数据结构F排序
- 格式:ppt
- 大小:1.56 MB
- 文档页数:64
实验8 快速排序1.需求分析(1)输入的形式和输入值的范围:第一行是一个整数n,代表任务的件数。
接下来一行,有n个正整数,代表每件任务所用的时间。
中间用空格或者回车隔开。
不对非法输入做处理,及假设用户输入都是合法的。
(2)输出的形式:输出有n行,每行一个正整数,从第一行到最后一行依次代表着操作系统要处理的任务所用的时间。
按此顺序进行,则使得所有任务等待时间最小。
(3)程序所能达到的功能:在操作系统中,当有n 件任务同时来临时,每件任务需要用时ni,输出所有任务等待的时间和最小的任务处理顺序。
(4)测试数据:输入请输入任务个数:9请输入任务用时:5 3 4 2 6 1 5 7 3输出任务执行的顺序:1 2 3 3 4 5 5 6 72.概要设计(1)抽象数据类型的定义:为实现上述程序的功能,应以整数存储用户的第一个输入。
并将随后输入的一组数据储存在整数数组中。
(2)算法的基本思想:如果将任务按完成时间从小到大排序,则在完成前一项任务时后面任务等待的时间总和最小,即得到最小的任务处理顺序。
采取对输入的任务时间进行快速排序的方法可以在相对较小的时间复杂度下得到从小到大的顺序序列。
3.详细设计(1)实现概要设计中定义的所有数据类型:第一次输入的正整数要求大于零,为了能够存储,采用int型定义变量。
接下来输入的一组整数,数据范围大于零,为了排序需要,采用线性结构存储,即int类型的数组。
(2)实现程序的具体步骤:一.程序主要采取快速排序的方法处理无序数列:1.在序列中根据随机数确定轴值,根据轴值将序列划分为比轴值小和比轴值大的两个子序列。
2.对每个子序列采取从左右两边向中间搜索的方式,不断将值与轴值比较,如果左边的值大于轴值而右边的小于轴值则将二者交换,直到左右交叉。
3.分别对处理完毕的两个子序列递归地采取1,2步的操作,直到子序列中只有一个元素。
二.程序各模块的伪代码:1、主函数int main(){int n;cout<<"请输入任务个数:";cin>>n;int a[n];cout<<"请输入任务用时:";for(int i=0;i<n;i++) cin>>a[i];qsort(a,0,n-1); //调用“快排函数”cout<<"任务执行的顺序:";for(int i=0;i<n;i++) cout<<a[i]<<" "; //输出排序结果}2、快速排序算法:void qsort(int a[],int i,int j){if(j<=i)return; //只有一个元素int pivotindex=findpivot(a,i,j); //调用“轴值寻找函数”确定轴值swap(a,pivotindex,j); //调用“交换函数”将轴值置末int k=partition(a,i-1,j,a[j]); //调用“分割函数”根据轴值分割序列swap(a,k,j);qsort(a,i,k-1); //递归调用,实现子序列的调序qsort(a,k+1,j);}3、轴值寻找算法://为了保证轴值的“随机性”,采用时间初始化种子。
第10章排序10.1 知识点分析1.排序基本概念:(1)排序将数据元素的任意序列,重新排列成一个按关键字有序(递增或递减)的序列的过程称为排序。
(2)排序方法的稳定和不稳定若对任意的数据元素序列,使用某个排序方法,对它按关键字进行排序,若对原先具有相同键值元素间的位置关系,排序前与排序后保持一致,称此排序方法是稳定的;反之,则称为不稳定的。
(3)内排序整个排序过程都在内存进行的排序称为内排序,本书仅讨论内排序。
(4)外排序待排序的数据元素量大,以致内存一次不能容纳全部记录,在排序过程中需要对外存进行访问的排序称为外排序。
2.直接插入排序直接插入排序法是将一个记录插到已排序好的有序表中,从而得到一个新的,记录数增1的有序表。
3.二分插入排序二分插入排序法是用二分查找法在有序表中找到正确的插入位置,然后移动记录,空出插入位置,再进行插入的排序方法。
