购进A种型号服装12件,B种型号服装8件,需要1880元。
(1)求A、B两种型号的服装每件分别为多少元?(2)若销售1件A型服装可获利18元,销售1件B型服装可获利30元,根据市场需求,服装店老板决定,购进A型服装的数量要比购进B型服装数量的2倍还多4件,且A 型服装最多可购进28件,这样服装全部售出后,可使总的获利不少于699元,问有几种进货方案?如何进货?3.(河南)某公司为了扩大经营,决定购进6台机器用于生产某种活塞。
初中数学开放题的解题技巧标签:数学教学;开放题;解题技巧数学开放题具有结构非完备性和不确定性的特点,同时还具有创新性、多样性、探究性和发散性的特点。
基于数学开放题的特点决定了其解答的多样性,能够切实满足各种层次水平的学生的需求,使他们能够在自己的能力范围内解决这类问题,积极参与到数学教学活动中,逐步提升数学学习质量。
数学开放题,考查的知识点比较多,包括函数、几何以及方程等基本数学知识点。
同时通过解答数学开放题,可以有效锻炼学生的思维能力,在反复联系中掌握基础知识,并逐渐养成举一反三的思维习惯。
一、条件开放型题目解题技巧条件开放型题目往往会给出确定的结论,但是却不给完整的条件,需要学生仔细分析后找出与题目结论相关的条件,有利于培养学生的逆向思维能力和探索意识。
比如,在多项式中添加一个单项式,使其成为一个完全平方式。
通过观察此类题型,并从题目要求出发,多次猜想和反复试验,最终得出该题目的答案。
由此可见,此种类型题目的答案并不唯一,需要学生仔细研究,大胆猜想,并通过反复试验证明猜想结论的准确性。
二、结论开放型题目解题技巧当学生遇到结论开放型题目时,应首先根据已知的条件,写出符合条件的结论。
通常这种类型的题目结论具有不确定性的特点,即不是唯一的。
这类题型注重考查学生对基本概念的掌握程度,要求学生积极发散思维,快速找出问题答案。
比如,已知AB是圆O的直径,D点在AB的延长线上,满足BD=OB,且点C 也在圆O上,与直线AB的夹角为30°。
根据题目中的已知条件,写出三个正确结论(AO=BD=OB除外)。
通过分析题目,发现该题目主要考查的是切线定理,结合以往学过的知识,可以得出:AB=2BC,BD=BC,CD是圆O的切线等结论。
学生在解决这类开放型题目时,应从所给的已知条件出发,积极探索并大胆猜想各种可能的结论,并对猜想的结论进一步证明,直到得出完全符合题目条件的答案。
三、解题方法开放型题目解题技巧解题方法开放型題目的思考方式和解题方法是多样的,具有一题多解的特点。
撷英篇一、初中数学开放性习题的特点以及作用(一)开放性习题的特点什么是数学开放题?对于数学开放题目前还没有一个统一的定义,但是可以总结一些开放性习题的特点,比如答案不固定、条件不完整、条件多余、条件不足、多种答案、多种解法等等,在初中数学教学中,出现了独特设计、个性开放的题目,与传统中规中矩的题目不同,开放性习题构思独特,能够培养学生的创新能力,在数学教学中最富有研究价值,是应试教育向素质教育转变的重要体现。
同时,开放性习题还具有内容新颖、条件与结论不定、解题思路灵活的特点,与学生的实际生活贴近。
形式也多种多样,具有可塑性,探索结论、解法,充分体现出了现代化的教学气息。
还有一个明显的特征就是答案不是唯一的,需要通过多种思维观察题目,对题目进行想象、归纳、类比,挖掘多种解题方式,创新性的解题方式能够满足现代人才发展竞争要求。
(二)开放性习题的作用1.对学生的教育作用有利于培养学生的思维,让学生打破原有的思维模式,通过联想与想象的方式多角度进行思考,有助于学生创造能力以及思维模式的形成。
开放性习题的不确定性是教师研究的主要问题,通过师生交流的形式将开放性习题融入课堂中,激发学生独立思考的能力,让学生能够构建知识形成的过程,培养学生灵活的思维能力以及创造能力。
有利于激发学生的学习兴趣,通过合作的形式完成学习与竞争,让学生畅所欲言,通过实践的形式进行解题,在轻松愉快的氛围中学习,能够激发学生学习的动力,从而对学习产生浓厚的兴趣。
有利于强化学生的创新意识,因为开放性习题的答案与模式不固定,学生需要调动所有的知识,用多种思维模式对问题进行探索,强化学生的创新意识与探究能力。
2.对教师的教学作用转变教师的观念与角色,用动态式、开放式的教学理解数学知识,以学生作为教育的中心,而不仅仅是一个知识的传授者,对教学的内容进行设计,做课程的组织者与设计者,从而大大提高教学效果。
