管道离心泵的安装高度即吸程选用(精)
- 格式:doc
- 大小:22.50 KB
- 文档页数:3
管道离心泵的安装高度管道离心泵的最大安装高度是通过其允许吸上真空高度Hs 来进行计算的。
要保证水泵运行不发生汽蚀,泵进口断面的吸上真空高度应不大于泵的允许吸上真空高度。
当实际吸上真空高度Hsa 等于Hs 时,安装高度达到最大值。
该安装高度的最大值称为离心泵的最大安装高度,要保证水泵在运行中不发生汽蚀,其实际安装高度Hss 应小于等于该泵的最大安装高度Hss.
管道离心泵的安装高度通常是指吸水池测压管水面至离心泵进水口计算断面的高差。
离心泵计算断面按泵的结构形式来确定,对于卧式离心泵,计算断面为通过泵轴心中心线的水平面;对于立式离心泵,计算断面是以通过叶轮叶片的进水边中心的水平面为计算断面。
列入12SH-19A 型双吸离心泵,流量为220L/s时,在泵样本中Q-Hs 查得其允许吸上真空高度为4.5m ,泵进口直径为300mm ,吸水管从喇叭口到泵进口的水头损失为1.0m ,当地海拔为1000m ,水温为40°c ,试计算该泵的最大安装高度Hss 。
首先对允许吸上真空高度Hs 进行修正水温为40°c 时,该泵最大安装高度为1.36m。
离心泵的汽蚀现象与安装高度一、离心泵的汽蚀现象离心泵的汽蚀现象是指被输送液体由于在输送温度下饱和蒸汽压等于或低于泵入口处(实际为叶片入口处的)的压力而部分汽化,引起泵产生噪音和震动,严重时,泵的流量、压头及效率的显著下降,显然,汽蚀现象是离心泵正常操作所不允许发生的。
避免汽蚀现象发生的关键是泵的安装高度要正确,尤其是当输送温度较高的易挥发性液体时,更要注意。
二、离心泵的安装高度Hg允许吸上真空高度Hs是指泵入口处压力p1可允许达到的最大真空度而实际的允许吸上真空高度Hs值并不是根据式计算的值,而是由泵制造厂家实验测定的值,此值附于泵样本中供用户查用。
位应注意的是泵样本中给出的Hs值是用清水为工作介质,操作条件为20℃及及压力为×105Pa时的值,当操作条件及工作介质不同时,需进行换算。
(1) 输送清水,但操作条件与实验条件不同,可依下式换算Hs1=Hs+(Ha--(Hυ-(2) 输送其它液体当被输送液体及反派人物条件均与实验条件不同时,需进行两步换算:第一步依上式将由泵样本中查出的Hs1;第二步依下式将Hs1换算成H΄s2 汽蚀余量Δh对于油泵,计算安装高度时用汽蚀余量Δh来计算,即用汽蚀余量Δh由油泵样本中查取,其值也用20℃清水测定。
若输送其它液体,亦需进行校正,详查有关书籍。
从安全角度考虑,泵的实际安装高度值应小于计算值。
又,当计算之Hg为负值时,说明泵的吸入口位置应在贮槽液面之下。
例2-3 某离心泵从样本上查得允许吸上真空高度Hs=5.7m。
已知吸入管路的全部阻力为,当地大气压为×104Pa,液体在吸入管路中的动压头可忽略。
试计算:(1) 输送20℃清水时泵的安装;(2) 改为输送80℃水时泵的安装高度。
解:(1) 输送20℃清水时泵的安装高度已知:Hs=5.7mHf0-1=1.5mu12/2g≈0当地大气压为×104Pa,与泵出厂时的实验条件基本相符,所以泵的安装高度为Hg=4.2 m。
离心泵的安装高度计算方法在我们平时生活应用中,离心泵的使用非常广泛,但是大部分消费者如离心泵的正确使用方法还是很迷惑,安装的具体高度也不清楚。
本文详细讲述了离心泵的高度计算步骤,以及离心泵的启动原理,希望能够在日常生活应用中帮助到大家。
离心泵的安装高度计算允许吸上真空高度Hs是指泵入口处压力p1可允许达到的最大真空度。
而实际的允许吸上真空高度Hs值并不是根据式计算的值,而是由水泵制造厂家实验测定的值,此值附于泵样本中供用户查用。
位应注意的是泵样本中给出的Hs值是用清水为工作介质,操作条件为20℃及及压力为1.013×105Pa时的值,当操作条件及工作介质不同时,需进行换算。
1 输送清水,但操作条件与实验条件不同,可依下式换算Hs1=Hs+Ha-10.33 - Hυ-0.242 输送其它液体当被输送液体及反派人物条件均与实验条件不同时,需进行两步换算:第一步依上式将由泵样本中查出的Hs1。
第二步依下式将Hs1换算成H΄s2 汽蚀余量Δh对于油泵,计算安装高度时用汽蚀余量Δh来计算,即泵允许吸液体的真空度,亦即泵允许的安装高度,单位用米。
用汽蚀余量Δh由油泵样本中查取,其值也用20℃清水测定。