4.希尔排序希尔排序的基本思想是:先选取一个小于n的整数d1作为第一个增量,把待排序的数据分成d1个组,所有距离为d1的倍数的记录放在同一个组内,在各组内进行直接插入排序,每一趟排序会使数据更接近于有序。
然后,取第二个增量d2,d2< d1,重复进行上述分组和排序,直至所取的增量d i=1(其中d i< d i-1 < ……< d2< d1),即所有记录在同一组进行直接插入排序后为止。
5.冒泡排序冒泡法是指每相邻两个记录关键字比大小,大的记录往下沉(也可以小的往上浮)。
每一遍把最后一个下沉的位置记下,下一遍只需检查比较到此为止;到所有记录都不发生下沉时,整个过程结束。
6.快速排序快速排序法是通过一趟排序,将待排序的记录组分割成独立的两部分,其中前一部分记录的关键字均比枢轴记录的关键字小;后一部分记录的关键字均比枢轴记录的关键字大,枢轴记录得到了它在整个序列中的最终位置并被存放好。
第二趟再分别对分割成两部分子序列,再进行快速排序,这两部分子序列中的枢轴记录也得到了最终在序列中的位置而被存放好,并且它们又分别分割出独立的两个子序列……。
数据结构课程设计报告几种排序算法的演示1、需求分析:运行环境:Microsoft Visual Studio 20052、程序实现功能:3、通过用户键入的数据, 经过程序进行排序, 最后给予数据由小到大的输出。
排序的方式包含教材中所介绍的几种常用的排序方式:直接插入排序、折半插入排序、冒泡排序、快速排序、选择排序、堆排序、归并排序。
每种排序过程中均显示每一趟排序的细节。
程序的输入:输入所需排序方式的序号。
输入排序的数据的个数。
输入具体的数据元素。
程序的输出:输出排序每一趟的结果, 及最后排序结果1、设计说明:算法设计思想:a交换排序(冒泡排序、快速排序)交换排序的基本思想是: 对排序表中的数据元素按关键字进行两两比较, 如果发生逆序(即排列顺序与排序后的次序正好相反), 则两者交换位置, 直到所有数据元素都排好序为止。
b插入排序(直接插入排序、折半插入排序)插入排序的基本思想是: 每一次设法把一个数据元素插入到已经排序的部分序列的合适位置, 使得插入后的序列仍然是有序的。
开始时建立一个初始的有序序列, 它只包含一个数据元素。
然后, 从这个初始序列出发不断插入数据元素, 直到最后一个数据元素插到有序序列后, 整个排序工作就完成了。
c选择排序(简单选择排序、堆排序)选择排序的基本思想是: 第一趟在有n个数据元素的排序表中选出关键字最小的数据元素, 然后在剩下的n-1个数据元素中再选出关键字最小(整个数据表中次小)的数据元素, 依次重复, 每一趟(例如第i趟, i=1, …, n-1)总是在当前剩下的n-i+1个待排序数据元素中选出关键字最小的数据元素, 作为有序数据元素序列的第i个数据元素。
等到第n-1趟选择结束, 待排序数据元素仅剩下一个时就不用再选了, 按选出的先后次序所得到的数据元素序列即为有序序列, 排序即告完成。
d归并排序(两路归并排序)1、两路归并排序的基本思想是: 假设初始排序表有n个数据元素, 首先把它看成是长度为1的首尾相接的n个有序子表(以后称它们为归并项), 先做两两归并, 得n/2上取整个长度为2的归并项(如果n为奇数, 则最后一个归并项的长度为1);再做两两归并, ……, 如此重复, 最后得到一个长度为n的有序序列。
数据结构第9章排序数据结构第9章排序第9章排名本章主要内容:1、插入类排序算法2、交换类排序算法3、选择类排序算法4、归并类排序算法5、基数类排序算法本章重点难点1、希尔排序2、快速排序3、堆排序4.合并排序9.1基本概念1.关键字可以标识数据元素的数据项。
如果一个数据项可以唯一地标识一个数据元素,那么它被称为主关键字;否则,它被称为次要关键字。
2.排序是把一组无序地数据元素按照关键字值递增(或递减)地重新排列。
如果排序依据的是主关键字,排序的结果将是唯一的。
3.排序算法的稳定性如果要排序的记录序列中多个数据元素的关键字值相同,且排序后这些数据元素的相对顺序保持不变,则称排序算法稳定,否则称为不稳定。
