超声波测距专用集成电路LM修订稿
- 格式:docx
- 大小:37.71 KB
- 文档页数:4
实验报告传感器应用技术课程名称超声波测距温度补偿班级 10电子1姓名百仪学号10732110指导教师承浩2011-2012学年第二学期(一)设计目的采用超声波测量距离的方法,实时检测现场温度用以实现实际波速的校准,减小温度对测距产生的误差,最终由LCD液晶显示所测距离、温度与对应的波速,测量围为7cm~1m,误差±2cm。
(二)设计方案超声波传声器结构简单、行能可靠、成本低、易集成,因此采用超声波测距的方式进行距离测量。
在常温下,超声波的传播速度为340m/s,但其传播速度V易受到空气中的温度、湿度、压强等因素的影响,其中温度的影响最大。
一般温度每升高1摄氏度,声速增加约为0.6m/s。
表1为超声波在不同温度下的波速值。
由此可见温度对超声波测距系统的影响是不可忽略的。
为了得到较为精确的测量结果,必须对波速进行温度补偿。
通过实验可获得波速与温度之间的经验模型:V=331.5+0.607T,T为现场温度,V为实际波速。
从式中可看出,要获得精确的波速值,必须首先获取现场温度T的大小。
本设计采用ds18b20检测现场温度,用以实现实际波速的校准。
超声波测距原理超声波传感器分机械方式和电气方式两类,它实际上是一种换能器,在发射端它把电能或机械能转换成声能,接收端则反之。
本次设计超声波传感器采用电气方式中的压电式超声波换能器,它是利用压电晶体的谐振来工作的。
它有两个压电晶片和一个共振板。
当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频率时,压电晶片将会发生共振,并带动共振板振动,产生超声波。
反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,就成为超声波接收器。
在超声波电路中,发射端输出一系列脉冲方波,脉冲宽度越大,输出的个数越多,能量越大,所能测的距离也越远。
超声波发射换能器与接收换能器其结构上稍有不同,使用时应分清器件上的标志。
超声波测距的方法有多种:如往返时间检测、相位检测法、声波幅值检测法。
LM1812超声波遥控专用集成电路LM1812是一种性能优良,且即能发送又能接收超声波的通用型超声波集成器件。
芯片内部包括:脉冲调制C类振荡器、高增益接收器、脉冲调制检测器及噪音抑制器。
它除了可用于遥控器、报警器、自动门控制及通信方面外,还可用于工业上的料位或液位的测量与控制、测距及测厚等方面,应用十分广泛。
(1)外形及引脚功能LM1812超声波专用器件外形为18脚双列直插塑料土封装形式,其外形及引脚排列见图1-1,相应引脚功能为;1脚第二增益级输出/振荡器端,6脚发射器输出端,7脚发射驱动器13脚外接电源退耦电容端,14脚检出器输出端,16脚输出驱动器端,17脚噪声控制端,18脚积分器复位时间常数控制端。
图1 -2为其内部原理框图。
(2)持点及电气参数1、特点LM1812具有如下特点:a、可以使用一个发送/接收换能器工作,也可使用两个换能器分别发送和接收超声波b、器件具有互换性。
c、在电路中使用时不用外接晶体管驱动。
d、使用时不用外接散热器。
e、器件内部具有保护电路。
检测器输出可驱动1A的峰值电流。
f、在水中测距超过30m,在空气中测距超过6m。
g、发送功率可达12W(峰值)。
2、电气参数表1-1和表1-2分别给出了LM1812超声波专用电路的极限工件参数和典型电气参数值表1-1 极限工作参数工作原理LM1812第1脚外接L1、C1决定了电路发送或接收的工作频率,其工作频率fo=1/(2π ),最高可达325kHz。
当8脚为高电平时,L1、C1振荡槽路被切换为振荡模式,振荡信号经驱动放大后,由13脚及6脚输出(一般6、13脚之间接变压器,以便与超声波发送器阻抗匹配)。
为保证输出级不过载,使用时应在6脚测试一下电流,一般此脚峰值电流不能超过1A。
若需更大的功率,可采用外加脉冲放大器的方法来实现,输出电流可达5A;当8脚为高电平时、LM1812处于发送模式;8脚为低电平时,LM1812处于接收模式(8脚输入电流设计在1~10mA范围内)。
目录1.2 课题设计目的及意义日常生活应用发面:人们生活水平的提高,城市发展建设加快,城市车辆逐渐增多,因为停车不当而造成的交通事故也越来越多。
为了避免此类事故的发生,一个能够直观地测出汽车与障碍物之间的距离的装置就变得十分必要。
它可以及时将车辆与障碍物之间的距离反映出来,给司机以更准确的信息和更多的反应时间,减少事故的发生;军事应用方面:超声波声纳已广泛应用于侦查探测等方面,如何提高其测量精度已是正在着重研究的课题之一,相信在不久的将来,超声波测距一定会在侦查反侦察方面起到更大的作用;工业应用方面:超声波测距仪的设计方便了管道的距离探测,消除了一些空间方面的限制,在其测量精度得到提升后,对一些精密设备的测量也将起到良好的效果。