若输送其它液体,亦需进行校正,详查有关书籍。
吸程=标准大气压(10.33米)-汽蚀余量-安全量(0.5米)标准大气压能压管路真空高度10.33米。
例如:某泵必需汽蚀余量为4.0米,求吸程Δh?解:Δh=10.33-4.0-0.5=5.83米从安全角度考虑,泵的实际安装高度值应小于计算值。
当计算之Hg为负值时,说明泵的吸入口位置应在贮槽液面之下。
例2-3 某离心泵从样本上查得允许吸上真空高度Hs=5.7m。
已知吸入管路的全部阻力为1.5mH2O,当地大气压为9.81×104Pa,液体在吸入管路中的动压头可忽略。
试计算:1 输送20℃清水时离心泵的安装。
2 改为输送80℃水时离心泵的安装高度。
解:1 输送20℃清水时泵的安装高度。
一、离心泵的关键安装技术管道离心泵的安装技术关键在于确定水泵安装高度(即吸程)。
这个高度是指水源水面到水泵叶轮中心线的垂直距离,它与允许吸上真空高度不能混为一谈,水泵产品说明书或铭牌上标示的允许吸上真空高度是指水泵进水口断面上的真空值,而且是在1标准大气压下、水温20摄氏度情况下,进行试验而测定得的。
它并没有考虑吸水管道配套以后的水流状况。
而水泵安装高度应该是允许吸上真空高度扣除了吸水管道损失扬程以后,所剩下的那部分数值,它要克服实际地形吸水高度。
水泵安装高度不能超过计算值,否则,水泵将会抽不上水来。
另外,影响计算值的大小是吸水管道的阻力损失扬程,因此,宜采用最短的管路布置,并尽量少装弯头等配件,也可考虑适当配大一些口径的水管,以减管内流速。
应当指出,管道离心泵安装地点的高程和水温不同于试验条件时,如当地海拔300米以上或被抽水的水温超过20摄氏度,则计算值要进行修正。
即不同海拔高程处的大气压力和高于20摄氏度水温时的饱和蒸汽压力。
但是,水温为20摄氏度以下时,饱和蒸汽压力可忽略不计。
从管道安装技术上,吸水管道要求有严格的密封性,不能漏气、漏水,否则将会破坏水泵进水口处的真空度,使水泵出水量减少,严重时甚至抽不上水来。
因此,要认真地做好管道的接口工作,保证管道连接的施工质量。
二、离心泵的安装高度Hg计算允许吸上真空高度Hs是指泵入口处压力p1可允许达到的最大真空度。
而实际的允许吸上真空高度Hs值并不是根据式计算的值,而是由泵制造厂家实验测定的值,此值附于泵样本中供用户查用。
位应注意的是泵样本中给出的Hs值是用清水为工作介质,操作条件为20℃及及压力为1.013×105Pa时的值,当操作条件及工作介质不同时,需进行换算。
(1) 输送清水,但操作条件与实验条件不同,可依下式换算Hs1=Hs+(Ha-10.33) -(Hυ-0.24)(2) 输送其它液体当被输送液体及反派人物条件均与实验条件不同时,需进行两步换算:第一步依上式将由泵样本中查出的Hs1;第二步依下式将Hs1换算成H΄s2 汽蚀余量Δh对于油泵,计算安装高度时用汽蚀余量Δh来计算,即泵允许吸液体的真空度,亦即泵允许的安装高度,单位用米。
离心的概念离心其实是物体惯性的表现,比如雨伞上的水滴,当雨伞缓慢转动时,水滴会跟随雨伞转动,这是因为雨伞与水滴的摩擦力做为给水滴的向心力使然。
但是如果雨伞转动加快,这个摩擦力不足以使水滴在做圆周运动,那么水滴将脱离雨伞向外缘运动,就象用一根绳子拉着石块做圆周运动,如果速度太快,绳子将会断开,石块将会飞出.这个就是所谓的离心。
离心泵就是根据这个原理设计的,高速旋转的叶轮叶片带动水转动,将水甩出,从而达到输送的目的。
离心泵有好多种,从使用上可以分为民用与工业用泵;从输送介质上可以分为清水泵、杂质泵、耐腐蚀泵等。
离心泵基本构造离心泵的基本构造是由六部分组成的,分别是:叶轮,泵体,泵轴,轴承,密封环,填料函。
1、叶轮是离心泵的核心部分,它转速高输出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。
叶轮上的内外表面要求光滑,以减少水流的摩擦损失。
2、泵体也称泵壳,它是水泵的主体。
起到支撑固定作用,并与安装轴承的托架相连接。
3、泵轴的作用是借联轴器和电动机相连接,将电动机的转距传给叶轮,所以它是传递机械能的主要部件。