4.内部排序与外部排序根据在排序过程中待排序的所有数据元素是否全部被放置在内存中,可将排序方法分为内部排序和外部排序两大类。
内部排序是指在排序的整个过程中,待排序的所有数据元素全部被放置在内存中;外部排序是指由于待排序的数据元素个数太多,不能同时放置在内存,而需要将一部分数据元素放在内存中,另一部分放在外围设备上。
整个排序过程需要在内存和外存之间进行多次数据交换才能得到排序结果。
本章仅讨论常用的内部排序方法。
5.排序的基本方法内部排序主要有5种方法:插入、交换、选择、归并和基数。
6.排序算法的效率评估排序算法的效率主要有两点:第一,在一定数据量的情况下,算法执行所消耗的平均时间。
对于排序操作,时间主要用于关键字之间的比较和数据元素的移动。
因此,我们可以认为一个有效的排序算法应该是尽可能少的比较和数据元素移动;第二个是执行算法所需的辅助存储空间。
辅助存储空间是指在一定数据量的情况下,除了要排序的数据元素所占用的存储空间外,执行算法所需的存储空间。
理想的空间效率是,算法执行期间所需的辅助空间与要排序的数据量无关。
7.待排序记录序列的存储结构待排序记录序列可以用顺序存储结构和和链式存储结构表示。
在本章的讨论中(除基数排序外),我们将待排序的记录序列用顺序存储结构表示,即用一维数组实现。
第8 章排序技术课后习题讲解1. 填空题⑴排序的主要目的是为了以后对已排序的数据元素进行()。
【解答】查找【分析】对已排序的记录序列进行查找通常能提高查找效率。
⑵对n个元素进行起泡排序,在()情况下比较的次数最少,其比较次数为()。
在()情况下比较次数最多,其比较次数为()。
【解答】正序,n-1,反序,n(n-1)/2⑶对一组记录(54, 38, 96, 23, 15, 72, 60, 45, 83)进行直接插入排序,当把第7个记录60插入到有序表时,为寻找插入位置需比较()次。
【解答】3【分析】当把第7个记录60插入到有序表时,该有序表中有2个记录大于60。
⑷对一组记录(54, 38, 96, 23, 15, 72, 60, 45, 83)进行快速排序,在递归调用中使用的栈所能达到的最大深度为()。
【解答】3⑸对n个待排序记录序列进行快速排序,所需要的最好时间是(),最坏时间是()。
【解答】O(nlog2n),O(n2)⑹利用简单选择排序对n个记录进行排序,最坏情况下,记录交换的次数为()。
【解答】n-1⑺如果要将序列(50,16,23,68,94,70,73)建成堆,只需把16与()交换。
【解答】50⑻对于键值序列(12,13,11,18,60,15,7,18,25,100),用筛选法建堆,必须从键值为()的结点开始。
【解答】60【分析】60是该键值序列对应的完全二叉树中最后一个分支结点。
2. 选择题⑴下述排序方法中,比较次数与待排序记录的初始状态无关的是()。
A插入排序和快速排序B归并排序和快速排序C选择排序和归并排序D插入排序和归并排序【解答】C【分析】选择排序在最好、最坏、平均情况下的时间性能均为O(n2),归并排序在最好、最坏、平均情况下的时间性能均为O(nlog2n)。
⑵下列序列中,()是执行第一趟快速排序的结果。
A [da,ax,eb,de,bb] ff [ha,gc]B [cd,eb,ax,da] ff [ha,gc,bb]C [gc,ax,eb,cd,bb] ff [da,ha]D [ax,bb,cd,da] ff [eb,gc,ha]【解答】A【分析】此题需要按字典序比较,前半区间中的所有元素都应小于ff,后半区间中的所有元素都应大于ff。
数据结构的常用算法一、排序算法排序算法是数据结构中最基本、最常用的算法之一。
常见的排序算法有冒泡排序、选择排序、插入排序、快速排序、归并排序等。
1. 冒泡排序冒泡排序是一种简单的排序算法,它重复地比较相邻的两个元素,如果它们的顺序错误就将它们交换过来。
通过多次的比较和交换,最大(或最小)的元素会逐渐“浮”到数列的顶端,从而实现排序。