二、初中数学开放性习题类型(一)结论开放性结论开放性就是在既定的条件下探索对象是否真实存在,分为结论存在与不存在两种情况,解题的方法为如果结论存在,通过演绎推理的方式得出结论,从而做出准确的判断。
专题复习:开放型问题一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.二、解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等。
考点一:条件开放型例1:写出一个过点(0,3),且函数值y随自变量x的增大而减小的一次函数关系式:.(填上一个答案即可)练习:已知(x1,y1),(x2,y2)为反比例函数kyx图象上的点,当x1<x2<0时,y1<y2,则k的一个值可为.(只需写出符合条件的一个k的值)考点二:结论开放型例2:请写一个图象在第二、四象限的反比例函数解析式:.练习:四川雅安发生地震后,某校九(1)班学生开展献爱心活动,积极向灾区捐款.如图是该班同学捐款的条形统计图.写出一条你从图中所获得的信息:.(只要与统计图中所提供的信息相符即可得分)考点三:条件和结论都开放的问题例3:如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1S2+S3(用“>”、“=”、“<”填空);(2)写出如图中的三对相似三角形,并选择其中一对进行证明.练习:如图,△ABC与△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,D在AB上,连结BE.请找出一对全等三角形,并说明理由.【课堂讲解】1.如图,在四边形ABCD中,AB∥CD,要使得四边形ABCD是平行四边形,应添加的条件是______(只填写一个条件,不使用图形以外的字母和线段).2.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是_______(写出一个即可).3.如图,已知△ABC中,AB=AC,点D、E在BC上,要使△ABD≌ACE,则只需添加一个适当的条件是___________.(只填一个即可)4.若反比例函数y=kx的图象在其每个象限内,y随x的增大而增大,则k的值可以是_______.(写出一个k的值)5.若函数y=1mx的图象在同一象限内,y随x增大而增大,则m的值可以是________(写出一个即可).6. 如图,梯形ABCD中,AD∥BC,点M是AD的中点,不添加辅助线,梯形满足条件时,有MB=MC(只填一个即可).7. 直线l过点M(-2,0),该直线的解析式可以写为________.(只写出一个即可)8. 如图,要使平行四边形ABCD是矩形,则应添加的条件是_______(添加一个条件即可).9. 请举反例说明命题“对于任意实数x,x2+5x+5的值总是整数”是假命题,你举的反例是(写出一个x的值即可)10.如图,点B、E、C、F在一条直线上,AB∥DE,BE=CF,请添加一个条件,使△ABC≌△DEF.11.如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件,使得△EAB≌△BCD.12.如图,已知∠B=∠C,添加一个条件使△ABD≌△ACE(不标注新的字母,不添加新的线段),你添加的条件是.13.如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是(填一个即可)14.如图所示,弦AB、CD相交于点O,连结AD、BC,在不添加辅助线的情况下,请在图中找出一对相等的角,它们是.15.如图,AB是⊙O的弦,OC⊥AB于点C,连接OA、OB.点P是半径OB上任意一点,连接AP.若OA=5cm,OC=3cm,则AP的长度可能是cm(写出一个符合条件的数值即可)16.如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t<16),连接EF,当△BEF是直角三角形时,t (s)的值为.(填出一个正确的即可)17.已知(x1,y1),(x2,y2)为反比例函数kyx图象上的点,当x1<x2<0时,y1<y2,则k的一个值可为.(只需写出符合条件的一个k的值)18. 已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.19. 