4、轴承是套在泵轴上支撑泵轴的构件,有滚动轴承和滑动轴承两种.滚动轴承使用牛油作为润滑剂加油要适当一般为2/3~3/4的体积太多会发热,太少又有响声并发热!滑动轴承离心泵结构使用的是透明油作润滑剂的,加油到油位线.太多油要沿泵轴渗出并且漂*,太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承的温度最高在85℃一般运行在60度左右,如果高了就要查找原因(是否有杂质,油质是否发黑,是否进水)并及时处理!5、密封环又称减漏环。
叶轮进口与泵壳间的间隙过大会造成泵内高压区的水经此间隙流向低压区,影响泵的出水量,效率降低!间隙过小会造成叶轮与泵壳摩擦产生磨损。
为了增加回流阻力减少内漏,延缓叶轮和泵壳的所使用寿命,在泵壳内缘和叶轮外援结合处装有密封环,密封的间隙保持在0。
25~1.10mm之间为宜。
离心泵的安装高度计算方法在我们平时生活应用中,离心泵的使用非常广泛,但是大部分消费者如离心泵的正确使用方法还是很迷惑,安装的具体高度也不清楚。
本文详细讲述了离心泵的高度计算步骤,以及离心泵的启动原理,希望能够在日常生活应用中帮助到大家。
离心泵的安装高度计算允许吸上真空高度Hs是指泵入口处压力p1可允许达到的最大真空度。
而实际的允许吸上真空高度Hs值并不是根据式计算的值,而是由水泵制造厂家实验测定的值,此值附于泵样本中供用户查用。
位应注意的是泵样本中给出的Hs值是用清水为工作介质,操作条件为20℃及及压力为1.013×105Pa时的值,当操作条件及工作介质不同时,需进行换算。
1 输送清水,但操作条件与实验条件不同,可依下式换算Hs1=Hs+Ha-10.33 - Hυ-0.242 输送其它液体当被输送液体及反派人物条件均与实验条件不同时,需进行两步换算:第一步依上式将由泵样本中查出的Hs1。
第二步依下式将Hs1换算成H΄s2 汽蚀余量Δh对于油泵,计算安装高度时用汽蚀余量Δh来计算,即泵允许吸液体的真空度,亦即泵允许的安装高度,单位用米。
用汽蚀余量Δh由油泵样本中查取,其值也用20℃清水测定。
若输送其它液体,亦需进行校正,详查有关书籍。
吸程=标准大气压(10.33米)-汽蚀余量-安全量(0.5米)标准大气压能压管路真空高度10.33米。
例如:某泵必需汽蚀余量为4.0米,求吸程Δh?解:Δh=10.33-4.0-0.5=5.83米从安全角度考虑,泵的实际安装高度值应小于计算值。
当计算之Hg为负值时,说明泵的吸入口位置应在贮槽液面之下。
例2-3 某离心泵从样本上查得允许吸上真空高度Hs=5.7m。
已知吸入管路的全部阻力为1.5mH2O,当地大气压为9.81×104Pa,液体在吸入管路中的动压头可忽略。
试计算:1 输送20℃清水时离心泵的安装。
2 改为输送80℃水时离心泵的安装高度。
解:1 输送20℃清水时泵的安装高度。
离心泵的汽蚀现象与安装高度一、离心泵的汽蚀现象离心泵的汽蚀现象是指被输送液体由于在输送温度下饱和蒸汽压等于或低于泵入口处(实际为叶片入口处的)的压力而部分汽化,引起泵产生噪音和震动,严重时,泵的流量、压头及效率的显著下降,显然,汽蚀现象是离心泵正常操作所不允许发生的。
避免汽蚀现象发生的关键是泵的安装高度要正确,尤其是当输送温度较高的易挥发性液体时,更要注意。
二、离心泵的安装高度Hg允许吸上真空高度Hs是指泵入口处压力p1可允许达到的最大真空度而实际的允许吸上真空高度Hs值并不是根据式计算的值,而是由泵制造厂家实验测定的值,此值附于泵样本中供用户查用。
位应注意的是泵样本中给出的Hs值是用清水为工作介质,操作条件为20℃及及压力为×105Pa时的值,当操作条件及工作介质不同时,需进行换算。
(1) 输送清水,但操作条件与实验条件不同,可依下式换算Hs1=Hs+(Ha--(Hυ-(2) 输送其它液体当被输送液体及反派人物条件均与实验条件不同时,需进行两步换算:第一步依上式将由泵样本中查出的Hs1;第二步依下式将Hs1换算成H΄s2 汽蚀余量Δh对于油泵,计算安装高度时用汽蚀余量Δh来计算,即用汽蚀余量Δh由油泵样本中查取,其值也用20℃清水测定。
若输送其它液体,亦需进行校正,详查有关书籍。
从安全角度考虑,泵的实际安装高度值应小于计算值。
又,当计算之Hg为负值时,说明泵的吸入口位置应在贮槽液面之下。
例2-3 某离心泵从样本上查得允许吸上真空高度Hs=5.7m。
已知吸入管路的全部阻力为,当地大气压为×104Pa,液体在吸入管路中的动压头可忽略。
试计算:(1) 输送20℃清水时泵的安装;(2) 改为输送80℃水时泵的安装高度。