2. 选择排序选择排序是一种简单直观的排序算法,它每次从待排序的数据中选择最小(或最大)的元素,放到已排序序列的末尾,直到全部元素排序完毕。
3. 插入排序插入排序是一种简单直观的排序算法,它将待排序的数据分为已排序区和未排序区,每次从未排序区中取出一个元素,插入到已排序区的合适位置,直到全部元素排序完毕。
4. 快速排序快速排序是一种常用的排序算法,它采用分治的思想,通过一趟排序将待排序的数据分割成独立的两部分,其中一部分的所有数据都比另一部分小,然后再按此方法对这两部分数据进行快速排序,递归地进行,最终实现整个序列有序。
5. 归并排序归并排序是一种稳定的排序算法,它采用分治的思想,将待排序的数据分成若干个子序列,分别进行排序,然后将排好序的子序列合并成更大的有序序列,直到最终整个序列有序。
二、查找算法查找算法是在数据结构中根据给定的某个值,在数据集合中找出目标元素的算法。
常见的查找算法有线性查找、二分查找、哈希查找等。
1. 线性查找线性查找是一种简单直观的查找算法,它从数据集合的第一个元素开始,依次比较每个元素,直到找到目标元素或遍历完整个数据集合。
2. 二分查找二分查找是一种高效的查找算法,它要求数据集合必须是有序的。
通过不断地将数据集合分成两半,将目标元素与中间元素比较,从而缩小查找范围,最终找到目标元素或确定目标元素不存在。
3. 哈希查找哈希查找是一种基于哈希表的查找算法,它通过利用哈希函数将目标元素映射到哈希表中的某个位置,从而快速地找到目标元素。
三、图算法图算法是解决图结构中相关问题的算法。
各种排序的实现与效率分析一、排序原理(1)直接插入排序基本原理:这是最简单的一种排序方法,它的基本操作是将一个记录插入到已排好的有序表中,从而得到一个新的、记录增1的有序表。
效率分析:该排序算法简洁,易于实现。
从空间来看,他只需要一个记录的辅助空间,即空间复杂度为O(1).从时间来看,排序的基本操作为:比较两个关键字的大小和移动记录。
当待排序列中记录按关键字非递减有序排列(即正序)时,所需进行关键字间的比较次数达最小值n-1,记录不需移动;反之,当待排序列中记录按关键字非递增有序排列(即逆序)时,总的比较次数达最大值(n+2)(n-1)/2,记录移动也达到最大值(n+4)(n-2)/2.由于待排记录是随机的,可取最大值与最小值的平均值,约为n²/4.则直接插入排序的时间复杂度为O(n²).由此可知,直接插入排序的元素个数n越小越好,源序列排序度越高越好(正序时时间复杂度可提高至O(n))。
插入排序算法对于大数组,这种算法非常慢。
但是对于小数组,它比其他算法快。
其他算法因为待的数组元素很少,反而使得效率降低。
插入排序还有一个优点就是排序稳定。
(2)折半插入排序基本原理:折半插入是在直接插入排序的基础上实现的,不同的是折半插入排序在将数据插入一个有序表时,采用效率更高的“折半查找”来确定插入位置。
效率分析:由上可知该排序所需存储空间和直接插入排序相同。
从时间上比较,折半插入排序仅减少了关键字间的比较次数,为O(nlogn)。
而记录的移动次数不变。
因此,折半查找排序的时间复杂度为O(nlogn)+O(n²)= O(n²)。
排序稳定。
(3)希尔排序基本原理:希尔排序也一种插入排序类的方法,由于直接插入排序序列越短越好,源序列的排序度越好效率越高。
Shell 根据这两点分析结果进行了改进,将待排记录序列以一定的增量间隔dk 分割成多个子序列,对每个子序列分别进行一趟直接插入排序, 然后逐步减小分组的步长dk,对于每一个步长dk 下的各个子序列进行同样方法的排序,直到步长为1 时再进行一次整体排序。
第10章排序(参考答案)部分答案解释如下:18. 对于后三种排序方法两趟排序后,序列的首部或尾部的两个元素应是有序的两个极值,而给定的序列并不满足。
20. 本题为步长为3的一趟希尔排序。
24.枢轴是73。
49. 小根堆中,关键字最大的记录只能在叶结点上,故不可能在小于等于n/2的结点上。
