22
for (w=G->first(v); w<G->n(); w = G>next(v,w))
if (G->getMark(w) == UNVISITED) { G->setMark(w, VISITED); Q->enqueue(w); }
PostVisit(G, v); // Take action }}
Q Q
31
() ((1,1)) ((1,1) (2,3)) ((1,1) (2,4)) ((1,1) (2,4) (3.2))
Q Q
Q
32
() ((1,1)) ((1,1) (2,3)) ((1,1) (2,4)) ((1,1) (2,4) (3.2))
Q Q
33
Q () ((1,1)) ((1,1) (2,3)) ((1,1) (2,4)) ((1,1) (2,4) (3.2))
求解算法
穷举法 贪心法 深度/广度优先搜索
图和树的搜索 回溯法(深度优先)
递归
分治
动态规划法
55
谢谢!
56
49
动态规划法的思想
自底向上构造 在原问题的小子集中计算 每一步列出局部最优解,并用一张
表保留这些局部最优解,以避免重 复计算 子集越来越大,最终在问题的全集 上计算,所得出的就是整体最优 解。
50
Fib(1)=Fib(2)=1
Fibonacci数列 Fib(n)=Fib(n-1) + Fib (n-2)
23
八数码 深度优先搜索
1
23 184 765
2
c
3
283 164 75
283 14 765