解:(1) 输送20℃清水时泵的安装高度已知:Hs=5.7mHf0-1=1.5mu12/2g≈0当地大气压为×104Pa,与泵出厂时的实验条件基本相符,所以泵的安装高度为Hg=4.2 m。
安装离心泵的关键指标如何确定离心泵高度离心泵的关键指标如何确定离心泵高度:离心泵的高度通常通过以下几个关键指标来确定:1.离心泵的扬程:扬程是离心泵能够克服液体重力和流体摩擦力将液体提升到一定高度的能力。
扬程是离心泵高度的主要指标之一、通常情况下,扬程与泵的旋转速度、蜗壳出口截面积、叶轮直径和叶轮出口速度有关。
离心泵的扬程一般建议根据实际使用需求经过计算得出。
2.离心泵的额定流量:离心泵的流量是指泵每单位时间内输送的液体体积。
泵的额定流量是指泵在设计工况下应能输送的最大流量。
离心泵的额定流量一般由设计需求决定,通常以目标产量或流体输送需求为基础。
3.系统阻力:在离心泵的设计和选择中,需要考虑到系统中存在的管道、阀门、弯头等组件对流体的阻力。
系统阻力是指流体在输送过程中克服阻力所需的能量损失。
泵的工作点应处于泵和系统的相交点上,以确保泵能克服系统阻力并满足流体输送需求。
4. 泵的NPSH:NPSH(Net Positive Suction Head)是指离心泵在吸入侧所需的净正吸入压力。
泵需要有足够的NPSH来避免流体在泵吸入侧产生汽蚀现象。
NPSH一般由泵的设计和实际使用条件决定。
5.泵的效率:泵的效率是指泵转换输入能量与输出能量的比值。
泵的效率直接影响泵的功率消耗和运行成本。
选择高效率的离心泵能够减少能源消耗和运行成本。
通过以上关键指标的分析和计算,可以确定离心泵的高度。
需要注意的是,离心泵的高度既受到泵的扬程和流量的影响,也受到系统阻力、NPSH和泵的效率等因素的综合影响。
因此,在确定离心泵高度时,需要综合考虑以上因素,并根据实际需求进行合理选择。
2-6 离心泵的安装高度为什么要提出安装高度问题呢?倘若吸水池液面通大气,即使泵壳内的绝压(1p )为零,即真空度为1个大气压,其安装高度g H 亦会小于或等于m 10,如图2-5所示。
若大于10米,则池中液体就不会源源不断压入泵壳内。
另外,若泵壳的绝压(1p )小于被输送液的饱和蒸汽压(v p ),则液体将发生剧烈汽化,气泡剧烈冲向叶轮,使叶轮表面剥离、破损,发生“气蚀”现象,即气泡对叶轮的腐蚀现象。
为了避免“气蚀”。
所以必须满足v p p ≥1。
所以安装高度g H 必须小于m gp p ρ10−。
那么实际安装高度Hg 应如何计算呢?图2-5 安装高度示意图在图2-5中的贮槽液面0-0与泵入口处1-1截面,列柏努利方程得,,,02201021112000===+++=++u H z z h g u g p z g u g p z g fΘρρfg h gu g p p H −−−=∴22110ρ ………………)(a(1) 气蚀余量法(h ∆)气蚀余量h ∆,是指泵入口处动压头与静压头之和⎟⎟⎠⎞⎜⎜⎝⎛+g p g u ρ1212,超过液体在操作温度下水的饱和蒸汽压具有的静压头(gp vρ之差,即g p g p g u h vρρ−⎟⎟⎠⎞⎜⎜⎝⎛+=∆1212 …………)(b改写式(a )并将式(b )代入得:f v vgh gp g p g p g u g p H −+−+−−=ρρρρ0212f vg h gp g p h H −−+∆−=∴ρρ0 (Ⅴ)式中, h ∆——由泵样本查得的气蚀余量值,m ; 0p ——泵工作处的大气压强,Pa ;v p ——操作温度下被输液的饱和蒸汽压,Pa ;(2) 允许吸上真空高度法(s H )目前出版的新的泵样本中,已没有列出s H 数值。
但90年代以前出版的教材和泵样本中,是列有s H 值的。
为了便于新老样本的衔接,此处简要介绍此法。
定义 gp p H s ρ−=10 将s H 代入式)(a 得:fs g h gu H H −−=221 ………………)(c考虑到泵工作地点的大气压强不一定是一个大气压,泵所需送液体也不一定是20 o C 的水,将压力与温度校正项加进去,代入式(c )得:fv s g h g u g p g p H H −−⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−+=224.010210ρρ (Ⅵ)此即允许吸上真空高度法计算泵安装高度的公式。
