《期望杯》第四届小学五年级数学竞赛试题(含答案)
- 格式:doc
- 大小:244.00 KB
- 文档页数:3
小学希望杯五年级数学竞赛复习题\小学希望杯五年级数学竞赛题小学数学五年级上册竞赛试题及答案小学希望杯五年级数学竞赛题1、在一次国际奥林匹克数学竞赛中,中国代表队的平均成绩是90分,男女队各自的平均成绩是88.5分和93分,这次代表队中男队人数是女队人数的多少倍?用方程解:解:设男队是X,女队是Y88.5X+93Y=90(X+Y)1.5X=3YX/Y=2用比例的方法:(93-90)/(90-88.5)=2答:男队人数是女队人数的2倍。
2、甲班51人,乙班49人,某次考试两个班全体同学的平均成绩是81分,乙班的平均成绩比甲班平均成绩高7分,那么,乙班的平均成绩是多少分?解:设乙的平均数是X,则甲是X-781×(51+49)=49X+51(X-7)8100=49X+51X-357100X=8457X=84.57答:乙的平均数是84。
57分3、一个十位数字是0的三位数等于它数字和的67倍;交换它的个位与百位数字得到新的三位数是数字和的m倍则m=。
解:设百位数字是x,个位数字是y100x+y=67(x+y)100x+y=67x+67y33x=66yX=2y把x=2y代入下式100y+x=m(x+y)100y+2y=m2y+my102y=m3ym=102y÷3ym=344、0.6+0.06+0.006+0.0006+……=2002÷(用分数表示)分析:0.6+0.06+0.006+……=0.6666666……(或)=6/9=3/25.有一些糖,每人分5块多10块;如果现有的人数增加到原人数的1.5倍,那么每人4块就少2块.问这些糖共有多少块?【分析与解】方法一:设开始共有x人,两种分法的糖总数不变,有5x+10=4×1.5x-2,解得x=12,所以这些糖共有12×5+10=70块.方法二:人数增加1.5倍后,每人分4块,相当于原来的人数,每人分1.5×4=6块.有这些糖,每人分5块多10块,每人分6块少2块,所以开始总人数为(10+2)÷(6-5)=12人,那么共有糖12×5+10=70块.6.甲、乙两个小朋友各有一袋糖,每袋糖不到20粒.如果甲给乙一定数量的糖后,甲的糖就是乙的糖粒数的2倍;如果乙给甲同样数量的糖后,甲的糖就是乙的糖粒数的3倍.那么,甲、乙两个小朋友共有糖多少粒?【分析与解】由题意知糖的总数应该是3的倍数,还是4的倍数.即为12的倍数,因为两袋糖每袋都不超过20粒,所以总数不超过40粒.于是糖的总数只可能为12、24或36粒.如果糖的总数为12的奇数倍,那么“乙给甲同样数量的糖后”,甲的糖为12÷(3+1)×3=9的奇数倍.那么在甲给乙两倍“同样的数量糖”后,甲的糖为12÷(2+1)×2=8的奇数倍.也就是说一个奇数加上一个偶数等于偶数,显然不可能.所以糖的总数不能为12的奇数倍.那么甲、乙两个小朋友共有的糖只能为12的偶数倍,即为24粒. 7.甲班有42名学生,乙班有48名学生.已知在某次数学考试中按百分制评卷,评卷结果各班的数学总成绩相同,各班的平均成绩都是整数,并且平均成绩都高于80分.那么甲班的平均成绩比乙班高多少分?【分析与解】方法一:因为每班的平均成绩都是整数,且两班的总成绩相等,所以总成绩既是42的倍数,又是48的倍数,所以为[42,48]=336的倍数.因为乙班的平均成绩高于80分,所以总成绩应高于48×80=3840分.又因为是按百分制评卷,所以甲班的平均成绩不会超过100分,那么总成绩应不高于42×100=4200分.在3840~4200之间且是336的倍数的数只有4032.所以两个班的总分均为4032分.那么甲班的平均分为4032÷42=96分,乙班的平均分为4032÷48=84分.所以甲班的平均分比乙班的平均分高96-84=12分.方法二:甲班平均分×42=乙班平均分×48,即甲班平均分×7=乙班平均分×8,因为7、8互质,所以甲班的平均分为某数的8倍,乙班的平均分为某数的7倍,又因为两个班的平均分均超过80分,不高于100分,所以这个数只能为12.所以甲班的平均分比乙班的平均分高12×(8-7)=12分.8.某乡水电站按户收取电费,具体规定是:如果每月用电不超过24度,就按每度9分钱收费;如果超过24度,超出的部分按每度2角钱收费.已知在某月中,甲家比乙家多交了电费9角6分钱(用电按整度计算),问甲、乙两家各交了多少电费?【分析与解】如果甲、乙两家用电均超过24度,那么他们两家的电费差应是2角钱的整数倍;如果甲、乙两家用电均不超过24度,那么他们两家的电费差应是9分钱的整数倍.现在9角6分既不是2角钱的整数倍,又不是9分钱的整数倍,所以甲家的用电超过了24度,乙家的用电不超过24度.设甲家用了24+x度电,乙家用了24-y度电,有20x+9y=96,得x=3,y=4.即甲家用了27度电,乙家用了20度电,那么乙家应交电费20×9=180分=1元8角,则甲家交了180+96=276分=2元7角6分.即甲、乙两家各交电费2元7角6分,1元8角.9.一小、二小两校春游的人数都是10的整数倍,出行时两校人员不合乘一辆车,且每辆车尽量坐满.现在知道,若两校都租用有14个座位的旅游车,则两校共需租用这种车72辆;若两校都租用19个座位的旅游车,则二小要比一小多租用这种车7辆.问两校参加这次春游的人数各是多少?【分析与解】设二小春游人数为m,一小春游人数为n.由已知乘19座面包车二小比一小多租用7辆.所以19×6+1≤m-n≤19×8-1,即115≤m-n≤151.又已知两校共需租用14座面包车72辆,所以70×14+2≤m+n≤72×14,即982≤m+n≤1008.同时已知m与n都是10的倍数,于是有,解得,另外四组因为解得m、n不是10的倍数.经检验只有满足.所以,一小参加春游430人,二小参加春游570人.10.某游客在10时15分由码头划出一条小船,他欲在不迟于13时回到码头.河水的流速为每小时1.4千米,小船在静水中的速度为每小时3千米,他每划30分钟就休息15分钟,中途不改变方向,并在某次休息后往回划.那么他最多能划离码头多远?【分析与解】从10时15分出发,不迟于13时必须返回,所以最多可划行2小时45分,即165分钟.165=4×30+3×15,最多可划4个30分钟,休息3个15分钟.顺流速度为3+1.4=4.4千米/4,时;所以顺流半小时划行路程为4.4×0.5=2.2千米;逆流速度为3-1.4=1.6千米/4,时;所以逆流半小时划行路程为1.6×0.5=0.8千米.休息15分钟,则船顺流漂行的路程为1.4×0.25=0.35千米.第一种情况:当开始顺流时,至少划行半小时,行驶 2.2千米,而在休息的3个时问内船又顺流漂行0.35×3=1.05千米的路程,所以逆流返回时需划行2.2+1.05=3.25千米.3.25÷1.6=2.03125小时=121.875分钟.即最少需30+15×3+121.875=196.875分钟>165分钟,来不及按时还船.不满足.第二种情况:当开始逆流时,每逆流半小时,则行驶0.8千米,则3次逆流后,行驶了0.8×3=2.4千米,船在游客休息时顺流漂行了1.05千米,所以回划时只用划行2.4-1.05=1.35千米的路程,需1.35÷4.4≈0.3068小时≈18.41分钟.共需3×30+3×15+18.41=153.41分钟<165分钟,满足.于是,只有第二种情况满足,此时最远的路程为休息了2次后第3次逆流所至的地点,为0.8×3-0.35×2=1.7千米.所以,他最多能划离码头1.7千米.11.机械厂计划生产一批机床,原计划每天生产40台,可在预定的时间内完成任务,实际每天生产48台,结果提前4天完成任务,求这批机床有多少台?48×[40×4÷(48-40)]=960(台)12.某印刷厂计划用24天装订一批书,每天装订12000本,实际提前4天完成了任务,实际比原计划每天多装订多少本?12000×24÷(24-4)-12000=2400(本)13.甲、乙两砖厂,甲厂原存砖87500块,乙厂比甲厂多存砖4500块,某日甲厂卖出25000块,乙厂比甲厂少卖出3000块,这时哪厂存砖多?多多少块?甲厂存砖:87500-25000=62500(块)乙厂存砖:(87500+4500)-(25000-3000)=70000(块)∴乙厂存砖多,多70000-62500=7500(块)14.一筐苹果连筐共重45千克,卖出一半后,剩下的苹果连筐共重24千克,求原来有苹果多少千克?(45-24)×2=42(千克)15.甲、乙两地相距465千米,一辆汽车从甲地开往乙地,以每小时60千米的速度行驶一段后,每小时加速15千米,共用了7小时到达乙地。