1.3 课题设计任务与要求设计一超声波测距仪,任务:1)了解超声波测距原理。
2)根据超声波测距原理,设计超声波测距器的硬件结构电路。
设计一超声波测距仪,要求:1)设计出超声波测距仪的硬件结构电路。
2)对设计的电路进行分析能够产生超声波,实现超声波的发送与接收,从而实现利用超声波方法测量物体间的距离。
3)对设计的电路进行分析。
4)以数字的形式显示测量距离。
2 方案选择的论证和选择2.1 设计方案一采用单片机来控制的超声波测距仪是先由单片机产生一个信号,经过信号线,把信号引入到与超声波发射器相连的信号引脚上,再由超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。
超声波在空气中的传播速度为340m/s ,根据计时器记录的时间t ,就可以计算出发射点距障碍物的距离(s),即:2/CT D ………………………………………2.1图2-1 采用单片机来控制的超声波测距仪我们做的是基于单片机的超声波测距仪。
用单片机控制超声波的发射、接受电路以及进行数据处理,再用液晶显示屏进行数据的显示。
因为声音的速度会随着温度的变化而改变,所以,我们增加了温控装置,即通过温度传感器(18B20),把当前的温度信息传给单片机,再通过一定的算法,得到当前的声音速度。
汽车倒车雷达系统的设计与实现吴琼;封维忠;马文杰【摘要】为避免汽车倒车过程中发生碰撞,设计一种基于单片机AT89C51的倒车雷达系统,介绍了超声波测距的基本原理,阐述了倒车雷达系统的结构组成、硬件电路设计以及软件设计,并在数据处理部分采用温度补偿消除温度时声速的影响,提高了测距精度.倒车距离采用LCD进行实时显示,并通过语音报警电路对不同距离段做出不同的语音提示.实验表明该倒车雷达系统在30~500 cm范围内可实现准确测距,具有可靠性较高、外围电路简单、实用性强等优点.【期刊名称】《现代电子技术》【年(卷),期】2009(032)009【总页数】4页(P191-194)【关键词】倒车雷达;超声波测距;AT89C51;LM1812;语音报警【作者】吴琼;封维忠;马文杰【作者单位】南京林业大学,信息科学技术学院,江苏,南京,210037;南京林业大学,信息科学技术学院,江苏,南京,210037;南京林业大学,信息科学技术学院,江苏,南京,210037【正文语种】中文【中图分类】TP230 引言随着中国经济的持续增长和汽车价格的持续下降,越来越多的家庭拥有了私家车。
在享受汽车给人们带来便利的同时,由于倒车而产生的问题也日益突出。
据初步调查统计,15%的汽车事故是由汽车倒车“后视”不良造成的[1]。
早期的倒车防撞仪可以测试车后一定距离范围的障碍物从而发出警报,后来发展到根据距离分段报警[2]。
随着人们对汽车驾驶辅助系统易用性要求的提高,对汽车倒车雷达的要求也越来越高。
本文设计的基于单片机AT89C51的倒车雷达,采用美国DALLAS 半导体公司生产的DS18B20单总线型数字温度传感器进行温度补偿提高了测距精度,采用OCMJ12232C_3液晶显示模块对车距进行实时显示和ISD4004语音芯片实现了倒车雷达语音报警的功能,并可以根据距离的不同做出不同的语音提示。
由于采用了超声波专用集成电路芯片LM1812,有效地提高了系统的可靠性和稳定性。
超声波测距专用集成电路LM1812LM1812超声波遥控专用集成电路LM1812是一种性能优良,且即能发送又能接收超声波的通用型超声波集成器件。
芯片内部包括:脉冲调制C类振荡器、高增益接收器、脉冲调制检测器及噪音抑制器。
它除了可用于遥控器、报警器、自动门控制及通信方面外,还可用于工业上的料位或液位的测量与控制、测距及测厚等方面,应用十分广泛。
(1)外形及引脚功能LM1812超声波专用器件外形为18脚双列直插塑料土封装形式,其外形及引脚排列见图1-1,相应引脚功能为;1脚第二增益级输出/振荡器端,6脚发射器输出端,7脚发射驱动器13脚外接电源退耦电容端,14脚检出器输出端,16脚输出驱动器端,17脚噪声控制端,18脚积分器复位时间常数控制端。
图1 -2为其内部原理框图。
(2)持点及电气参数1、特点LM1812具有如下特点:a、可以使用一个发送/接收换能器工作,也可使用两个换能器分别发送和接收超声波b、器件具有互换性。
c、在电路中使用时不用外接晶体管驱动。
d、使用时不用外接散热器。
e、器件内部具有保护电路。
检测器输出可驱动1A的峰值电流。
f、在水中测距超过30m,在空气中测距超过6m。
g、发送功率可达12W(峰值)。