如图,在△ABC中,点D、E分别在边BC、AC上,连接AD、DE,且∠1=∠B=∠C.(1)由题设条件,请写出三个正确结论:(要求不再添加其他字母和辅助线,找结论过程中添加的字母和辅助线不能出现在结论中,不必证明)答:结论一:;结论二:;结论三:.(2)若∠B=45°,BC=2,当点D在BC上运动时(点D不与B、C重合),①求CE的最大值;②若△ADE是等腰三角形,求此时BD的长.(注意:在第(2)的求解过程中,若有运用(1)中得出的结论,须加以证明)20. 在菱形ABCD中,∠ABC=60°,E是对角线AC上一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.(1)若E是线段AC的中点,如图1,易证:BE=EF(不需证明);(2)若E 是线段AC 或AC 延长线上的任意一点,其它条件不变,如图2、图3,线段BE 、EF 有怎样的数量关系,直接写出你的猜想;并选择一种情况给予证明.【课堂训练】1.如图,点D 在△ABC 的边AC 上,要判定△ADB 与△ABC 相似,添加一个条件,不正确的是( )A .∠ABD=∠CB .∠ADB=∠ABC C. CD CB BD AB = D. ACAB AB AD =2. 如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若抛物线经过图中的三个格点,则以这三个格点为顶点的三角形称为抛物线的“内接格点三角形”.以O 为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线OB 的两个交点之间的距离为23且这两个交点与抛物线的顶点是抛物线的内接格点三角形的三个顶点,则满足上述条件且对称轴平行于y 轴的抛物线条数是( )A .16B .15C .14D .133. 如图,在四边形ABCD 中,点H 是BC 的中点,作射线AH ,在线段AH 及其延长线上分别取点E ,F ,连结BE ,CF .(1)请你添加一个条件,使得△BEH ≌△CFH ,你添加的条件是 ,并证明.(2)在问题(1)中,当BH 与EH 满足什么关系时,四边形BFCE 是矩形,请说明理由.4. 复习课中,教师给出关于x 的函数y =2kx 2﹣(4kx +1)x ﹣k +1(k 是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x>1时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值比为正数,若函数有最小值,则最小值比为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.5. 猜想与证明:如图1摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为DM=DE.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF的中点,试证明(1)中的结论仍然成立.6. 已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C 重合).以AD为边作正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;2对角线AE,DF相交于点O,连接OC.求OC的长度.②若正方形ADEF的边长为27. 在△ABC中,∠ACB=90°,∠A<45°,点O为AB中点,一个足够大的三角板的直角顶点与点O重合,一边OE经过点C,另一边OD与AC交于点M.(1)如图1,当∠A=30°时,求证:MC2=AM2+BC2;(2)如图2,当∠A≠30°时,(1)中的结论是否成立?如果成立,请说明理由;如果不成立,请写出你认为正确的结论,并说明理由;(3)将三角形ODE绕点O旋转,若直线OD与直线AC相交于点M,直线OE与直线BC相交于点N,连接MN,则MN2=AM2+BN2成立吗?答:(填“成立”或“不成立”)个性化教案(真题演练)1. (2013•昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s 的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t<16),连接EF,当△BEF是直角三角形时,t(s)的值为.