第五届“希望杯”全国数学邀请赛(五年级第1试)1.2007÷=______。
2.对不为零的自然数a,b,c,规定新运算“☆”:☆(a,b,c)= ,则☆(1,2,3)=______。
3.判断:“小明同学把一张电影票夹在数学书的51页至52页之间”这句话是______的。
(填“正确”或“错误”)4.已知a,b,c是三个连续自然数,其中a是偶数。
则a+1,b+2,c+3的积是奇数还是偶数5.某个自然数除以2余1,除以3余2,除以4余1,除以5也余1,则这个数最小是______。
6.当p和p³+5都是质数时,+5=______.7.下列四个图形是由四个简单图形A、B、C、D(线段和正方形)组合(记为*)而成。
则图中①~④中表示A*D的是______。
(填序号)8.下面四幅图形中不是轴对称图形的是______。
(填序号)9.小华用相同的若干个小正方形摆成一个立体(如图)。
从上面看这个立体,看到的图形是图①~③中的______。
(填序号)10.图中内部有阴影的正方形共有______个。
11.下图中的阴影部分BCGF是正方形,线段FH长18厘米,线段AC长24厘米,则长方形ADHE的周长是______厘米。
12.图中的熊猫图案的阴影部分的面积是______平方厘米。
(注:阴影部分均由半圆和正方形组成,图中一个小正方形的面积是1平方厘米,π取3.14) 13.小红看一本故事书,第一天看了这本书的一半又10页,第二天看了余下的一半又10页,第三天看了10页正好看完。
这本故事书共有______页。
14.有一副扑克牌中(去掉大、小王),最少取______张牌就可以保证其中3张牌的点数相同。
15.如图,摩托车里程表显示的数字表示摩托车已经行驶了24944千米,经过两小时后,里程表上显示的数字从左到右与从右到左的读数相同,若摩托车的时速不超过90千米,则摩托车在这两小时内的平均速度是______千米/时。
第一届小学“希望杯”全国数学邀请赛五年级第1试一、填空题1.计算=_______ .2.将1、2、3、4、5、6分别填在图中的每个方格内,使折叠成的正方体中对面数字的和相等。
3.在纸上画5条直线,最多可有_______ 个交点.4.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是______ ,温差最大的景区是______ 。
5.,各表示一个两位数,若+=139,则=_______ 。
6.三位数和它的反序数的差被99除,商等于_______ 与_______ 的差。
7.右图是半个正方形,它被分成一个一个小的等腰三角形,图2中,正方形有_______ 个,三角形有_______ 个。
8.一次智力测验,主持人亮出四块三角形的牌子:在第(4)块牌子中,?表示的数是_______ 。
9.正方形的一条对角线长13厘米,这个正方形的面积是平方厘米。
10.六位自然数1082□□能被12整除,末两位数有种情况。
11.右边的除法算式中,商数是。
12.比大,比小的分数有无穷多个,请写出三个:。
13.A、B、C、D、E五位同学进行乒乓球循环赛(即每2人赛一场),比赛进行了一段时间后,A赛了4场,B赛了3场,C赛了2场,D赛了1场,这时,E 赛了场.14.观察5*2=5+55=60,7*4=7+77+777+7777=8638,推知9*5的值是。
15.警察查找一辆肇事汽车的车牌号(四位数),一位目击者对数字很敏感,他提供情况说:“第一位数字最小,最后两位数是最大的两位偶数,前两位数字的乘积的4倍刚好比后两位数少2”。
警察由此判断该车牌号可能是。
16.一个小方木块的六个面上分别写有数字2,3,5,6,7,9。
小光,小亮二人随意往桌上扔放这个木块。
规定:当小光扔时,如果朝上的一面写的是偶数,得1分。
当小亮扔时,如果朝上的一面写的是奇数,得1分。
每人扔100次,得分高的可能性最大。
17.从1,2,3,4,5,6,7,8,9。
2011年第九届初赛1.计算:1.25×31.3×24= 。
2.把0.123,0.1·23·,0.12·3·,0.123·按照从小到大的顺序排列:< < <。
4.如图1,从A到B,有条不同的路线。
(不能重复经过同一个点)5.数数,图2中有个正方形。
6.—个除法算式中.被除数、除数、商与余数都是自然数,并且商与余数相等若被除数是47.则除数是,余数是。
7.如果六位数2011□□能被90整除.那么它的最后两位数是。
8.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”。
那么,1000以内最大的“希望数”是。
9.将等边三角形纸片按图3所示步骤折叠3次(图3中的虚线是三边的中点的连线然后沿过两边的中点的直线减去一角(如图4)将剩下的纸片展开,平铺.得到的图形是。
10.如图5,甲、乙两人按箭头方向从A点问时出发,沿着正方形ABCD的边行走,正方形ABCD的边长是100米,甲的速度是乙的速度的1.5倍,两人在E点第一次相遇,则三角形ADE的面积比EBC三角形的面积大平方米。
11.星期天早晨,哥哥和弟弟去练习跑步。
哥哥每分钟跑110米,弟弟每分钟跑80米。
弟弟比哥哥多跑了半小时,结果比哥哥多跑了900米。
那么,哥哥跑了米。
12.小明带了30元钱去买文具,买了3个笔记本和5支笔,剩余的钱,如果再买2支笔还差0.4元,如果再买2个笔记本则还差2元。
那么,笔记本每个元,笔每支元。
13.数学家维纳是控制论的创始人。
在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄。
维纳的问答很有趣,他说:“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0?9这10个数字全都用上了,不重也不漏。
”那么.维纳这一年岁。
(注:数a的立方等于a×a×a,数a的四次方等于a×a×a×a)14.鸡与兔共100只,鸡的脚比兔的脚多26只。
希望杯五年级培训试题希望杯五年级培训试题希望杯五年级培训试题第一讲字母表示数一、知道吗?日常生活中我们经常与数字打交道。
例如,你到商店去买牛奶,买1袋牛奶 1.20元;买2带牛奶1.20×2=2.40元;买3袋牛奶1.20×3=3.60元;把我们要买的牛奶的袋数记作n,所需的钱数记作a,则a=1.20×n 这个算式使用起来十分方便,假如要买6袋牛奶,只需要将n换成6代入上式就可以得出你所需要的钱数:1.20元×6=7.20元.又如:加法交换律用字母表示就是:a+b=b+a以上两例说明,用字母表示数给我们的计算、思维带来了极大的方便。