64. 因组与组之间已有序,故将n/k个组分别排序即可,基于比较的排序方法每组的时间下界为O(klog2k),全部时间下界为O(nlog2k)。
二、判断题5. 错误。
例如冒泡排序是稳定排序,将4,3,2,1按冒泡排序排成升序序列,第一趟变成3,2,1,4,此时3就朝向最终位置的相反方向移动。
12. 错误。
堆是n个元素的序列,可以看作是完全二叉树,但相对于根并无左小右大的要求,故其既不是二叉排序树,更不会是平衡二叉树。
22. 错误。
待排序序列为正序时,简单插入排序比归并排序快。
三、填空题1. 比较,移动2.生成有序归并段(顺串),归并3.希尔排序、简单选择排序、快速排序、堆排序等4. 冒泡,快速5. (1)简单选择排序 (2)直接插入排序(最小的元素在最后时)6. 免去查找过程中每一步都要检测整个表是否查找完毕,提高了查找效率。
7. n(n-1)/28.题中p指向无序区第一个记录,q指向最小值结点,一趟排序结束,p和q所指结点值交换,同时向后移p指针。
(1)!=null (2)p->next (3)r!=null (4)r->data<q->data(5)r->next (6)p->next9. 题中为操作方便,先增加头结点(最后删除),p指向无序区的前一记录,r指向最小值结点的前驱,一趟排序结束,无序区第一个记录与r所指结点的后继交换指针。
(1)q->link!=NULL (2)r!=p (3)p->link (4)p->link=s (5)p=p->link10.(1)i<n-i+1 (2)j<=n-i+1 (3)r[j].key<r[min].key (4)min!=i (5)max==i(6)r[max]<-->r[n-i+1]11.(1)N (2)0 (3)N-1 (4)1 (5)R[P].KEY<R[I].KEY (6)R[P].LINK(7)(N+2)(N-1)/2(8)N-1 (9)0 (10)O(1)(每个记录增加一个字段) (11)稳定(请注意I的步长为-1)12. 3,(10,7,-9,0,47,23,1,8,98,36) 13.快速14.(4,1,3,2,6,5,7)15.最好每次划分能得到两个长度相等的子文件。
数据结构实验报告排序数据结构实验报告:排序引言:排序是计算机科学中常见的算法问题之一,它的目标是将一组无序的数据按照特定的规则进行排列,以便于后续的查找、统计和分析。
在本次实验中,我们将学习和实现几种常见的排序算法,并对它们的性能进行比较和分析。
一、冒泡排序冒泡排序是最简单的排序算法之一,它通过不断交换相邻的元素,将较大(或较小)的元素逐渐“冒泡”到数组的一端。
具体实现时,我们可以使用两层循环来比较和交换元素,直到整个数组有序。
二、插入排序插入排序的思想是将数组分为两个部分:已排序部分和未排序部分。
每次从未排序部分中取出一个元素,插入到已排序部分的适当位置,以保持已排序部分的有序性。
插入排序的实现可以使用一层循环和适当的元素交换。
三、选择排序选择排序每次从未排序部分中选择最小(或最大)的元素,与未排序部分的第一个元素进行交换。
通过不断选择最小(或最大)的元素,将其放置到已排序部分的末尾,从而逐渐形成有序序列。
四、快速排序快速排序是一种分治的排序算法,它通过选择一个基准元素,将数组划分为两个子数组,其中一个子数组的所有元素都小于等于基准元素,另一个子数组的所有元素都大于基准元素。
然后对两个子数组分别递归地进行快速排序,最终将整个数组排序。
五、归并排序归并排序也是一种分治的排序算法,它将数组划分为多个子数组,对每个子数组进行排序,然后再将排好序的子数组合并成一个有序的数组。
归并排序的实现可以使用递归或迭代的方式。
六、性能比较与分析在本次实验中,我们对以上几种排序算法进行了实现,并通过对不同规模的随机数组进行排序,比较了它们的性能。
我们使用了计算排序时间的方式,并记录了每种算法在不同规模下的运行时间。
通过对比实验结果,我们可以得出以下结论:1. 冒泡排序和插入排序在处理小规模数据时表现较好,但在处理大规模数据时性能较差,因为它们的时间复杂度为O(n^2)。