(填出一个正确的即可)1对1出门考(_______年______月______日周_____)1. 写出一个你喜欢的实数k 的值 ,使得反比例函数xk y 2-=的图象在每一个象限内,y 随x 的增大而增大.2. 写出一个x 的值,使|x ﹣1|=x ﹣1成立,你写出的x 的值是 .3. 存在两个变量x 与y ,y 是x 的函数,该函数同时满足两个条件:①图象经过(1,1)点;②当x >0时,y 随x 的增大而减小,这个函数的解析式是 (写出一个即可).4. 如图,在△ABC 中,点D 是BC 的中点,作射线AD ,在线段AD及其延长线上分别取点E 、F ,连接CE 、BF .添加一个条件,使得△BDF ≌△CDE ,并加以证明.你添加的条件是 .(不添加辅助线).5. 先化简22)1111(2-÷+--x x x x ,然后从﹣2≤x≤2的范围内选择一个合适的整数作为x 的值代入求值.6. 在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a ,b 两个情境:情境a :小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b :小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a ,b 所对应的函数图象分别是 、 (填写序号);(2)请你为剩下的函数图象写出一个适合的情境.评语: 3A 作业:周一: 周二:周三: 周四:周五:作业要求在 月 日之前完成。
初中数学总复习有哪些有效的方法初中数学总复习,是对初中三年来所学数学知识的回顾,巩固提高,查漏补缺,它不是对知识的简单重复,而是引导学生对所学知识进行系统归纳和升华,并用已学的知识解决新问题.进一步加深对数学概念的理解,弄清各部分知识的内在联系,熟练掌握重要的数学方法和数学思想,从而达到开发智力、培养能力的目的。
下面给大家分享一些初中数学总复习的方法和策略,希望对大家有所帮助。
初中数学复习方法一、复习基础知识阶段在初中数学复习中,第一阶段要紧扣课本,疏理教材,使学生在头脑中形成一个关于初中数学知识的前后相连、纵横交错、融会贯通的知识结构.在第一阶段中,一般按初中数学知识体系把初中数学知识分成九个单元,即:数与式方程和不等式(组)函数及其图像统计与概率图形初步认识和三角形四边形相似和解直角三角形圆图形的变换、投影与视图.按单元进行复习.每个单元按下面步骤进行.1.疏理知识结构首先,引导学生把本单元的知识用文字、图表等方式编织知识网络,用简表式的结构表示本单元的知识结构;其次,引导学生回顾基础知识;最后,以基本习题的形式再现知识的内容,即通过一些判断题、填空题、选择题、简单计算题的训练达到巩固基础知识的目的.2.训练基本技能和解题技巧在理顺知识结构的基础上,把每个单元按知识点分成若干课时,然后按知识点精选例题和练习题,引导学生进行多方练习,多角度思考,正反求解,促进学生掌握基础知识和解题技巧.精选的例题和练习题最好从课本上寻找,因为中考的命题原则是:源于教材,高于教材.所选例题、练习题力求典型,紧扣教材.另外,也可从近几年中考试题中改编新颖的题目进行训练.每课时的教学可按理顺知识――尝试做例题――讲解例题――练习――变式练习――作业几个步骤进行.在理解知识阶段力求简单明了地揭示本节课所要复习的知识点,领会概念、定理、公理和数学思想方法.讲解的例题或作业一般可选择一部分题进行一题多变一题多解的题目.在分析、讲解例题时切不可就题论题,应注意揭示例题中所反映出的概念、原理和思想方法及解题技巧.3.单元测试在上述复习的基础上,复习完每一个单元后,必须出示至少4份试卷.第一份试卷,以引导学生系统地梳理教材、构建知识结构,归纳和总结各种概念、公理、定理、公式为主.第二份试卷,以归纳、总结本单元的常用结论、解题方法、一题多解、一题多变为主.对学生进行测试,以了解学生掌握知识的情况,及时查漏补缺.测试题应以教学大纲、考标、教材为依据,要求内容覆盖面广,题目搭配合理、难易适中、题型俱全,富有启发性.通过测试,全面衡量复习效果,一般来说,测试题可从以下几个方面精选题目:(1)全面体现本单元的基础知识的填空题和选择题;(2)本单元所反映出的基本技能和技巧的解答题;(3)综合运用本单元知识的综合题.上面三方面试题的比例为6∶3∶1.测试完后,教师进行讲评,对学生未弄懂的知识点及时进行补救.