二、加油站1、设,●, 分别表示三种不同的物体,现在用天平称了两次重量,情况如下:● ●>● , = 。
那么,●,按质量从小到大排列排列是______2、计算两个自然数的除法:□ △,结果是:商为10,余数为▲。
如果▲得最大值是6,那么△的最小值是____3、有三个自然数a,b,c,已知a×b=24,b×c=56,a×c=21,这三个数的积a×b×c=_______4、□,△分别代表两个数,并且□-△=10,□□-△ ,那么□=________△ □-△ -25、一个最简分数,分子,分母的和是86,如果分子,分母都减去9,得到的分数是8,则原分数是______.96、各表示一个两位数,若,则x+y+z+w=________7、a、b、c都是质数,并且a+b=33,b+c=44,c+d=66那么d=______8、三位数99整除,商等于_____与_____的差.9、A,B,C,D四个人加工零件,已知A,B两人加工的总数和C,D两人加工的总数相等,D加工得只比B多,那么四个人中_____加工的最多。
三、我能行1、将一个分数的分子加1后与将该分数的分子、分母同时加2所得的结果相同。
1.对于非零自然数,,规定运算“”的含义是:,已知,的值 .2.计算:的结果个位数字是 .个3.把分解质因数是 。
4.将至六个数填入下图所示球体的圆内,使球体的各个大圆上每四个数的和都相等。
这个和是 。
5..6.有若干名小朋友,第一名小朋友的糖果比第二名小朋友的糖果多块,第二名小朋友的糖果比第三名小朋友的糖果多块……即前一名小朋友总比后一名小朋友多块糖果.他们按次序围成圆圈做游戏,从第一名小朋友开始给第二名小朋友块糖果,第二名小朋友给第三名小朋友块糖果……即每一名小朋友总是将前面传来的糖果再加上自己的块传给下面的小朋友.当游戏进行到最后一名小朋友无法按规定给出糖果时,有两名相邻的小朋友的糖果数之比是,最多有 名小朋友.7.新希望杯五年级竞赛模拟数学试卷①猴子和狮子的总数要比熊猫的数量多,②熊猫和狮子的总数要比猴子的两倍还多,③猴子和熊猫的总数要比狮子的三倍还多,④熊猫的数量没有狮子数量的两倍那么多,可知猴子有 只,熊猫有 只,狮子有 只.8.某天早上,一只怪物攻击了奥拉星球.为了拯救星球,从怪物出现时亚比英雄们就对怪物进行反击.怪物出现时有点生命值,每位亚比英雄每个白天可以消耗怪物点生命值,但在晚上亚比英雄们都休息时,怪物会恢复点生命值.如果在天内怪物被消灭,至少需要 位亚比英雄.9.在这个数中,十位数字是奇数的数共有 个.,,,,10.欢欢和乐乐同时出发去集市,他们以不同的速度沿同一条直路匀速前行,开始时两人相距米,小时后两人仍相距米.再过小时他们都没有到达集市,这时候他们相距 米.11.艾迪、 薇儿和大宽是好朋友, 住在同一个镇上, 靠着同一条镇中小道. 大宽在中间些,艾迪和薇儿在小道的两端. 三个好朋友每天都要聚一次. 第一天, 艾迪和薇儿从同一时刻出发, 从各自的家沿着小道走, 结果同时到达大宽家. 第二天, 艾迪比第一天提早小时出发,薇儿比第一天又推迟半个小时出发, 艾迪和薇儿比第一天提前了分钟相遇. 第三天薇儿比第一天提早小时出发, 艾迪比第一天推迟半个小时出发, 艾迪和薇儿在离大宽家千米处相遇. 问艾迪的速度是 .12.的分数单位是 ,再增加 个这样的单位就是最小的质数.13.边长是厘米的正方形纸片,正中间挖了一个正方形的洞,成为一个宽厘米的方框.把五个这样的方框放在桌面上,成为一个这样的图案(如图所示).桌面上被这些方框盖住的部分面积是 平方厘米.14.从这个自然数中删掉若干个连续的自然数,使得余下数的和能被整除,最少要删掉 个数.15.自然数、、、、都大于,其乘积,则其和的最大值是 ,最小值是 .16.三位数是一个质数,巧的是,,,,也都是质数, .17.个连续自然数的和恰好是三个不同质数的积,那么这三个质数的和最小是 .18.在这个数中,最多可取出 个数,使所取出的数中,任意两个数的和能被整除.19.若六位数能被和整除,则两位数 .20.的个位是 .21.平面内有个点,其中任意个点均不在同一条直线上,以这些点为端点连接线段,则除这个点外,这些线段至少还有 个交点.22.如图,若干边长为的小等边三角形组成一个边长为的大等边三角形.现在每个小三角形的顶点涂上黑色或白色,可以按照任意顺序涂色.如果某个小三角形有两个顶点的颜色相同,那么第三个顶点涂黑色;否则第三个顶点涂白色.完成涂色后的大三角形有 种不同的样式.(不可旋转、翻转)23.用,,,这个数字任意写出一个一万位数,从这个一万位数中任意截取相邻的个数字,可以组成许许多多的四位数,这些四位数中,至少有 个相同.24.甲、乙、丙、丁兄弟四人各收藏了一些宝石.每天早上他们都要聚在一起,重新分配宝石.分配的规则是:拥有宝石最多的人分给其他三人每人颗.如果第天早上分配完后,甲、乙、丙、丁四人分别有、、、颗宝石,那么第天早上分配完后,甲有 颗宝石.25.舞台中央有一个音效区,被分隔成个不同区域,每个区域安装个音箱(音箱无差别),音箱朝向只能向东、西、南或北,且相邻两个区域的音箱朝向不能面对面(有公共边的两个区域视为相邻).共有 种安装方案.东南西北(1)可以组成 个不同的三位数.26.有张卡,分别写有数字,,,,.如果允许可以作用,那么从中任意取出张卡片,并排放在一起.27.在平面上有个点,其中任意个点都不在同一条直线上.如果在这个点之间连结条线段,那么这些线段最多能构成 个三角形.28.计算 .29.计算: .30.定义新运算:,(个相乘),则.31.已知三个不同的非零自然数、、满足算式, 且.那么代表的自然数是 .32.下面表格所有数的和是 ?33.三位数(,,互不相同),是,,的最小公倍数,是,,的最大公因数,等于的因数个数,这样的三位数有 个.34.35.一个两位数,在它的前面写上,得到一个三位数.这个三位数比原两位数的倍多,那么原来的两位数为 .36.左图一个由小正方体组成的的大正方体.从这个大正方体中抽出若干个小正方体,把大正方体中相对的两面打通.右图中的阴影部分是抽空的状态.右图的正方体中还剩 个小正方体.37.有一个两位数,除以余,除以余,除以余,那么这个数最小是 .38.小明全家拍全家福,家里有爷爷、奶奶、爸爸、妈妈和小明人,爷爷必须站最中间,小明不站两边,请问:一共有 种不同的排队方式.39.图中有四个等边三角形,边长分别为,,,,那么阴影部分的总面积是最小的等边三角形面积的 倍.乐乐老师想把件相同的礼物全部分给个小朋友,要使每个小朋友都分到礼物,则分礼物的不同方法一共有 种.41.题图中共有 个正方形.42.龙猫家的大花园是一个平行四边形.如图,线段和将花园分成四块,其中的和的面积分别是和,则四边形的面积是 .43.如图所示,正六边形的面积为,则阴影部分的面积为 .44.一张卡片如左图所示,从中选个数字,分别写在个部分上,“”已经写好,然后将卡片折成右图的正方体纸盒.这个纸盒三组相对面上的数字和都相等,这个和是 .45.在一个的方阵中,任意填上自然数,从中任选出个的方格.如果选出的方格中必有个方格为原方阵中一个矩形的个角,上面所填的个数的和是偶数,那么的最小值是 .46.潘多拉星球遭到只飞龙和只地虎的袭击,机甲战士奋力抗击.潘多拉星球上的机甲战士共名,每个战士击退只飞龙需要分钟,击退只地虎需要分钟.那么,战士们击退全部敌人至少需要 分钟.47.自动扶梯以匀速由下往上行驶,两个急性子的孩子嫌扶梯走的太慢,于是在行驶的扶梯上,男孩每秒向上走梯级,女孩每秒钟走梯级.结果男孩用秒到达楼上,女孩用秒到达楼上.该楼梯共有 级.48.小明读一本小说,已读页数比全书页数的多页,未读的页数比全书页数的少页.这本书共有 页.49.父亲节来临之际,商店进行优惠促销.