汽蚀余量之马矢奏春创作[编辑本段]基本概念泵在工作时液体在叶轮的进口处因一定真空压力下会发生汽体,汽化的气泡在液体质点的撞击运动下,对叶轮等金属概况发生剥蚀,从而破坏叶轮等金属,此时真空压力叫汽化压力,汽蚀余量是指在泵吸入口处单位重量液体所具有的超出汽化压力的富余能量。
单位用米标注,用(NPSH)r。
吸程即为必须汽蚀余量Δh:即泵允许吸液体的真空度,亦即泵允许的装置高度,单位用米。
吸程=尺度大气压(10.33米)-临界汽蚀余量-平安量(0.5米)尺度大气压能压管路真空高度10.33米。
[编辑本段]汽蚀现象液体在一定温度下,降低压力至该温度下的汽化压力时,液体便发生汽泡。
把这种发生气泡的现象称为汽蚀。
汽蚀时发生的气泡,流动到高压处时,其体积减小以致破灭。
这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。
泵在运转中,若其过流部分的局部区域(通常是叶轮叶片进口稍后的某处)因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开始汽化,发生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。
在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间发生很强烈的水击作用,并以很高的冲击频率打击金属概况,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。
在水泵中发生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。
水泵发生汽蚀后除了对过流部件会发生破坏作用以外,还会发生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不克不及正常工作。
[编辑本段]汽蚀余量指泵入口处液体所具有的总水头与液体汽化时的压力头之差,单位用米(水柱)标注,用(NPSH)暗示,具体分为如下几类:NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不容易汽蚀;NPSHr——泵汽蚀余量,又叫必须的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好;NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量;离心泵运转时,液体压力沿着泵入口到叶轮入口而下降,在叶片入口附近的K点上,液体压力pK最低。
关于离心泵的各种基础知识A.离心泵的分类离心泵的种类很多,分类方法常见的有以下几种方式1、按叶轮吸入方式分:单吸式离心泵、双吸式离心泵;2、按叶轮数目分:单级离心泵、多级离心泵;3、按叶轮结构分:敞开式叶轮离心泵、半开式叶轮离心泵、封闭式叶轮离心泵;4、按工作压力分:低压离心泵、中压离心泵、高压离心泵;5、按泵轴位置分:卧式离心泵、边立式离心泵;6、从使用上分:民用与工业用泵;7、从输送介质上分:清水泵、杂质泵、耐腐蚀泵等。
B.离心泵的基本构造1、叶轮是离心泵的核心部分,它的作用是将原动机的机械能直接传给液体,以增加液体的静压能和动能(主要增加静压能)。
转速高出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。
叶轮上的内外表面要求光滑,以减少水流的摩擦损失。
2、泵体也称泵壳,它是离心泵的主体。
作用是将叶轮封闭在一定的空间,以便由叶轮的作用吸入和压出液体。
泵壳多做成蜗壳形,故又称蜗壳。
由于流道截面积逐渐扩大,故从叶轮四周甩出的高速液体逐渐降低流速,使部分动能有效地转换为静压能。
泵壳不仅汇集由叶轮甩出的液体,同时又是一个能量转换装置。
3、泵轴的作用是借联轴器和电动机相连接,将电动机的转距传给叶轮,所以泵轴是传递机械能的主要部件。
4、轴承是套在泵轴上支撑泵轴的构件,有滚动轴承和滑动轴承两种。
滚动轴承使用牛油作为润滑剂加油要适当一般为2/3~3/4的体积太多会发热,太少又有响声并发热!滑动轴承使用的是透明油作润滑剂的,加油到油位线。
太多油要沿泵轴渗出并且漂,太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承的温度最高在85度一般运行在60度左右,如果高了就要查找原因(是否有杂质,油质是否发黑,是否进水)并及时处理!5、轴封装置。