2. 选择排序的时间复杂度也为O(n^2),与冒泡排序和插入排序相似,但相对而言,选择排序的性能稍好一些。
数据结构——排序——8种常⽤排序算法稳定性分析⾸先,排序算法的稳定性⼤家应该都知道,通俗地讲就是能保证排序前2个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同。
在简单形式化⼀下,如果Ai = Aj, Ai原来在位置前,排序后Ai还是要在Aj位置前。
其次,说⼀下稳定性的好处。
排序算法如果是稳定的,那么从⼀个键上排序,然后再从另⼀个键上排序,第⼀个键排序的结果可以为第⼆个键排序所⽤。
基数排序就是这样,先按低位排序,逐次按⾼位排序,低位相同的元素其顺序再⾼位也相同时是不会改变的。
另外,如果排序算法稳定,对基于⽐较的排序算法⽽⾔,元素交换的次数可能会少⼀些(个⼈感觉,没有证实)。
回到主题,现在分析⼀下常见的排序算法的稳定性,每个都给出简单的理由。
(1)冒泡排序冒泡排序就是把⼩的元素往前调或者把⼤的元素往后调。
⽐较是相邻的两个元素⽐较,交换也发⽣在这两个元素之间。
所以,如果两个元素相等,我想你是不会再⽆聊地把他们俩交换⼀下的;如果两个相等的元素没有相邻,那么即使通过前⾯的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是⼀种稳定排序算法。
(2)选择排序选择排序是给每个位置选择当前元素最⼩的,⽐如给第⼀个位置选择最⼩的,在剩余元素⾥⾯给第⼆个元素选择第⼆⼩的,依次类推,直到第n-1个元素,第n个元素不⽤选择了,因为只剩下它⼀个最⼤的元素了。
那么,在⼀趟选择,如果当前元素⽐⼀个元素⼩,⽽该⼩的元素⼜出现在⼀个和当前元素相等的元素后⾯,那么交换后稳定性就被破坏了。
⽐较拗⼝,举个例⼦,序列5 8 5 2 9,我们知道第⼀遍选择第1个元素5会和2交换,那么原序列中2个5的相对前后顺序就被破坏了,所以选择排序不是⼀个稳定的排序算法。
(3)插⼊排序插⼊排序是在⼀个已经有序的⼩序列的基础上,⼀次插⼊⼀个元素。
当然,刚开始这个有序的⼩序列只有1个元素,就是第⼀个元素。
数据结构常用操作数据结构是计算机科学中的关键概念,它是组织和管理数据的方法。
常用的数据结构包括数组、链表、树、图和队列等。
在实际的编程中,我们经常需要对数据结构进行一些操作,如添加、删除和查找等。
以下是一些常用的数据结构操作。
1.添加元素:将新元素插入到数据结构中。
对于数组,可以通过在指定索引位置赋值来添加元素。
对于链表,可以通过创建新节点并调整指针来实现。
对于树和图,可以添加新节点或边来扩展结构。
2.删除元素:从数据结构中移除指定元素。
对于数组,可以通过将元素设置为特定值来删除。
对于链表,可以遍历链表并删除匹配的节点。
对于树和图,可以删除指定节点或边。
3.查找元素:在数据结构中指定元素。
对于有序数组,可以使用二分查找来提高效率。
对于链表,可以遍历链表并比较每个节点的值。
对于树和图,可以使用深度优先(DFS)或广度优先(BFS)等算法进行查找。
4.遍历元素:按照其中一种顺序遍历数据结构中的所有元素。
对于数组和链表,可以使用循环来遍历每个元素。
对于树,可以使用先序、中序或后序遍历来访问每个节点。
对于图,可以使用DFS或BFS来遍历每个节点。
5.排序元素:对数据结构中的元素进行排序。
对于数组,可以使用快速排序、归并排序等常用算法。
对于链表,可以使用插入排序或选择排序等算法。
对于树和图,可以使用DFS或BFS进行遍历并将元素排序。
6.查找最小/最大值:在数据结构中查找最小或最大值。
对于有序数组,最小值在索引0的位置。
对于链表,可以遍历链表并比较每个节点的值。
对于树,可以遍历树的左子树或右子树来找到最小或最大值。
7.合并数据结构:将两个数据结构合并成一个。
对于有序数组,可以先将两个数组合并成一个,然后再排序。
对于链表,可以将一个链表的尾节点连接到另一个链表的头节点。
对于树和图,可以将两个结构合并成一个,保持其关系。