领带原价元条,现在买条送条,妈妈和两位阿姨现在合买条领带,每条领带比原来便宜 元.50.年父亲的年龄是儿子年龄的倍,年父亲年龄是儿子年龄的倍.儿子是在 年出生的.51.一辆汽车的速度是每小时千米,现有一个每小时比标准表多走秒的计时器,若用该计时器计时,则测得这辆汽车的速度是每小时 千米.52.放暑假真棒啊下面算式中不同的汉字代表不同的数字,六位数“”的最小值是 .放放放暑暑暑假假假真真棒啊53.若,则整数的所有数位上数字的和是 .个个54.甲、乙、丙三位同学去买书,他们买的本数都是两位数,且甲买的最多,丙买的最少,又知这些书本数的总和是偶数,它们的积是,那么乙最多买 本.55.已知、两地相距千米,从到是下坡路.小高同学早上点骑车从地去地,点整到达;第天早上点,他从地原路返回,中午点整才到达地.他在两天往返的过程中曾在同一时刻到达同一地点,那么小高同学 时 分到达这一地点,此地距离地 千米.56.有这样一类四位数,它满足的形式,如.这样的四位数中偶数有 个.57.下图有五个圆,它们相交相互分成个区域,现在两个区域里已经填上与,要求在另外七个区域里分别填进、、、、、、七个数,使每个圆内的和都等于.则所表示的三位数是 .58.四个边长都是整数的正方形如下图摆放,正方形的三个顶点分别是正方形,,的中心.若红色部分的总面积和绿色部分的面积相等,则正方形的边长最小是 .59.名工人小时加工零件个,按这个效率,小时加工个零件,需要 名工人.60.一只蚂蚁从正方体某个面的中心出发,每次走到相邻面的中心,每个中心恰好经过一次最终回到出发点,所有经过的中心排出的序列共有 种.(两条序列不同指沿着行走方向经过的中心点顺序不一样)61.若一个能被整除的两位数,既不能被整除,又不能被整除,它的倍是偶数,十位数字不小于,则这个两位数是 .62.除以的余数是 .63.一个正方体被切成个大小形状一模一样的小长方体(如图所示),这些小长方体的表面积之和为平方厘米。
(人教版三年级上册)《常考易错题专题卷》及《答案解析》数学海豚知道
一、选择题
1. 下列图形中,有4条边的是()
A. 正方形
B. 圆形
C. 长方形
D. 三角形
答案:A. 正方形
2. 下列图形中,有5条边的是()
A. 正方形
B. 圆形
C. 长方形
D. 五边形
答案:D. 五边形
3. 下列图形中,有6条边的是()
A. 正方形
B. 圆形
C. 长方形
D. 六边形
答案:D. 六边形
4. 下列图形中,有8条边的是()
A. 正方形
B. 圆形
C. 长方形
D. 八边形
答案:D. 八边形
5. 下列图形中,有9条边的是()
A. 正方形
B. 圆形
C. 长方形
D. 九边形
答案:A. 正方形
二、填空题
6. 一个正方形的边长是4厘米,它的周长是()厘米。
A. 8
B. 16
C. 32
D. 64
答案:B. 16。
小学“希望杯” 全国数学邀请赛五年级一试 试卷解析1、计算:2015201.520.152.015--=2、9个13相乘,积的个位数字是 。
3、如果自然数a 、b 、c 除以14都余5,则a +b +c 除以14,得到的余数是 。
4、将1到25这25个数随意排成一行,然后将它们依次和1,2,3,…,25相减,并且都是大数减小数,则在这25个差中,偶数最多有 个。
5、如图l ,有3个长方形,长方形①的长为16厘米,宽为8厘米;长方形②的长、宽分别是长方形①长、宽的一半;长方形③的长、宽分别是长方形②长、宽的一半,则这个图形的周长是 厘米。
6.字母a ,b ,c ,d ,e ,f ,g 分别代表1至7中的一个数字,若a +b +c =c +d +e =e +f +g ,则c 可取的值有 个。
7、用64个体积为l 立方米的小正方体拼成一个大正方体,如果将大正方体8个顶点处的小正方体都去掉,则此时的几何体的表面积是____平方米。
8、有一个三位数,百位数字是最小的质数,十位数字是算式(0.3+π×13)的结果中的小数点后第1位数字,个位数字是三位数中能被17整除的最小数的个位数字,则这个三位数是 。
(π取3.14)9、循环小数0.0142857 的小数部分的前2015位数字之和是10、如图2,用若干个相同的小正方体摆成一个几何体,从上面、前面、左面看分别是图形①、②、③,则至少需要 个小正方体。
11、已知a 和b 的最大公约数是4,a 与c 及b 与c 的最小公倍数都是100,而且a 小于等于b,则满足条件的有序自然数对(a,b,c)共有组。
12、从写有1、2、3、4、5的五张卡片中,任取3张组成一个三位数,其中不能被3整除的有个。
因此,不能被3整除的共有:6×6=36(个)。
13、两位数ab和ba都是质数,则ab有个。
14、ab和cde分别表示两位数和三位数,如果ab+cde=1079,则a+b+c+d+e=。
希望杯五年级奥数试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 25D. 27答案:B2. 一个等差数列的前三项分别是2,5,8,那么第10项是多少?A. 29B. 30C. 31D. 32答案:D3. 下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 三角形D. 梯形答案:A4. 一个正方形的边长是4厘米,那么它的面积是多少平方厘米?A. 8B. 16C. 32D. 64答案:B5. 下列哪个数是偶数?A. 101B. 102C. 103D. 104答案:D二、判断题(每题1分,共5分)1. 2的倍数都是偶数。
(正确)2. 所有的等差数列都是递增的。
(错误)3. 两个奇数相加的和是偶数。
(正确)4. 任何数乘以0都等于0。
(正确)5. 所有的质数都是奇数。
(错误)三、填空题(每题1分,共5分)1. 1+2+3++100的和是______。
(5050)2. 一个等边三角形的周长是15厘米,那么它的边长是______厘米。
(5)3. 两个质数相乘得到的数是______数。
(合)4. 一个数的因数个数是______。
(有限的)5. 0的阶乘是______。
(1)四、简答题(每题2分,共10分)1. 请列举出前5个质数。
答案:2,3,5,7,112. 请写出等差数列的通项公式。
答案:an = a1 + (n 1)d3. 请解释什么是偶数。
答案:偶数是能被2整除的整数。
4. 请解释什么是因数。
答案:因数是能整除一个数的数。
5. 请解释什么是等边三角形。
答案:等边三角形是三边长度相等的三角形。
五、应用题(每题2分,共10分)1. 一个数列的前三项分别是2,4,6,那么第10项是多少?答案:第10项是20。
2. 一个正方形的边长是6厘米,那么它的面积是多少平方厘米?答案:36平方厘米。
3. 请列举出10以内的所有质数。
答案:2,3,5,7。
2011年第九届初赛1.计算:1.25×31.3×24= 。
2.把0.123,0.1·23·,0.12·3·,0.123·按照从小到大的顺序排列:< < <。
4.如图1,从A到B,有条不同的路线。
(不能重复经过同一个点)5.数数,图2中有个正方形。
6.—个除法算式中.被除数、除数、商与余数都是自然数,并且商与余数相等若被除数是47.则除数是,余数是。
7.如果六位数2011□□能被90整除.那么它的最后两位数是。
8.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”。
那么,1000以内最大的“希望数”是。
9.将等边三角形纸片按图3所示步骤折叠3次(图3中的虚线是三边的中点的连线然后沿过两边的中点的直线减去一角(如图4)将剩下的纸片展开,平铺.得到的图形是。