作用是防止泵壳内液体沿轴漏出或外界空气漏入泵壳内。
常用轴封装置有填料密封和机械密封两种。
填料一般用浸油或涂有石墨的石棉绳。
机械密封主要的是靠装在轴上的动环与固定在泵壳上的静环之间端面作相对运动而达到密封的目的。
离心泵的安装高度需如何计算?计算公式附上离心泵是输水中最常用的泵之一,泵房内的地坪标高取决于水泵的安装高度,正确地计算水泵的最大允许安装高度,使泵站既能安全供水,又能节省土建造价,具有很重要的意义。
为了避免汽蚀现象的发生,离心泵的安装高度需要进行非常仔细的校核计算。
水泵进水侧装置形式示意图如下:泵的允许几何安装高度与多方面条件有关,公式如下:式中:[Hg]—泵的允许几何安装高度,m;(计算结果供设计时利用,实际安装高度需低于允许安装高度)pe—吸水水面压力,Pa;(为吸水水面的大气压,海拔越高大气压越低)pv—饱和蒸汽压力,Pa;(与水温有关,水温越高,饱和蒸汽压力越高)ρ—流体的密度,kg/m3;g—重力加速度,9.81m/s2;[NPSHr]—水泵的允许汽蚀余量,m;(与水泵性能有关,由水泵厂家提供)hw—吸入管路中的水头损失,m。
(与吸水管路设计有关,由设计人员确定)由上式可知:海拔越高、水温越高、允许汽蚀余量越大、进水管路水头损失越大,允许几何安装高度越小。
不同海拔时的大气及对应的水头高度见下表:不同温度时水的饱和蒸汽压对应水头高度见下表:例:某品牌VISO125X100-315-55/2水泵汽蚀余量为[NPSHr]=3.29m,欲在海拔500m高度的地方工作,该地区夏季最高水温为40℃,若吸水管的水头损失为1m,则该泵在当地的运行几何安装高度[Hg]计算如下:设:吸水水面压力为当地大气压,由表查得海拔500m处大气压头9.7m;水温40℃时,水的饱和蒸汽压头为0.752m;计算得:[Hg]=9.7-0.752-3.29-1=4.658m找阀门,要上网,就上全球阀门网!。
离心泵的安装高度计算离心泵的安装技术关键在于如何正确确定水泵安装高度(即吸程)。
对于一般的离心泵来说,这个高度是指液面到水泵叶轮中心线的垂直距离;对于大流量离心泵,这个高度应按叶轮人口边最高点与液面之间的距离来考虑。
它与允许吸上真空度不能混为一谈,水泵产品说明书或铭牌E标示的允许吸上真空度是指水泵进水口断面上的真空值,而且是在1标准大气压下、水温20 'C、额定工况下经试验而测定得到的。
允许吸上真空度并不考虑吸入管道配套以后的水流状况。
而水泵安装高度是允许吸上真空度扣除了吸水管道损失扬程以后,所剩下的那部分数值,它要克服实际地形吸水高度。
水泵安装高度不能超过计算值,否则,水泵将会抽不上水来。
另外,影响计算值的大小是吸水管道的阻力损失扬程,因此,宜采用最短的管路布置,并尽量少装弯头等配件,也可考虑适当配大一些口径的水管,以降低管内流速。
应当指出,离心泵的安装地点的大气压力和水温不同于试验条件时,如当地海拔300 m以上或被抽水的水温超过20℃,则计算值要进行修正。
即按照不同海拔高程处的大气压力和高于2。
℃水温时的饱和蒸汽压力进行计算。
但是,水温为20℃以下时,饱和蒸汽压力的变化可忽略不计。
从管道安装技术上,吸水管道要求有严袼的密封性,不能漏气、漏水,否则将会破坏水泵进水口处的真空度,使水泵出水量减少.严重时甚至抽不上水来。
因此,要认真地做好管道的接口工作,保证管道连接的施工质量。
可以由允许吸七真空度计算泵的安装高度。
如果已知泵的允许吸上真空度,计算泵的安装高度则按式(7-2)计算。
允许吸上真空度H。
是指泵人口处压力p;可允许达到的最大真空度。
而实际的允许吸上真空高度H。
值并不是计算值。
而是由泵制造厂家实验测定的值,此值附于泵样本中供用户查用。
但应注意的是泵样本中给出的H,值是用清水为工作介质.20。
C及大气压力为1.013×lOs Pa时的值,当操作条件及工作介质不同时,需进行换算。
水泵的吸程和自吸高度
吸程有两种说法,一种就等同于自吸高度,另外一种是指水泵的允许安装高度,即泵允许吸液体的真空度,亦即泵允许的安装高度,单位用米。
吸程=标准大气压(10.33米)-汽蚀余量-安全量(0.5米)除了自吸泵,射流泵也能自吸,容积式的泵也有自吸能力,隔膜泵是一种往复泵,属于容积式泵的一种。