2、电气参数表1-1和表1-2分别给出了LM1812超声波专用电路的极限工件参数和典型电气参数值表1-1 极限工作参数(3)工作原理LM1812第1脚外接L1、C1决定了电路发送或接收的工作频率,其工作频率fo=1/(2π ),最高可达325kHz。
当8脚为高电平时,L1、C1振荡槽路被切换为振荡模式,振荡信号经驱动放大后,由13脚及6脚输出(一般6、13脚之间接变压器,以便与超声波发送器阻抗匹配)。
为保证输出级不过载,使用时应在6脚测试一下电流,一般此脚峰值电流不能超过1A。
若需更大的功率,可采用外加脉冲放大器的方法来实现,输出电流可达5A;当8脚为高电平时、LM1812处于发送模式;8脚为低电平时,LM1812处于接收模式(8脚输入电流设计在1~10mA范围内)。
#include <r eg52.h>//8052内核单片机#include <intrins.h>//调用_nop_()单周期延时unsigned char L ED_SEG[]={0x88,0xBE,0xC4,0x94,0xB2,0x91,0x81,0xBC,0x80,0x90,0xF7,0 xff};unsigned char D1,D2,D3,D4;//数码管显示变量unsigned long j u_li;//距离变量unsigned int s hi_cha,haomi;//时差,以毫米为单位的长度unsigned char x un_huan_ci_shu;//记录主循环循环的次数unsigned char sqys,sdbxgs;//死区延时,设定波形输出个数sbit huibo=P1^7;//接收电路的回波信号sbit k ey1=P2^0;//调整死区时间sbit k ey2=P2^1;//调整波形个数void C SB_SC(unsigned char geshu)//超声波输出子程序,传递参数:超声波个数{//子程序开始P1=P1&0XFE;//准备输出do//do-while循环{//循环开始P1=P1^0X03;//P1.0和P1.1取反_nop_();_nop_();_nop_();//3µS延时_nop_();_nop_();_nop_();//3µS延时_nop_();_nop_();_nop_();//3µS延时_nop_();_nop_();//2µS延时,连同取反2µS共13µSP1=P1^0X03;//P1.0和P1.1取反_nop_();_nop_();_nop_();//3µS延时_nop_();_nop_();_nop_();//3µS延时_nop_();_nop_();//2µS延时}while(--geshu);//循环结束,跳转回开始需要2µS,共12µSP1=P1|0X03;//结束输出}//子程序结束void y an_shi(unsigned int shuju)//延时,地球人都知道{//延时开始while(--shuju);//延时主体,不断减1,耗时}//延时结束void chushihua(void)//初始化子程序{//开始TMOD=0x01;//定时器0工作于16位模式(0-65535)sqys=200;//死区延时开机设定为200sdbxgs=20;//初始化时设定每次发送20个周期波形}//结束void c e_ju(void)//测距主程序(科技含量在这){//开始T H0=0X00;//定时器计数清零(高八位)T L0=0X00;//定时器计数清零(低八位)T F0=0;//清溢出标志T R0=1;//启动定时器开始计时C SB_SC(sdbxgs);//立即按传来的参数输出超声波y an_shi(sqys);//延时一段时间,防止发射波干扰while(huibo && (T F0==0));//等待回波信号及溢出信号//即如果没有收到回波就一直等待下去//但也不能死等,等待超过65535µS后仍然没有回波就放弃T R0=0;//收到回波或超时,停止定时器,冻结定时器的值if(T F0)//判断是否超时(定时器是否溢出){//如果条件成立(确实超过65535µS未收到回波)D1=D2=D3=D4=10;//超时未收到回波,显示"----"}//成立时处理完毕else//未超时并收到回波{//未超时,确实在发出超声波65535µS内收到回波s hi_cha=T H0*256+T L0;//从定时器中取出计时值,即往返时差j u_li=170L*s hi_cha;//距离=声速×往返时间÷2,即距离=170×往返时差//得到的距离单位是µM,因为定时器计得的时间为微秒haomi=j