8.拆分数据结构:将一个数据结构拆分成多个。
对于有序数组,可以根据一些值将数组拆分为两个子数组。
数据结构-王道-排序排序直接插⼊排序从上⾯的插⼊排序思想中,不难得到⼀种简单直接的插⼊排序算法。
假设待排序表在某次过程中属于这种情况。
|有序序列L[1…i−1]|L(i)|⽆序序列L[i+1…n]||:-|:-|为了实现将元素L(i)插⼊到已有序的⼦序列L[1…i−1]中,我们需要执⾏以下操作(为了避免混淆,下⾯⽤L[]表⽰⼀个表,⽽⽤L()表⽰⼀个元素):查找出L(i)在L[i+1…n]中的插⼊位置k。
将L[k…i−1]中所有元素全部后移⼀个位置。
将L(i)赋值到L(k)void InserSort(int A[],int n){int i,j;for(i=2;i<=n;i++){if(A[i]<A[i-1]){A[0]=A[i];for(j=i-1;A[0]<A[j];j--)A[j+1]=A[j];A[j+1]=A[0];}}}折半插⼊排序从前⾯的直接插⼊排序算法中,不难看出每趟插⼊的过程,都进⾏了两项⼯作:从前⾯的⼦表中查找出待插⼊元素应该被插⼊的位置。
给插⼊位置腾出空间,将待插⼊元素复制到表中的插⼊位置。
注意到该算法中,总是边⽐较边移动元素,下⾯将⽐较和移动操作分离开,即先折半查找出元素的待插⼊位置,然后再同意的移动待插⼊位置之后的元素。
void InserSort(int A[],int n){int i,j,low,high,mid;for(i=2;i<=n;i++){A[0]=A[i];low=1,high=i-1;while(low<=high){mid=(low+high)/2;if(A[mid]>A[0])high=mid-1;elselow=mid+1;}for(j=i-1;j>=high+1;j--)A[j+1]=A[j];A[high+1]=A[0];}}折半插⼊排序从前⾯的代码原理中不难看出,直接插⼊排序适⽤于基本有序的排序表和数据量不⼤的排序表。
【数据结构】排序——外部排序【数据结构】排序——外部排序外部排序是指⼤⽂件的排序,即排序的记录存储在外存储器上,在排序过程中需进⾏多次的内、外存之间的交换。
外部排序⽅法通常采⽤归并排序有外部排序基本上由两个相对独⽴的阶段组成。
按可⽤内存⼤⼩,将外存上含有n个记录的⽂件分成若⼲长度为l的字⽂件或段。
依次读⼊内存并利⽤有效的内部排序⽅法排序,将排序后得到的有序⼦⽂件(称为归并段或顺串),进⾏逐趟归并,直⾄得到整个有序⽂件为⽌。
在外部排序中实现两两归并,由于不可能将两个有序段及归并结果段同时存放在内存中的缘故,所以不仅要调⽤归并过程,还需要进⾏外存的读_写(对外存上信息的读_写是以“物理块”为单位的)。
耗费时间总时间=内部排序时间(产⽣初始归并段)+外存读写时间+内部归并时间内部排序时间=经过内部排序后得到的初始归并段的个数r * 得到⼀个初始归并段进⾏内部排序多需时间的均值外存读写时间=总的读写次数 * 进⾏⼀次外存读写时间的均值内部归并时间=归并的趟数s * n个记录进⾏内部归并排序的时间优化⽅法增⼤归并路数k减少初始归并段个数r以上两个⽅法都可以减少归并的趟数,进⽽减少读写磁盘的次数,提⾼外部排序速度多路平衡归并与败者树已知增加k可以减少s,从⽽减少总的读写次数。
如果只单纯的增加k⼜会导致内部归并时间增加。
为了使内部归并不受k的增⼤⽽影响,提出了败者树。
败者树的基本思想败者树是树形选择排序的⼀种变型,可视为⼀棵完全⼆叉树。
k个叶⼦节点分别存放k个归并段在归并过程中当前参加⽐较的记录,内部节点⽤来记忆左右⼦树中的“失败者”,⽽让胜者往上继续进⾏⽐较,⼀直到根结点。
若⽐较两个数,⼤的为败者、⼩的为胜利者,则根结点指向的数为最⼩数。
eg、设初始归并段为(10,15,31),(9,20),(6,15,42),(12,37),(84,95),利⽤败者树进⾏m路归并,⼿⼯执⾏选择最⼩的5个关键字的过程。