关于底阀,我就借用其他兄弟的一个说法了:对于一般的离心泵来说,不装底阀,泵一旦停下来,吸水管的水就会全部漏光,就得重新灌水,为了减少这个麻烦,就装个底阀,避免水漏光而重新灌水。
从节能的观点看,这对节能非常不利,因为底阀的水头损失系数很大,说简单点就是它的阻力很大,很耗能量,所以对节能很不利。
现在的新型产品要好一点,但阻力仍很大。
如果采用负吸式的(水泵高程比吸水水面高程低)就不需要底阀了。
汽蚀现象由离心泵的工作原理知,由于叶轮将液体从入口处的叶轮中心甩向外周,而在叶轮进口处形成低压,依赖这个比大气压低的低压,离心泵才能将液面较低处的液体吸入泵的入口。
离心泵叶轮入口附近形成的低压低于大气压的程度与泵的安装高度有关,此安装高度即叶轮轴心与被吸液体液面的高差,用z S 表示。
增大z S ,将导致叶轮入口附近 K 处压力降低,此处压力用p K 表示,参见图2-16,当z S 增大到使p K 等于被输送液体在输送温度下的饱和蒸汽压p V 时,液体将发生沸腾,所生成的汽泡在随液体从入口处向外周流动过程中,因压力迅速增大而急剧冷凝,使液体以很大的速度从周围冲向汽泡中心以填补因冷凝缩小的空间,产生频率很高,瞬间压力很大的冲击,这种现象称为汽蚀现象。
汽蚀时传递到叶轮及泵壳的冲击波加上液体中微量溶解的氧对金属化学腐蚀的共同作用,在一定时间后,可使其表面出现斑痕及裂缝,甚至呈海绵状逐步脱落。
发生汽蚀时,还会发出噪音,进而使泵体震动,同时由于蒸汽的生成使得液体的表观密度减小,于是液体实际流量、出口压力和效率都下降,严重时可至完全不能输出液体。
为避免发生汽蚀,要求泵的安装高度不超过某一定值。
我国的离心泵样本中,采用两种性能参数来表示泵的吸上性能,由这两种性能参数中的任何一项均可计算泵的安装高度,下面加以讨论。
2.汽蚀余量和允许安装高度在正常运转时,泵入口处e 的压力p e 和叶轮入口附近K 处的压力p K 密切相关,在两处所在截面列柏努利方程=+ρg2u g p 2e e ∑-++ρ)K e (f 2K K h g2u g p (2-2-22)图2-16 离心泵的安装高度由上式可知,在一定流量下,p e 下降,p K 必然相应地下降。
当p K 下降到等于输送流体操作温度下的饱和蒸汽压p V 时(汽蚀现象发生),p e 即下降到确定的最小值,用p e,min 表示,此时式(2-2-22)成为g 2u gp 2e m i n,e +ρ=g p V ρ+ ∑-+)K e (f 2K h g 2u (2-2-23) 上式改写为 g 2u g p 2e m i n ,e +ρ-g p V ρ= ∑-+)K e (f 2K h g 2u (2-2-23a )习惯上,将静压头与动压头之和称为全压头。
汽蚀余量[编辑本段]根本概念泵在工作时液体在叶轮的进口处因一定真空压力下会产生汽体,汽化的气泡在液体质点的撞击运动下,对叶轮等金属外表产生剥蚀,从而破坏叶轮等金属,此时真空压力叫汽化压力,汽蚀余量是指在泵吸入口处单位重量液体所具有的超过汽化压力的充裕能量。
单位用米标注,用〔NPSH〕r。
吸程即为必需汽蚀余量Δh:即泵允许吸液体的真空度,亦即泵允许的安装高度,单位用米。
吸程=标准大气压〔10.33米〕-临界汽蚀余量-平安量〔0.5米〕标准大气压能压管路真空高度10.33米。
[编辑本段]汽蚀现象液体在一定温度下,降低压力至该温度下的汽化压力时,液体便产生汽泡。
把这种产生气泡的现象称为汽蚀。
汽蚀时产生的气泡,流动到高压处时,其体积减小以致破灭。
这种由于压力上升气泡消失在液体中的现象称为汽蚀溃灭。
泵在运转中,假设其过流局部的局部区域〔通常是叶轮叶片进口稍后的某处〕因为某种原因,抽送液体的绝对压力降低到当时温度下的液体汽化压力时,液体便在该处开场汽化,产生大量蒸汽,形成气泡,当含有大量气泡的液体向前经叶轮内的高压区时,气泡周围的高压液体致使气泡急剧地缩小以至破裂。
在气泡凝结破裂的同时,液体质点以很高的速度填充空穴,在此瞬间产生很强烈的水击作用,并以很高的冲击频率打击金属外表,冲击应力可达几百至几千个大气压,冲击频率可达每秒几万次,严重时会将壁厚击穿。
在水泵中产生气泡和气泡破裂使过流部件遭受到破坏的过程就是水泵中的汽蚀过程。
水泵产生汽蚀后除了对过流部件会产生破坏作用以外,还会产生噪声和振动,并导致泵的性能下降,严重时会使泵中液体中断,不能正常工作。