u_li/1000;//把得到的距离除以1000,得到以毫米为单位的长度数据D1=haomi/1000;//除以1000,得到米D2=haomi%1000/100;//模1000,剩下几百几百的数,除以100,得到分米D3=haomi%100/10;//模100,剩下几十几十的数,除以10,得到厘米D4=haomi%10;//直接模10,剩下几的数,得到毫米}//未超时处理完毕}//测距子程序处理完毕void L ED_SCAN(void)//数码管扫描子程序{//扫描程序开始P2=P2|0XF0;//通过或操作将P2高四位置1,关闭数码管①P0=L ED_SEG[D2];//输出段码在P0口②P2=P2&0xBF;//通过与的方式将P2.6变成低电平,打开D1③y an_shi(500);//延时一段时间④P2=P2|0XF0;//同①P0=L ED_SEG[D3];//同②P2=P2&0xDF;//类似③y an_shi(500);//同④P2=P2|0XF0;//同①P0=L ED_SEG[D4];//同②P2=P2&0xEF;//类似③y an_shi(500);//同④P2=P2|0XF0;//同①P0=0X7F&L ED_SEG[D1];//同②,但还要跟0X7F进行与运算,将小数点位变0 P2=P2&0x7F;//类似③y an_shi(500);//同④}//扫描程序结束void main(void)//主程序{//主程序开始chushihua();//初始化,设置定时器工作模式while(1)//主循环{//主循环开始L ED_SCAN();//扫描数码管x un_huan_ci_shu++;//主循环每循环一次,变量加一if(x un_huan_ci_shu>=5)//每循环5次,就进行一次测距,控制测距间隔时间 {//已达5次主循环P2=P2|0XF0;//关闭数码管,避免某个数码管长时间被点亮ce_ju();//调用测距子程序进行测距xun_huan_ci_shu=0;//循环计数变量清零}//测距间隔时间控制处理完毕if(!k ey1)//死区延时按钮被按下{//按键处理开始sqys=sqys+5;//死区延时增加if(sqys>250){sqys=0;}//越界检测并抓回D1=11;//关闭第一个数码管D2=sqys/100;//获得百位D3=sqys%100/10;//获得十位D4=sqys%10;//获得各位while(!k ey1)//按键是否持续按下{//循环开始,等待按键松开L ED_SCAN();//如果没有松开,扫描数码管,显示死区延时}//循环尾}//按键处理结束,按键已松开if(!k ey2)//波形个数按钮被按下{//按键处理开始sdbxgs=sdbxgs+1;//输出波形数量增加if(sdbxgs>100){sdbxgs=0;}//越界检测并抓回D1=11;//关闭第一个数码管D2=sdbxgs/100;//获得百位D3=sdbxgs%100/10;//获得十位D4=sdbxgs%10;//获得各位while(!k ey2)//按键是否持续按下{//循环开始,等待按键松开L ED_SCAN();//如果没有松开,扫描数码管,显示发波个数}//循环尾}//按键处理结束,按键已松开}//主循环结束}//主程序结束。
本科毕业设计(论文) 题目基于单片机的超声波测距仪设计毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
目录摘要 (2)第一章系统总体设计方案 (4)1.1 超声波测距原理 (4)1.2 超声波测距系统 (4)第二章系统的硬件设计 (5)2.1 超声波发生电路 (5)2.2 超声波接收电路 (6)2.3 温度的补偿 (8)2.4 LED动态显示电路 (8)第三章系统软件设计 (9)3.1 主程序结构 (10)3.2 中断程序结构 (11)3.3回波接收程序 (11)第四章误差分析 (12)4.1.时间误差 (12)4.2.超声波传播速度误差 (12)第五章调试 (12)第六章整机原件清单 (13)第七章总结 (13)7.1设计任务完成情况 (13)7.2 心得体会 (14)参考文献 (15)附录一 (16)附录二 (17)附录三 (18)摘要高度定位控制和测量系统也就是我们常说的超声波测距。
由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。
而电子技术及压电陶瓷材料的发展,使高度定位控制和测量系统得到了迅速的发展。
超声测距是一种非接触式的检测技术。
与其它方法相比,它不受光线、被测物处于黑暗、有灰尘、烟雾、电磁干扰、有毒等恶劣的环境下有一定的适应能力。
因此在液位测量、机械手控制、车辆自动导航、物体识别等有广泛应用。