10.如图5,甲、乙两人按箭头方向从A点问时出发,沿着正方形ABCD的边行走,正方形ABCD的边长是100米,甲的速度是乙的速度的1.5倍,两人在E点第一次相遇,则三角形ADE的面积比EBC三角形的面积大平方米。
11.星期天早晨,哥哥和弟弟去练习跑步。
哥哥每分钟跑110米,弟弟每分钟跑80米。
弟弟比哥哥多跑了半小时,结果比哥哥多跑了900米。
那么,哥哥跑了米。
12.小明带了30元钱去买文具,买了3个笔记本和5支笔,剩余的钱,如果再买2支笔还差0.4元,如果再买2个笔记本则还差2元。
那么,笔记本每个元,笔每支元。
13.数学家维纳是控制论的创始人。
在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄。
维纳的问答很有趣,他说:“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0?9这10个数字全都用上了,不重也不漏。
”那么.维纳这一年岁。
(注:数a的立方等于a×a×a,数a的四次方等于a×a×a×a)14.鸡与兔共100只,鸡的脚比兔的脚多26只。
五年级训练题(一)一、选择题1.甲、乙两个数的和是201.3,其中甲数的小数点向左移动一位,就等于乙数,甲数与乙数的差是( )。
A. 164.3B.164.7C.165.3D.165.72.如图,平面上有12个点,上下或左右相邻的两点之间的距离都是1,选其中4个点围成一个正方形,不同的选法共有( )。
A.8种 B.9种C.10种 D.11种3.五年级两个班共100人参加智力竞赛,平均分是78分,其中男生平均分是80分,女生平均分是75分,男生比女生多( )。
A. 20人 B.22人 C.24人 D.25人4.王伯去水果店买水果。
如果买4千克梨和6千克苹果,要付款84元;如果买5千克梨和6千克苹果,要付款91.5元。
那么买1千克梨和1千克苹果要付款 ( )。
A. 15元 B.15.5元 C.16元 D.16.5元5.如下左图,某物体由14个小正方体堆积而成,从左边看该物体,看到的图形是( )。
999除以13所得的余数是( )。
6.2012个9A.4 B.6 C.8 D.10二、填空题7.计算:(9.6×8.6×8.4)÷(4.3×3.2×2.1)=。
8.在400米长的环形跑道上,甲、乙两人同时同向从起跑线并排起跑,甲每秒跑5米,乙每秒跑4.2米。
两人起跑后第一次相遇时,乙共跑了米。
9.某校五年级举行篮球比赛,规定:胜一场积3分,平一场积1分,负一场积0分。
赛后统计,A班共积9分,其中平比胜多1局,负的局数是胜的2倍,A班负了局。
10.如图,连接大正方形各边的中点得到第二个正方形,再连接第二个正方形各边的中点得到第三个正方形,最后连接第三个正方形各边的中点得到第四个正方形。
大正方形的面积是图中阴影部分面积的倍。
11.如果+++=2.1,+++=2.5,+++=3, 则+++++=。
12.建设某项工程,原计划40名工人用90天完成。
现在这批工人工作30天后又增加了10人,完成剩下的部分需再做天。
五年级希望杯数学竞赛题目一、题目与解析。
1. 计算:0.125×0.25×0.5×64- 解析:- 把64分解成8×4×2。
- 原式=(0.125×8)×(0.25×4)×(0.5×2)。
- 因为0.125×8 = 1,0.25×4=1,0.5×2 = 1。
- 所以结果为1×1×1 = 1。
2. 计算:(1.25+1.25+1.25+1.25)×25×8- 解析:- 括号里1.25+1.25+1.25+1.25 = 1.25×4。
- 原式=(1.25×4)×25×8。
- 根据乘法交换律和结合律,先算4×25 = 100,1.25×8 = 10。
- 结果为100×10 = 1000。
3. 一个数除以5余3,除以6余4,除以7余5。
这个数最小是多少?- 解析:- 这个数加上2就能被5、6、7整除。
- 5、6、7的最小公倍数为5×6×7=210。
- 所以这个数最小是210 - 2 = 208。
4. 有一个自然数,用它分别去除63,90,130都有余数,三个余数的和为25。
这三个余数中最大的一个是多少?- 解析:- 设这个自然数为x,设除63的余数为a,除90的余数为b,除130的余数为c。
- 则63 = k_1x + a,90=k_2x + b,130 = k_3x + c。
- 已知a + b + c = 25。
- 那么63+90 + 130-(a + b + c)=(k_1 + k_2 + k_3)x。
- 即63+90+130 - 25=(k_1 + k_2 + k_3)x。
- 计算得258=(k_1 + k_2 + k_3)x。
- 把258分解因数:258 = 2×3×43。
“希望杯”全国数学大赛决赛模拟试卷附答案(小五)(时间:90分钟 满分:120分)一、填空题。
(每题6分,共72分。
)1.计算:1+12 +22 +12 +13 +23 +33 +23 +13 +…+12006 +22006 +…+20062006 +…+22006 +12006=____________。
2.8+88+888+…+88…8的和的个位上的数字是____________。
3.有四个连续奇数的和是2008,则其中最小的一个奇数是____________。
4.张阿姨把相同数量的苹果和橘子分给若干名小朋友,每名小朋友分得1个苹果和3个橘子。
最后橘子分完了,苹果还剩下12个。
那么一共分给了____________名小朋友。
5.有这样一种算式:三个不同的自然数相乘,积是100。
这样的算式有____________种。
(交换因数位置的算同一种。
)6.在右边的数阵中,如果按照从上往下,从左往右的顺序数数,可以知道第1个数是1,第3个数是2,第6个数是3,……那么第99个数是____________。
7.一天,小慧和刘老师一起谈心。
小慧问:“老师,您今年有多少岁?”刘老师回答说:“你猜猜,当我像你这么大时,你才1岁;当你到我这么大时,我就34岁了。
”刘老师今年的年龄是____________岁。
8.小华同学为了在“希望杯”数学大赛中取得好成绩,自己做了四份训练题(每份训练题满分为120分)。
他第一份训练题得了90分,第二份训练题得了100分,那么第三份训练题至少要得____________分才能使四份训练题的平均成绩达到105分。
9.某小学五年级有9名同学进入了“希望杯”数学大赛的决赛。
已知他们在初赛中前3名同学的平均分比前6名同学的平均分多3分,后6名同学的平均分比后3名同学的平均分多3分。
那么前3名同学的总分比后3名同学的总分多____________分。
10.在右图中,已知正方形ABCD 的面积是正方形EFGH 面积的4倍,正方形AMEN 的周长是4厘米,那么正方形ABCD 的周长是____________厘米。