二、综合训练,加强重点知识阶段在完成第一阶段的基础上,根据初中数学知识的重点,选择一些较为典型的综合题,引导学生合作探索和研究,以培养学生综合运用知识来分析问题和解决问题的能力.选择的题目一般从本市及全省近5年的中考试题中去精选.综合题,一般来说有代数综合题、几何综合题、代数和几何相结合的综合题.代数综合题的重点应是二次方程和二次函数;几何综合题的重点是三角形、四边形和图;代数与几何相结合的综合题则是方程、函数与图像相结合的题.对于综合题的训练,一般采用尝试练习――分析――讲解――归纳解题方法与技巧――练习的方式进行.对重点问题进行一题多解、一题多变的训练.三、综合测试,查漏补缺阶段为了进一步巩固数学知识,全面考查复习效果,提高学生的心理素质,在第二阶段复习结束时,可进行模拟测试.测试题一般自拟几套和选择其他省市上届中考题和本省往届的中考题,模拟试题,力求全面再现初中数学知识和方法,既要有考查双基的基础题,又要有考查学生能力的综合题.有的知识还要与高中知识衔接并拓展.考完一套,及时讲评,与学生一起分析,共同探讨,列出知识清单使得每个学生经历知识收集、整理的过程,把书学薄,有效地回顾了一章书所学的知识.二、引导学生品读教材的编写主线教材每一章的编写主线都十分清晰,内容逻辑性强,知识层次分明.引导学生品读教材,剖析知识从何处起,到何处去,对帮助学生理解教材,巩固知识大有帮助.比如一元一次方程这一单元中,教材编写的主线是方程及一元一次方程的有关概念――解一元一次方程――列一元一次方程解决实际问题.引导学生品读教材主线时,以问题为导向.比如解一元一次方程,教材是运用合并同类项解方程――移项解方程――去括号解方程――去分母解方程,方程的形式由简单到复杂,逐渐增加,最终归纳出解一元一次方程的一般步骤包括:去分母、去括号、移项、合并同类项、系数化为 1.品读教材编写主线有助于学生加深对教材的理解,领会教材编写的意图.如何搞好初中数学复习1、抓好双基的训练:初中数学的基础知识、基本技能,是学生进行数学运算、数学推理的基本材料,是形成数学能力的基石。
A 5532031专题训练17 规律探索型问题一、选择题(每小题3分,共24分)1.如图,是一个装饰物品连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是( )。
2.按右边33⨯方格中的规律,在下面4个符号中选择一个填入方格左上方的空格内( )3.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( ) A .26n +B .86n +C .44n +D .8n4.某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时分裂成6个并死去1个,3小时后分裂成10个并死去1个,按此规律,5小时后细胞存活的个数是( ) A. 31 B. 33 C. 35 D. 37 5.图中的三角形是有规律地从里到外逐层排列的.设y 为第n 层(n 为正整数) 三角形的个数,则下列函数关系式中正确的是( ) A 、y =4n -4 B 、y =4n C 、y =4n +4 D 、y =n 2 6.在下面三个田字格内的数有相同的规律,根据此规律,C 应为( ) (A)92 (B)108 (C)276(D)340B(第5题)7.观察下列图形,并判断照此规律从左向右第2007个图形是( )8.观察下列三角形数阵:则第50行的最后一个数是( )(A)1225 (B)1260 (C)1270 (D)1275 二、填空题(每小题3分,共18分) 9.有一组数:1,2,5,10,17,26,……,请观察这组数的构成规律,用你发现的规律确定第8个数为 . 10.如图,某装饰品的吊链是由大小不同的菱形组成,如第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第n 幅图中共有__________个菱形.11.小说《达·芬奇密码》中的一个故事里出现了一串神秘排列的数,将这串令人费解的数按从小到大的顺序排列为:1,1,2,3,5,8,,则这列数的第8个数是_____.12.根据下列图形的排列规律,第2008个图形是 (填序号即可).(①;② ;③ ;④ .)……13.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如 (1,0),(2,0),(2,1),(3,2),(3,1),(3,0)根据这个规律探索可得,第100个点的坐标为____________.14.