[编辑本段]汽蚀余量指泵入口处液体所具有的总水头与液体汽化时的压力头之差,单位用米〔水柱〕标注,用〔NPSH〕表示,具体分为如下几类:NPSHa——装置汽蚀余量又叫有效汽蚀余量,越大越不易汽蚀;NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好;NPSHc——临界汽蚀余量,是指对应泵性能下降一定值的汽蚀余量;[NPSH]——许用汽蚀余量,是确定泵使用条件用的汽蚀余量,通常取[NPSH]=〔1. 1~1.5〕NPSHc。
管道离心泵的安装高度即吸程选用
一、离心泵的关键安装技术
管道离心泵的安装技术关键在于确定水泵安装高度(即吸程)。
这个高度是指水源水面到水泵叶轮中心线的垂直距离,它与允许吸上真空高度不能混为一谈,水泵产品说明书或铭牌上标示的允许吸上真空高度是指水泵进水口断面上的真空值,而且是在1标准大气压下、水温20摄氏度情况下,进行试验而测定得的。
它并没有考虑吸水管道配套以后的水流状况。
而水泵安装高度应该是允许吸上真空高度扣除了吸水管道损失扬程以后,所剩下的那部分数值,它要克服实际地形吸水高度。
水泵安装高度不能超过计算值,否则,水泵将会抽不上水来。
另外,影响计算值的大小是吸水管道的阻力损失扬程,因此,宜采用最短的管路布置,并尽量少装弯头等配件,也可考虑适当配大一些口径的水管,以减管内流速。
应当指出,管道离心泵安装地点的高程和水温不同于试验条件时,如当地海拔30 0米以上或被抽水的水温超过20摄氏度,则计算值要进行修正。
即不同海拔高程处的大气压力和高于20摄氏度水温时的饱和蒸汽压力。
但是,水温为20摄氏度以下时,饱和蒸汽压力可忽略不计。
从管道安装技术上,吸水管道要求有严格的密封性,不能漏气、漏水,否则将会破坏水泵进水口处的真空度,使水泵出水量减少,严重时甚至抽不上水来。
因此,要认真地做好管道的接口工作,保证管道连接的施工质量。
二、离心泵的安装高度Hg计算
允许吸上真空高度Hs是指泵入口处压力p1可允许达到的最大真空度。
而实际的允许吸上真空高度Hs值并不是根据式计算的值,而是由泵制造厂家实验测定的值,此值附于泵样本中供用户查用。
位应注意的是泵样本中给出的Hs值是
用清水为工作介质,操作条件为20℃及及压力为1.013×105Pa时的值,当操作条件及工作介质不同时,需进行换算。
(1) 输送清水,但操作条件与实验条件不同,可依下式换算
Hs1=Hs+(Ha-10.33) -(Hυ-0.24)
(2) 输送其它液体当被输送液体及反派人物条件均与实验条件不同时,需进行两步换算:第一步依上式将由泵样本中查出的Hs1;第二步依下式将Hs1换算成H?s
2 汽蚀余量Δh
对于油泵,计算安装高度时用汽蚀余量Δh来计算,即泵允许吸液体的真空度,亦即泵允许的安装高度,单位用米。
用汽蚀余量Δh由油泵样本中查取,其值也用2 0℃清水测定。
若输送其它液体,亦需进行校正,详查有关书籍。
吸程=标准大气压(10.33米)-汽蚀余量-安全量(0.5米)
标准大气压能压管路真空高度10.33米。
例如:某泵必需汽蚀余量为4.0米,求吸程Δh?
解:Δh=10.33-4.0-0.5=5.83米
从安全角度考虑,泵的实际安装高度值应小于计算值。
当计算之Hg为负值时,说明泵的吸入口位置应在贮槽液面之下。
例2-3 某离心泵从样本上查得允许吸上真空高度Hs=5.7m。
已知吸入管路的全部阻力为1.5mH2O,当地大气压为9.81×104Pa,液体在吸入管路中的动压头可忽略。
试计算:
(1) 输送20℃清水时泵的安装;
(2) 改为输送80℃水时泵的安装高度。
解:(1) 输送20℃清水时泵的安装高度
已知:Hs=5.7m
Hf0-1=1.5m
u12/2g≈0
当地大气压为9.81×104Pa,与泵出厂时的实验条件基本相符,所以泵的安装高度为Hg=5.7-0-1.5=4.2 m。
(2) 输送80℃水时泵的安装高度
输送80℃水时,不能直接采用泵样本中的Hs值计算安装高度,需按下式对Hs 时行换算,即
Hs1=Hs+(Ha-10.33) -(Hυ-0.24)
已知Ha=9.81×104Pa≈10mH2O,由附录查得80℃水的饱和蒸汽压为47.4k Pa。
Hv=47.4×103 Pa=4.83 mH2O
Hs1=5.7+10-10.33-4.83+0.24=0.78m
将Hs1值代入式中求得安装高度
Hg=Hs1-Hf0-1=0.78-1.5=-0.72m
Hg为负值,表示泵应安装在水池液面以下,至少比液面低0.72m。