第十三届小学“希望杯”全国数学邀请赛五年级 第1试试题以下每题6分,共120分 1、计算:(2015201.520.15)________.2.015--=2、9个13相乘,积的个位数字是________.3、如果自然数a ,b ,c 除以14都余5,则a b c ++除以14,得到的余数是_______.4、将1到25这25个数随意排成一行,然后将它们依次和1,2,3,,25L 相减,并且都是大数减小数,则在这25个差中,偶数最多有_______个.5、如图1,有3个长方形,长方形①的长为16厘米,宽为8厘米;长方形②的长、宽分别是长方形①长、宽的一半;长方形③的长、宽分别是长方形②长、宽的一半,则这个图形的周长是_______厘米.图16、字母,,,,,,a b c d e f g 分别代表1至7中的一个数字,若a b c c d e c f g ++=++=++,则c 可取的值有________个.7、用64个体积为1立方米的小正方体拼成一个大正方体,如果将大正方体的8个顶点处的小正方体都去掉,则此时的几何体的表面积是 平方米.8、有一个三位数,百位数字是最小的质数,十位数字是算式(0.3+π×13)的结果中小数点后的第一位数字,个位数字是三位数中能被17整除的最小数的个位数字,则这三位数是 .(π取3.14)9、循环小数0.0142857&&的小数部分的前2015位数字之和是 . 10、如图,用若干个相同的小正方体摆成一个几何体,从上面、前面、左面看,分别是①、②、③,则至少需要 小正方体.11、已知a 与b 的最大公约数是4,a 与c 以及b 与c 的最小公倍数都是100,而且a 小于等于b ,则满足条件的有序自然数对(a ,b ,c )共有 组.12、从写有1、2、3、4、5的5张卡片中任取3张组成一个三位数,其中不能被3整除的有_____个.13、两位数ab 和ba 都是质数,则ab 有 个.14、ab ,cde 分别表示两位数和三位数, 如果ab + cde =1079,则a +b +c +d +e =15、已知三位数abc ,并且a (b +c )=33,b (a +c )=40, 则这个三位数是 .16、若要组成一个表面积为52的长方体,则最少需要棱长为1的小正方体 个.17、某工厂生产一批零件,如果每天比原计划少生产3个,同时零件生产定额减少60个,那么需要31天完成,如果每天超额生产3个,并且零件生产定额增加60个,那么经过25天即可完成.则原计划的零件生产定额是 个.18、某次考试中,11名同学的平均分经四舍五入到小数点后的第一位等于85.3,已知每名同学的得分都是整数,则这11名同学的总分是 分.19、有编号1,2,3,4…2015的2015盏亮着的电灯,各有一个拉线开光控制,若将编号为2的倍数,3的倍数,5的倍数的灯线都各拉一下,这时,亮着的灯有 盏.20、今年是20XX 年,小明说:“我现在的年龄正好与我出生那年年份的四个数字之和相同.”则小明现在 ①②③第十三届小学“希望杯”全国数学邀请赛 五年级 第二试试题一.填空题(每小题5分,共60分)1. 用3、4、7、8这4个数字组成两个两位数(每个数字只能使用一次,且必须使用),它们的乘积最大是 .【解析】首先要想让乘积最大,应该先乘数的十位尽量大,所以十位应用7、8.然后根据数字和一定,两数差越小乘积越大,可以知道83和74的差是最小的,因此乘积最大是83746142⨯=.2. 有三个自然数,它们的和是2015,两两相加的和分别是m +1,m +2011和m +2012,则m =____. 【解析】由题意可以知道(1)m +、(2011)m +、(2012)m +三者的和是三个自然数和的2倍, 因此12011201220152m m m +++++=⨯,得出2m =.3.用1、2、3、5、6、7、8、9这8个数字最多可以组成____个质数(每个数字只能使用一次,且必须使用).【解析】方法一:由于8个数字中有2个不为2的偶数,这2个数不能在个位,因此可以组成的质数最多有826-=(个),经尝试可得2、3、5、7、61、89满足条件,因此最多可以组成6个质数;方法二:题目要求最多个质数,应该使一位数的质数尽量多,有2、3、5、7;剩下1、6、8、9,我们会发现6和8只要放在个位这个数就不是质数,尝试可以组成61和89这两个质数,因此最多可以组成6个质数.4. 一次数学竞赛中,某小组10个人的平均分是84分,其中小明得93分,则其他9个人的平均分是____分.【解析】10个人的总分是8410840⨯=(分),其他9个人的总分是84093747-=(分),因此其他9个人的平均分是747983÷=(分).5. 同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6),则朝上一面的4个数字的和有____种.【解析】朝上一面的4个数字和最大是666624+++=,最小是11114+++=,最小和最大数字和之间的情况都有可能出现,因此朝上一面的4个数字和有244121-+=(种).6. 某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是_____.【解析】三个彼此互质的自然数乘积是665,则其中必然有一个质数是5,6655133=⨯,那么133等于另外两个质数的乘积,可以看出133719=⨯,那么知道这三个彼此互质的自然数分别是5、7、19,长方体的表面积是(57719519)2526⨯+⨯+⨯⨯=.【解析】若3n 是5的倍数,那么n 也是5的倍数,由题意可以得到n 既是3的倍数,也是5的倍数,所以n 的最小值是3515⨯=.8. 从1、2、3、4、5 中任取3个组成一个三位数,其中不能被3整除的三位数有_____个. 【解析】若这个三位数的数字和不能被3整除,那么就不能被3整除.枚举可以知道(1、2、4),(1、2、5),(1、3、4),(1、4、5),(2、3、5),(2、4、5)这6组数字的数字和不能被3整除.那么不能被3整除的三位数有33636A ⨯=(个).9.观察下表中的数的规律,可知第8行中,从左向右第5个数是_____.【解析】前7行共有135********++++++=(个)数,即第7行的最后一个数是49,那么第8行前5个数分别是50、51、52、53、54,所以从左到右第5个数是54.10.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换______只鸡.【解析】根据题意有:2牛=42羊,3羊=26兔,2兔=3鸡,所以可得: 3牛=4223÷⨯羊=63羊=26363÷⨯兔=546兔=54623÷⨯鸡=819鸡.11.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有_____种不同围法(边长相同的矩形算同一种围法).【解析】设矩形的长为a ,宽为b ,且a b ≥,根据题意可得:17a b +=,由于a 、b 均为整数,因此(a ,b )的取值有以下8种:(16,1),(15,2),(14,3),(13,4),(12,5),(11,6),(10,7),(9,8).12.将五位数“12345”重复写403次组成一个2015位数:“123451234512345…”,从左往右,先删去这个数中所有位于奇数位上的数字,得到一个新数;再删去新数中所有位于奇数位上的数字;按上述规则一直删下去,直到剩下一个数字为止,则最后剩下的数字是______. 【解析】从左到右删去奇数位上的数字,第一次删除后剩余第2,4,6,8,L 12k (11007k ≤)位上的数; 第二次删除后剩余第4,8,12,16,L ,()224503k k ≤位上的数;L 第n 次删除后剩余第2,22,23n n n ⨯⨯L 位上的数,以此类推最后剩余的一定是1021024=位上的数字(11220482015=>),102452044÷=L L,所以最后剩余的数字应为4.二、解答题(每个小题15分,共60分),每题都要写出推算过程13.甲、乙两船顺流每小时行8千米,逆流每小时行4千米.若甲船顺流而下,然后返回;乙船逆流而上,然后返回.两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?