如图,45AOB ∠=,过OA 上到点O 的距离分别为1357911,,,,,,的点作OA 的垂线与OB 相交,得到并标出一组黑色梯形,它们的面积分别为1234S S S S ,,,,.观察图中的规律,求出第10个黑色梯形的面积10S = .12 34 5 6 7 8 9 10 11 12 13 14 15… (1)23n…1 2 3 4 56(A ) (B ) (C ) (D )三、解答题(每小题5分,共20)15.观察下面的点阵图,探究其中的规律.摆第1个“小屋子”需要5个点;摆第2个“小屋子”需要个点;摆第3个“小屋子”需要个点..(1)摆第10个这样的“小屋子”需要多少个点?(2)写出摆第n个这样的“小屋子”需要的总点数S与n的关系式.16.有规律排列的一列数:2,4,6,8,10,12,…它的每一项可用式子2n(n是正整数)来表示.有规律排列的一列数:1,-2,3,- 4,5,-6,7,-8,…(1)它的每一项你认为可用怎样的式子来表示?(2)它的第100个数是多少?(3) 2006是不是这列数中的数?如果是,是第几个数?17.在数学活动中,小明为了求2341111122222n ++++⋅⋅⋅+的值(结果用n 表示),设计如图1所示的几何图形。
专题16 一元二次方程考点新体现【专题综述】一元二次方程是初中数学重要的内容,对一元二次方程的考查,新课标降低了计算上的难度,但增加了开放性、增强了灵活性,能够较好地考查同学们在基本知识、基本技能和基本解题思路方面的掌握情况.下面就其常见的如下考点,【方法解读】一、开放性问题 例1 请你写出一个有一根为1的一元二次方程:__________.【举一反三】(2000年全国竞赛题)已知关于x 的方程 (a-1) 的根都是整数, 那么符合条件的整数a 有___________个.二、 新定义题 定义:如果一元二次方程20(0)ax bx c a ++=≠满足0a b c ++=,那么我们称这个方程为“凤凰”方程. 已知20(0)ax bx c a ++=≠ 是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( ).A .a c =B .a b =C .b c =D . a b c == 【举一反三】在实数范围内定义运算“⊕”,其法则为:22a b a b ⊕=-,求方程(4⊕3)⊕24x =的解.三、 阅读理解题阅读材料:设一元二次方程20(0)ax bx c a ++=≠的两根为1x 、2x ,则两根与方程系数之间有如下关系:1x +2x =-b a ,1x ⋅2x =c a.根据该材料填空:已知1x 、2x 是方程2630x x ++=的两实,则21x x +12x x 的值为 . 【举一反三】阅读材料,理解应用:(江苏省镇江市新区)已知方程x 2+x ﹣1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍. 解:设所求方程的根为y ,则y =2x ,所以x =y 2.把x =y 2代入已知方程,得(y 2)2+y 2﹣1=0.化简,得:y2+2y﹣4=0.这种利用方程根的代替求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”求新方程(要求:把所求方程化成一般形式);(1)已知方程x2+x﹣2=0,求一个一元二次方程,使它的根分别是已知方程根的相反数.(2)已知关于x的一元二次方程ax2+bx+c=0(a≠0)有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.【强化训练】1.(2000年黑龙江中考题)当m是什么整数时,关于x的一元二次方程m-4x+4=0与-4mx+4-4m-5=0的根都是整数。
中考创新试题赏析系列三(规律篇)在2004年各地的中考试题中,找规律的题目仍是屡见不鲜。
这类考题的设计为发现规律提供了可借鉴的过程,帮助考生实现从模仿到创造的思维转化,符合中学生的认识规律,有利于开发学生的智力。
下面精选数例,供大家赏析。
一、探索数字排列存在的规律例1 (聊城市)将数1、12-、13、14-、15、16-、…按一定规律排列如下: 第一行 1第二行 12-13第三行 14- 15 16-第四行 17 18- 19 110-第五行 111 112- 113 114- 115…… … … … … …请你写出第20行从左至右第10个数是 。