特别是应用于空气测距,由于空气中波速较慢,其回波信号中包含的沿传播方向上的结构信息很容易检测出来,具有很高的分辨率,因而其准确度也较其它方法为高;而且超声波传感器具有结构简单、体积小、信号处理可靠等特点。
关键字:传感器、测距、测量系统、设计、高度定位PICKHighly positioning control and measurement system is also we often say the ultrasonic ranging. Due to the strong, the energy consumption of ultrasonic directivity slowly in the medium of communication, distance, and is often used to measure the distance of ultrasonic, such as rangefinder and material level measurement instrument etc can all through the ultrasonic. And electronic technology and the development of piezoelectric ceramic materials, high positioning control and measuring systems have been developed rapidly.Ultrasonic ranging is a non-contact detection technologies. Compared with other methods, it is light and darkness, the analyte in dust, smoke, electromagnetic interference, toxic etc harsh environments have certain ability to adapt. Therefore, in robot control level measurement, vehicle navigation, automatic object recognition is widely used. Especially the application in the air, the air velocity range due to low, the echo signal along the direction of propagation of contains information on the structure, very easily with high resolution, and its accuracy is higher than other methods for, And the ultrasonic sensor has simple structure, small volume, the characteristic such as being reliable signal processing.Key words: sensor, and measurement system, the design, the high position第一章系统总体设计方案1.1 超声波测距原理超声波测距的原理是利用超声波在空气中的传播速度为已知,测量声波在发射后遇到障碍物反射回来的时间,根据发射和接收的时间差计算出发射点到障碍物的实际距离。
0 引言目前,汽车车辆测距方法主要有:超声波测距、激光测距、雷达测距等三种。
采用超声波测距电路电子技术具有测距精确、灵敏度高、成本低、易于做到实时控制等优点,在汽车倒车预警测距电器装置中得到了广泛的应用。
汽车超声波测距电子电路技术,主要是解决汽车行驶的安全距离问题,超过安全距离,超声波测距防碰撞系统立即报警以至自动采取减速措施,使车辆处于安全状态。
1 汽车超声波测距工作原理汽车超声波测距的声波频率一般为40 kHz。
如图1所示,汽车超声波倒车报警系统装置。
系统有四个超声波传感器,均匀安装在汽车后保险杠上未喷漆的部位内。
超声波传感器既是执行元件又是传感器,既可发射信号,也可接收信号。
如图2所示,超声波传感器由一个无线电收发机和一个整理器构成(见图3),整理器将回波信号转换成数字信号传递给控制单元。
简单的工作过程是:当挂上倒挡时,超声波倒车测距系统即开始工作,发出“嘟嘟”的声音,表明该系统状态良好;当车与障碍物相距约1.6 m 时,听见间歇警报声。
离障碍物越近,声音越急促,距离小于约0.2 m 时,连续发出警报声。
回波信号被转换成数字信号,并将其传递到控制单元,控制单元根据回波的传播时间计算出与障碍物的距离,即:s=340 t/2(超声波常温下在空气中的传播速度为340 m/s)。