【解析】设甲船顺水航行x小时,则逆水航行()3-x小时,根据题意列方程得:()843x x=-,解得:1x=,甲船出发后顺水航行1小时后逆水航行2小时;同理可求出乙船出发后逆水航行2小时后顺水航行1小时.因此出发后的第2个小时甲、乙两船均逆水,有1小时行船方向相同.14.图中有多少个三角形?图1【解析】设最小的三角形面积为1,图中面积为1的三角形有16个;面积为2的三角形有44+8=24⨯(个);面积为4的三角形有44+4=20⨯(个);面积为8的三角形4+4=8(个);面积为16的三角形有4个;所以共有16+24+20+8+4=72(个).15.如图2,在一个平行四边形纸片上剪去甲、乙两个直角三角形.甲直角三角形的两条直角边边分别为8cm和5cm. 乙直角三角形的两条直角边边分别为6cm和2cm.求图中阴影部分的面积.图2 【解析】如下图所示,延长CP与DF垂直于F,DF与AH交于E,由于ABCD为平行四边形,则直角三角形CFD与甲三角形相等,直角三角形AED与乙三角形相等,阴影部分的面积为直角三角形CFD与直角三角形AED面积之和减去长方形EFPH,可得EF=5-2=3cm,EH=8-6=2cm,则阴影部分的面积为8×5÷2+6×2÷2-3×2=20(平方厘米). 16. 有158个小朋友排成一排,从左边第一个人起(第一个人发一个苹果),每隔1人发一个苹果,又从右边第一个人起(第一个人发一个香蕉),每隔2人发一个香蕉,求没有得到水果的小朋友的人数.【答案】52人【解析】由于从左边第一个人起(第一个人发一个苹果),每隔1人发一个苹果,即每2个人1个周期,158能被2整除,相当于从右边起(第一个人不发苹果),每隔1人发一个苹果,又从右边第一个人起(第一个人发一个香蕉),每隔2人发一个香蕉,发香蕉的周期为3,则从右边起每6个人为一个周期,发的水果数如下:苹果 1 0 1 0 1 0香蕉0 0 1 0 0 1可以发现每个6个人的周期中共有2人没发水果,158÷6=26…… 2,剩余的2人均发了水果,则没发水果的一共有26×2=52(人).第十三届小学“希望杯”全国数学邀请赛五年级第二试试题一.填空题(每小题5分,共60分)1.用3、4、7、8这4个数字组成两个两位数(每个数字只能使用一次,且必须使用),它们的乘积最大是 .2.有三个自然数,它们的和是2015,两两相加的和分别是m+1,m+2011和m+2012,则m=____.3.用1、2、3、5、6、7、8、9这8个数字最多可以组成____个质数(每个数字只能使用一次,且必须使用).4.一次数学竞赛中,某小组10个人的平均分是84分,其中小明得93分,则其他9个人的平均分是____分.5.同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6),则朝上一面的4个数字的和有____种.6.某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是_____.7.大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值是_____.8. 从1、2、3、4、5 中任取3个组成一个三位数,其中不能被3整除的三位数有_____个.9.观察下表中的数的规律,可知第8行中,从左向右第5个数是_____.10.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换______只鸡. 长相同的矩形算同一种围法).12.将五位数“12345”重复写403次组成一个2015位数:“123451234512345…”,从左往右,先删去这个数中所有位于奇数位上的数字,得到一个新数;再删去新数中所有位于奇数位上的数字;按上述规则一直删下去,直到剩下一个数字为止,则最后剩下的数字是______.二、解答题(每个小题15分,共60分),每题都要写出推算过程13.甲、乙两船顺流每小时行8千米,逆流每小时行4千米.若甲船顺流而下,然后返回;乙船逆流而上,然后返回.两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?14.图中有多少个三角形?图115.如图2,在一个平行四边形纸片上剪去甲、乙两个直角三角形.甲直角三角形的两条直角边边分别为8cm和5cm. 乙直角三角形的两条直角边边分别为6cm和2cm.求图中阴影部分的面积.图216. 有158个小朋友排成一排,从左边第一个人起(第一个人发一个苹果),每隔1人发一个苹果,又从右边第一个人起(第一个人发一个香蕉),每隔2人发一个香蕉,求没有得到水果的小朋友的人数.2014第十二届希望杯五年级试题1.201403165÷,余数是________。
2011年第九届初赛1.计算:1.25×31.3×24=。
2.把0.123,0.2,0.1,0.12按照从小到大的顺序排列:<<<3.先将从1开场的自然数排成一列:1415......然后按一定的规律分组:1,23,456,7891,01112,131415,......在分组后的数中,有一个十位数,这个十位数是。
4.如图1,从A到B,有条不同的路线。
〔不能重复经过同一个点〕5.数数,图2中有个正方形。
6.—个除法算式中.被除数、除数、商与余数都是自然数,并且商与余数相等假设被除数是47.那么除数是,余数是。
7.如果六位数2011□□能被90整除.那么它的最后两位数是。
8.如果一个自然数的约数的个数是奇数,我们称这个自然数为"希望数〞。
那么,1000以内最大的"希望数〞是。
9.将等边三角形纸片按图3所示步骤折叠3次〔图3中的虚线是三边的中点的连线然后沿过两边的中点的直线减去一角〔如图4〕将剩下的纸片展开,平铺.得到的图形是。
10.如图5,甲、乙两人按箭头方向从A点问时出发,沿着正方形ABCD的边行走,正方形ABCD 的边长是100米,甲的速度是乙的速度的1.5倍,两人在E点第一次相遇,那么三角形ADE 的面积比EBC三角形的面积大平方米。
11.星期天早晨,哥哥和弟弟去练习跑步。
哥哥每分钟跑110米,弟弟每分钟跑80米。
弟弟比哥哥多跑了半小时,结果比哥哥多跑了900米。
那么,哥哥跑了米。
12.小明带了30元钱去买文具,买了3个笔记本和5支笔,剩余的钱,如果再买2支笔还差0.4元,如果再买2个笔记本那么还差2元。
那么,笔记本每个元,笔每支元。
13.数学家维纳是控制论的创始人。
在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄。
维纳的问答很有趣,他说:"我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0〜9这10个数字全都用上了,不重也不漏。
希望杯2023数学竞赛五年级一试解析一、赛事背景希望杯数学竞赛是一项旨在提高学生数学素养和解决问题能力的竞赛活动,致力于促进学生对数学的兴趣和热爱。
每年都吸引了众多学生参与,展现出了良好的影响力和号召力。
二、目标对象本次解析主要针对参加希望杯数学竞赛的五年级学生,对于初步入门的数学知识和解题方法进行梳理和解析,帮助学生更好地应对竞赛。
三、试题解析1. 题目一:小亮的花园有10米长,6米宽,他要用0.5米宽的砖砌一圈,他需要多少砖?解析:首先计算出花园的周长,即2*(10+6)=32米,然后将周长除以砖的宽度,即32/0.5=64块砖。
2. 题目二:甲、乙两人共有25张邮票,甲有乙的3/5,共有几张邮票?解析:设乙有x张邮票,则甲有3/5*x张邮票,根据题意得出3/5x+x=25,解得x=10,所以甲有15张,乙有10张。