性能分析k-路归并的败者树的深度为[log2k]+1注意⚠ 在多路平衡归并中采⽤简单⽐较时,k越⼤,关键字的⽐较次数会越⼤。
数据结构之——⼋⼤排序算法排序算法⼩汇总 冒泡排序⼀般将前⾯作为有序区(初始⽆元素),后⾯作为⽆序区(初始元素都在⽆序区⾥),在遍历过程中把当前⽆序区最⼩的数像泡泡⼀样,让其往上飘,然后在⽆序区继续执⾏此操作,直到⽆序区不再有元素。
这块是对⽼式冒泡排序的⼀种优化,因为当某次冒泡结束后,可能数组已经变得有序,继续进⾏冒泡排序会增加很多⽆⽤的⽐较次数,提⾼时间复杂度。
所以我们增加了⼀个标识变量flag,将其初始化为1,外层循环还是和⽼式的⼀样从0到末尾,内存循环我们改为从最后⾯向前⾯i(外层循环所处的位置)处遍历找最⼩的,如果在内存没有出现交换,说明⽆序区的元素已经变得有序,所以不需要交换,即整个数组已经变得有序。
(感谢@站在远处看童年在评论区的指正)#include<iostream>using namespace std;void sort(int k[] ,int n){int flag = 1;int temp;for(int i = 0; i < n-1 && flag; i++){flag = 0;for(int j = n-1; j > i; j--){/*下⾯这⾥和i没关系,注意看这块,从下往上travel,两两⽐较,如果不合适就调换,如果上来后⼀次都没调换,说明下⾯已经按顺序拍好了,上⾯也是按顺序排好的,所以完美!*/if(k[j-1] > k[j]){temp = k[j-1];k[j-1] = k[j];k[j] = temp;flag = 1;}}}}int main(){int k[3] = {0,9,6};sort(k,3);for(int i =0; i < 3; i++)printf("%d ",k[i]);}快速排序(Quicksort),基于分治算法思想,是对冒泡排序的⼀种改进。
快速排序由C. A. R. Hoare在1960年提出。
数据结构中的树、图、查找、排序在计算机科学中,数据结构是组织和存储数据的方式,以便能够有效地对数据进行操作和处理。
其中,树、图、查找和排序是非常重要的概念,它们在各种算法和应用中都有着广泛的应用。
让我们先来谈谈树。
树是一种分层的数据结构,就像是一棵倒立的树,有一个根节点,然后从根节点向下延伸出许多分支节点。
比如一个家族的族谱,就可以用树的结构来表示。
最上面的祖先就是根节点,他们的后代就是分支节点。
在编程中,二叉树是一种常见的树结构。
二叉树的每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉搜索树是一种特殊的二叉树,它具有特定的性质,即左子树中的所有节点值都小于根节点的值,而右子树中的所有节点值都大于根节点的值。
这使得在二叉搜索树中查找一个特定的值变得非常高效。
二叉搜索树的插入和删除操作也相对简单。
插入时,通过比较要插入的值与当前节点的值,确定往左子树还是右子树移动,直到找到合适的位置插入新节点。
删除节点则稍微复杂一些,如果要删除的节点没有子节点,直接删除即可;如果有一个子节点,用子节点替换被删除的节点;如果有两个子节点,通常会找到右子树中的最小节点来替换要删除的节点,然后再删除那个最小节点。
接下来,我们聊聊图。
图是由顶点(也称为节点)和边组成的数据结构。
顶点代表对象,边则表示顶点之间的关系。
比如,社交网络中的用户可以看作顶点,用户之间的好友关系就是边。
图可以分为有向图和无向图。
有向图中的边是有方向的,就像单行道;无向图的边没有方向,就像双向车道。
图的存储方式有邻接矩阵和邻接表等。
邻接矩阵用一个二维数组来表示顶点之间的关系,如果两个顶点之间有边,对应的数组元素为 1,否则为 0。
邻接表则是为每个顶点建立一个链表,链表中存储与该顶点相邻的顶点。
图的遍历是图算法中的重要操作,常见的有深度优先遍历和广度优先遍历。
深度优先遍历就像是沿着一条路一直走到底,然后再回头找其他路;广度优先遍历则是先访问距离起始顶点近的顶点,再逐步扩展到更远的顶点。