析解:第一行有1个数,第二行有2个数,第三行有3个数,…那么前19行共有19(119)123191902⨯+++++==个数,因此第20行首个数字为1191,考虑到符号问题,那么第20行从左至右第10个数字为1200-。
二、探索算式存在的规律例2 (哈尔滨).观察下列等式9-1=8;16-4=12;25-9=16;36-16=20;………… 这些等式反映自然数间的某种规律,设n(n≥1)表示自然数,用关于n 的等式表示这个规律为 .析解:观察试题中的所给的等式,不难得出22(2)4(1)n n n +-=+,通过运算可以验证这一结论(验证略)。
三、探索图形组合存在的规律例3 (河北实验区)观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式; (2)通过猜想写出与第n 个点阵相对应的等式。
解:(1)④1+3+5+7=42;⑤1+3+5+7+9=52。
(2)第n 个点阵对应的等式为:1+3+5+…+(2n -1)=n 2。
例4:(青岛市)观察下列由棱长为1的小立方体摆成的图形,寻找规律: 如图1中:共有1 个小立方体,,其中1个看得见,0个看不见;如图2中:共有8个小立方体,其中7个看得见,1个看不见;如图3中:共有27个小立方体,其中有19个看得见,8个看不见;……,则第6个图中,看不见的小立方体有 个。
一、选择题(每题4分,共20分)1. 下列各数中,不是有理数的是()A. √16B. 0.25C. πD. -1/32. 若a、b、c是等差数列,且a+b+c=12,a+c=8,则b的值为()A. 4B. 6C. 8D. 103. 在平面直角坐标系中,点A(2,3)关于x轴的对称点是()A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,-3)4. 若∠ABC=45°,∠BAD=60°,则∠CAD的度数是()A. 15°B. 30°C. 45°D. 60°5. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 长方形D. 非等腰梯形二、填空题(每题4分,共20分)6. 若一个等差数列的前三项分别是2,5,8,则这个数列的公差是______。
7. 在平面直角坐标系中,点P(-3,4)关于原点的对称点是______。
8. 一个圆的半径扩大到原来的2倍,其面积扩大到原来的______倍。
9. 在直角三角形ABC中,∠C=90°,AC=3,BC=4,则AB的长度是______。
10. 若a,b,c是等比数列,且a+b+c=18,b=6,则c的值为______。
三、解答题(每题10分,共30分)11. (10分)已知数列{an}的通项公式为an=3n-2,求:(1)数列{an}的前5项;(2)数列{an}的奇数项之和。
12. (10分)在平面直角坐标系中,已知点A(1,2),点B(3,4),求:(1)线段AB的中点坐标;(2)线段AB的长度。
13. (10分)已知函数f(x)=2x-3,求:(1)函数f(x)的图象;(2)函数f(x)在x=2时的函数值。
四、探究题(10分)14. (10分)已知数列{an}满足an=2an-1+1,且a1=1,求:(1)数列{an}的前5项;(2)数列{an}的通项公式。
数学开放性试题教学的有效策略
许新元
【期刊名称】《中学教学参考》
【年(卷),期】2014(000)026
【摘要】在数学教学中,应用开放性试题进行教学,具有重要意义.本文以初中数学为研究对象,分析在初中数学教学中,应用开放性试题进行教学的策略,以期为初中数学教学提供一定参考. 一、开放性试题的含义开放性试题指的是题目条件不完备或者题目结果不确定的题目.初中数学开放性试题不仅丰富了数学学科的题型,而且促进学生开放性思维的发展.
【总页数】1页(P10)
【作者】许新元
【作者单位】江苏新沂市马陵山中学 221400
【正文语种】中文
【相关文献】
1.初中数学开放性试题教学探讨
2.浅析初中数学开放性试题教学
3.开放性试题在数学教学中的意义
4.浅谈高中数学开放性试题教学
5.浅析初中数学开放性试题教学
因版权原因,仅展示原文概要,查看原文内容请购买。