3. 题目三:在1至100中,6的倍数之和与10的倍数之和之差是多少?解析:首先计算出1至100中6的倍数之和为6+12+……+96=6*(1+2+……+16)=6*51*8=2448,然后计算10的倍数之和为10+20+……+100=10*(1+2+……+10)=10*55*5=2750,最后计算差值为2750-2448=302。
四、解题技巧1. 充分利用图形和图表:对于与形状和数量相关的问题,可以绘制简单的图形或图表来帮助理解和解决问题。
2. 善于分析和转化:对于一些复杂的问题,可以尝试分析和转化问题,将大问题分解成小问题来解决。
3. 多做练习:数学是一个需要不断练习的学科,通过多做练习能够提高解题能力和速度。
五、总结希望杯数学竞赛五年级一试的试题涉及到了数学中的基础知识和解题方法,在解题过程中需要学生善于分析、转化问题,灵活运用所学的知识。
希望通过本次解析能够帮助学生更好地理解和应对数学竞赛中的问题,提高数学解题能力。
祝愿参加希望杯数学竞赛的小学生们取得优异的成绩,享受数学学习的乐趣。
第四届小学“希望杯”全国数学邀请赛(五年级一试)以下每题5分,共120分1.2006+200.6+20.06+2.006+994+99.4+9.94+0.994=1 12.2006X 2008X 1----- 1--- +----- 1 --- |=2006 2007 2007 20083.0.3+0.8+0.2=.(结果写成分数形式)4.规定:A*B=3A+2B,如4*5=3 乂 4+2X 5,那么,B*A=.5.如果a=2005 ,b= 型,那么a,b中较大的数是^2006 20071.1+2+3+…+2006被7除,余数是.7.口、。
分别代表两个数,并且口 -。
=107=,那么口 =8.某品牌的家用电冰箱的冷冻室的温度是零下18° C,冷藏室比冷冻室的温度高22 C,则冷藏室的温度是° C.19.如果某商品涨价20%销售量将减少1,那么涨价后的销售金额和涨价前的销售金额相比6较,.(填“变得大了”、“变得小了”或“没有变化”)10.小明和小刚各有玻璃弹球若干个。
小明对小刚说:“我若给你2个,我们的玻璃弹球将一样多。
”小刚说:“我若给你2个,我的弹球数量将是你的弹球数量的三分之一。
”小明和小刚共有玻璃弹球个。
11.和为15的两个非零自然数共有______________ 对。
12.大小两个数的和是2026.06,将较小数的小数点向右移动两位恰好是大数,则大数减小13.用10根火柴棒首尾顺次连接成一个三角形,能接成不同的三角形有___________________________ 个14.如图1,三个图形的周长相等,则a: b: c=15 .由27个棱长为1的小正方体组成一个棱长为3的大正方体,若自上而下去掉中间的3个 小正方体,如图2所示,则剩下的几何体的表面积是 .16 .将6个灯泡排成一行,用。
和•表示灯亮的灯不亮,图3是这一行灯的五种情况,分别表示 五个数字:1, 2, 3, 4, 5。
第四届“期望杯”小学五年级数学竞赛试题
(2011年12月18日上午9:00—10:30;满分100分)
学校:班级:座位号:姓名:成绩:
一、填空(每小题5分,共50分)
1.15.48×35-154.8×1.9+15.48×84=()
2011×201220122012-2012×201120112011=()
2.
3.76×a×375的积的末尾有6 个连续的0,a最小是( )。
4.一个立体图形,从上面看到的形状是,从正面看到的形状也是。
摆这样一个立体图开形最少要()个小立方体,最多可以有()个小立方体。
5.
6.三天打鱼,两天晒网,按照这样的方式,在100天内打鱼的天数是()天。
7.某个游戏,满分为100分,每人可以做4次,游戏的成绩为4次的平均分。
小王的平均分为95分,那么,他任何一次游戏的得分都不能低于()分。
8.甲对乙说:“我的年龄是你的3倍。
”乙对甲说:“我5年后的年龄和你11年前的年龄一样。
”甲今年()岁,乙今年()岁。
9.暑假小明去游园,遇到了甲、乙、丙、丁四位同学,小明和四位同学都握了手,甲和3个人握了手,乙和2个人握了手,丙和1个人握了手,那么丁和()个人握了手。
10.12345678910111213......484950是一个很多位数,从中划去85个数字,使剩下的数字(先后顺序不变)组成一个最大的多位数。
这个最大多位数是()。
二、解答题(要求写出解题过程,每小题10分,共50分)
1.吴老师给学生是发练习本,每人分7本还多出7本,如果每人多发2本,就有一个同学分不到,那么一共有多少个同学?多少本练习本?
2.一辆摩托车以平均每小时20千米的速度行完60千米的路程,在回来的时候,它的平均速度是每小时30千米,这辆摩托车在整个来回的旅程中,平均速度是多少?
3.租用仓库堆放2吨货物,每月租金是6000元,这些货物原来估计要销售2个月;由于降低了价格,结果一个月就销售完了,因此节省了租金,结算下来,反而多赚了1000元,每千克货物降价多少元?
4.正方形操场四周栽了一圈树,每两棵树相隔5米。
甲乙二人同时从一个角出发,向不同的方向走去(如下图),甲的速度是乙的2倍,乙在拐了第一弯之后的第5棵树与甲相遇。
操场四周一共栽了多少棵树?
5.甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒钟可追上乙;若甲让乙先跑2秒钟,则甲跑4秒钟就能追上乙。
问:甲、乙二人的速度各是多少?
小学数学五年级竞赛参考答案
一、填空(每小题5分,共50分)
1.1548 0
2.24
3.2000
4.5 6
5.略
6.60
7.80
8.24 8
9.2
10.9999 95
二、解答题(要求写出解题过程,每小题10分,共50分)
1.吴老师给学生是发练习本,每人分7本还多出7本,如果每人多发2本,就有一个同学分不到,那么一共有多少个同学?多少本练习本?
解答:7+9=16本16÷2=8人7×9=63本
2.一辆摩托车以平均每小时20千米的速度行完60千米的路程,在回来的时候,它的平均速度是每小时30千米,这辆摩托车在整个来回的旅程中,平均速度是多少?
解答:60×2÷(3+2)=24千米/时
3.租用仓库堆放2吨货物,每月租金是6000元,这些货物原来估计要销售2个月;由于降低了价格,结果一个月就销售完了,因此节省了租金,结算下来,反而多赚了1000元,每千克货物降价多少元?
解答:
6000-1000=5000元
5000÷2=2500元
2500÷1000=2.5元
4.正方形操场四周栽了一圈树,每两棵树相隔5米。
甲乙二人同时从
一个角出发,向不同的方向走去(如下图),甲的速度是乙的2倍,乙
在拐了第一弯之后的第5棵树与甲相遇。
操场四周一共栽了多少棵树?
解答
由于甲速是乙速的2倍,所以乙在拐了第一弯时,甲正好拐了两个
弯,即两个人开始同时沿着最上边走。
乙走过了5棵树,也就是走过了5个间隔,所以甲走过了10个间隔,四周一共有(5+10)×4=60个间隔,根据植树问题,一共栽了60棵树。
5.甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒钟可追上乙;若甲让乙先跑2秒钟,则甲跑4秒钟就能追上乙。
问:甲、乙二人的速度各是多少?
解答
若甲让乙先跑10米,则10米就是甲、乙二人的路程差,5秒就是追及时间,据此可求出他们的速度差为10÷5=2(米/秒);若甲让乙先跑2秒,则甲跑4秒可追上乙,在这个过程中,追及时间为4秒,因此路程差就等于2×4=8(米),也即乙在2秒内跑了8米,所以可求出乙的速度为:10÷5×4÷2=4(米/秒),甲的速度为:10÷5+4=6(米/秒)。