图1图2 超声波传感器结构图3 整理器构成2 超声波测距电路分析超声波测距电路由超声波发射电路、接收放大电路、倍压检波电路和实时监控电路四个部分组成,下面详细分析各组成电路的工作过程。
2.1 超声波发射电路超声波发射电路见图4,是555IC1定时器产生40 kHz 超声波的信号电路原理图。
电路中电阻R1、R2、电位器RP1和电容C2是外接定时元件,决定输出矩形脉冲的振荡频率和周期。
电路工作过程:按下电源按钮开关SA1后,作者简介:朱伟文(1972-),男,广东河源人,本科,中级,维修电工高级技师,研究方向:汽车电子电气。
浅析汽车倒车防撞系统超声波测距电路朱伟文(广州市交通运输职业学校,广州 510440)摘 要:本文从汽车超声波测距基本原理开始,运用电路分析的方法,剖析超声波测距电子电路原理、组成、元件功能和工作过程;并以汽车超声波测距系统控制电子电路的实例(LM1812超声波控制电路),详细阐述了日产汽车倒车防撞报警系统超声波测距电路工作过程,希望能够为相关初学者和工作者提供借鉴。
超声波测距专用集成电
路L M
集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]
超声波测距专用集成电路L M1812
LM1812超声波遥控专用集成电路
LM1812是一种性能优良,且即能发送又能接收超声波的通用型超声波集成器件。
芯片内部包括:脉冲调制C类振荡器、高增益接收器、脉冲调制检测器及噪音抑制器。
它除了可用于遥控器、报警器、自动门控制及通信方面外,还可用于工业上的料位或液位的测量与控制、测距及测厚等方面,应用十分广泛。
(1)外形及引脚功能
LM1812超声波专用器件外形为18脚双列直插塑料土封装形式,其外形及引脚排列见图1-1,相应引脚功能为;1脚第二增益级输出/振荡器端,6脚发射器输出端,7脚发射驱动器13脚外接电源退耦电容端,14脚检出器输出端,16脚输出驱动器端,17脚噪声控制端,18脚积分器复位时间常数控制端。
图1-2为其内部原理框图。
(2)持点及电气参数
1、特点
LM1812具有如下特点:
a、可以使用一个发送/接收换能器工作,也可使用两个换能器分别发送和接收超声波
b、器件具有互换性。
c、在电路中使用时不用外接晶体管驱动。
d、使用时不用外接散热器。
e、器件内部具有保护电路。
检测器输出可驱动1A的峰值电流。
f、在水中测距超过30m,在空气中测距超过6m。
g、发送功率可达12W(峰值)。
2、电气参数
表1-1和表1-2分别给出了LM1812超声波专用电路的极限工件参数和典型电气参数值
表1-1极限工作参数
(3)工作原理
LM1812第1脚外接L 1、C 1决定了电路发送或接收的工作频率,其工作频率fo =1/(2π),最高可达325kHz 。
当8脚为高电平时,L 1、C 1振荡槽路被切换为振荡模式,振荡信号经驱动放大后,由13脚及6脚输出(一般6、13脚之间接变压器,以便与超声波发送器阻抗匹配)。
为保证输出级不过载,使用时应在6脚测试一下电流,一般此脚峰值电流不能超过1A 。
若需更大的功率,可采用外加脉冲放大器的方法来实现,输出电流可达5A ;当8脚为高电平时、LM1812处于发送模式;8脚为低电平时,LM1812处于接收模式(8脚输入电流设计在1~10mA 范围内)。
超声波接收器接收到的超声波信号经电容耦合由4脚输入,再经内部两级放大后同由1脚的谐振回路取出的信号一起送到检测器。
但由于此时噪声脉冲也同样被检测,所以要通过17脚外接R17、
C17进行滤波。
电阻R17和电容C17的时间常数一般为发送时间的10%~50%。
再经过积分延时,16脚和14脚变成低电平。
又当1脚上的电压变的小到不能触发检测器(小于1.4V)时,积分器经延时后复位,典型延时为1~10个发送频率周期。
当LM1812处于发送模式时,第二级放大器自动断开;当切换回接收模式时,第二级放大器并不马上接通,而是在由9脚外接电容引起一段延时后再接通。
这个延时使接收器暂时封闭(检测器也同时封闭),这样就为超声波发生器停止振荡提供了时间。
9脚外接电容C9的大小与延时有关,C9=0.1μF时,延时时间约为1ms;C9=
1μF时,延时时间约为10ms。
LM1812的第16脚提供与COMS兼容的逻辑输出,14脚为集电极开路输出,14脚的吸收电流超过1A时,在多重回波接收情况下就可能使芯片损坏。
因此11脚被设计成保护14脚功率输出端,其外接电容C11在14脚为低电平时(吸收电流)对内部电流进行积分。
当电容C11上电压达0.7V时,第二次打开工作。
若将11脚接地,则此功能失效。
超声波芯片lm1812应用电路。