命题的四种形式
- 格式:doc
- 大小:46.28 KB
- 文档页数:5
1.3 充分条件、必要条件与命题的四种形式一、知识梳理:1、 四种命题(1)、命题是可以 可以判断真假的语句 ,具有 “若P,则q 的形式;(2)、一般地用P 或q 分别表示命题的条件或结论,用或 分别表示P 和q 的否定,于是四种命题的形式就是:原命题: 逆命题: 否命题: 逆否命题:(3)、四种命题的关系:两个互为逆否命题的真假是相同的,原命题的逆命题与原命题的否命题同真同假。
2、 充分条件、必要条件与充要条件(1)“若p ,则q”为真命题,记,则p 是q 的充分条件,q 是p 的必要条件。
(2)如果既有,又有,记作,则p 是q 的充要条件,q 也是p 的充要条件。
3、 判断充分性与必要性的方法:p q ⇒p q ⇒q p ⇒p q ⇔(一)、定义法(1)、且q ,则p是q的充分不必要条件;(2)、,则p是q的必要不充分条件;(3)、,则p是q的既不充分也不必要条件;(4)、且,则p是q的充要条件;(二)、集合法:利用集合间的包含关系判断命题之间的充要关系,设满足条件p的元素构成集合A,满足条件q的元素构成集合B;(1)、若A,则p是q的充分条件若,则p是q的必要条件;(2)、若A,则p是q的充要条件;(3)、若A,且A,则p是q的充分不必要条件;q是p的必要不充分条件;(4)、若A,且,则p是q的既不充分也不必要条件;二、题型探究【探究一】:四种命题的关系与命题真假的判断例1:[2014·陕西卷] 原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是(B)A.真,假,真B.假,假,真C.真,真,假D.假,假,假例2:写出下列命题的逆命题、否命题、逆否命题并判断其真假。
(1)等底等高的两个三角形是全等三角形;(2)若ab=0,则a=0或b=0。
解析:(1)逆命题:若两个三角形全等,则这两个三角形等底等高。
真命题;否命题:若两个三角形不等底或不等高,则这两个三角形不全等。
1.3.2命题的四种形式学习目标 1.了解四种命题的概念,会写出所给命题的逆命题、否命题和逆否命题.2.认识四种命题之间的关系以及真假性之间的联系.3.会利用命题的等价性解决问题.知识点一四种命题的概念命题“如果p,则(那么)q”是由条件p和结论q组成的,对p,q进行“换位”和“换质”,一共可以构成四种不同形式的命题.(1)原命题:如果p,则q;(2)条件和结论“换位”:如果q,则p,这称为原命题的逆命题;(3)条件和结论“换质”(分别否定):如果綈p,则綈q,这称为原命题的否命题.(4)条件和结论“换位”又“换质”:如果綈q,则綈p,这称为原命题的逆否命题.知识点二四种命题间的相互关系(1)四种命题间的关系(2)四种命题间的真假关系由上表可知四种命题的真假性之间有如下关系:①两个命题互为逆否命题,它们有相同的真假性,即两命题等价;②两个命题为互逆命题或互否命题,它们的真假性没有关系,即两个命题不等价.1.有的命题没有逆命题.(×)2.两个互逆命题的真假性相同.(×)3.对于一个命题的四种命题,可以一个真命题也没有.(√)4.一个命题的四种命题中,真命题的个数一定为偶数.(√)题型一四种命题的结构形式例1把下列命题写成“若p,则q”的形式,并写出它们的逆命题、否命题与逆否命题.(1)正数的平方根不等于0;(2)当x=2时,x2+x-6=0;(3)对顶角相等.解(1)原命题:若a是正数,则a的平方根不等于0.逆命题:若a的平方根不等于0,则a是正数.否命题:若a不是正数,则a的平方根等于0.逆否命题:若a的平方根等于0,则a不是正数.(2)原命题:若x=2,则x2+x-6=0.逆命题:若x2+x-6=0,则x=2.否命题:若x≠2,则x2+x-6≠0.逆否命题:若x2+x-6≠0,则x≠2.(3)原命题:若两个角是对顶角,则它们相等.逆命题:若两个角相等,则它们是对顶角.否命题:若两个角不是对顶角,则它们不相等.逆否命题:若两个角不相等,则它们不是对顶角.反思感悟由原命题写出其他三种命题的关键是找到原命题的条件和结论,根据其他三种命题的定义,确定所写命题的条件和结论.跟踪训练1写出下列命题的逆命题、否命题、逆否命题.(1)实数的平方是非负数;(2)等底等高的两个三角形是全等三角形.解(1)逆命题:若一个数的平方是非负数,则这个数是实数.否命题:若一个数不是实数,则它的平方不是非负数.逆否命题:若一个数的平方不是非负数,则这个数不是实数.(2)逆命题:若两个三角形全等,则这两个三角形等底等高.否命题:若两个三角形不等底或不等高,则这两个三角形不全等.逆否命题:若两个三角形不全等,则这两个三角形不等底或不等高.题型二四种命题的真假判断例2写出下列命题的逆命题、否命题、逆否命题,并判断其真假.(1)若a>b,则ac2>bc2;(2)若四边形的对角互补,则该四边形是圆的内接四边形.解(1)逆命题:若ac2>bc2,则a>b.真命题.否命题:若a≤b,则ac2≤bc2.真命题.逆否命题:若ac2≤bc2,则a≤b.假命题.(2)逆命题:若四边形是圆的内接四边形,则该四边形的对角互补.真命题.否命题:若四边形的对角不互补,则该四边形不是圆的内接四边形.真命题.逆否命题:若四边形不是圆的内接四边形,则该四边形的对角不互补.真命题.反思感悟若原命题为真命题,则它的逆命题、否命题可能为真命题,也可能为假命题.原命题与逆否命题互为逆否命题,否命题与逆命题互为逆否命题.互为逆否命题的两个命题的真假性相同.在原命题及其逆命题、否命题、逆否命题中,真命题的个数要么是0,要么是2,要么是4. 跟踪训练2下列命题中为真命题的是()①“若x2+y2≠0,则x,y不全为零”的否命题;②“正三角形都相似”的逆命题;③“若m>0,则x2+x-m=0有实根”的逆否命题;④“若x-2是有理数,则x是无理数”的逆否命题.A.①②③④B.①③④C.②③④D.①④答案 B解析 ①原命题的否命题为“若x 2+y 2=0,则x ,y 全为零”.故为真命题.②原命题的逆命题为“若两个三角形相似,则这两个三角形是正三角形”.故为假命题. ③原命题的逆否命题为“若x 2+x -m =0无实根,则m ≤0”. ∵方程无实根,∴判别式Δ=1+4m <0,∴m <-14<0.故为真命题.④原命题的逆否命题为“若x 不是无理数,则x -2不是有理数”. ∵x 不是无理数,∴x 是有理数.又2是无理数,∴x -2是无理数,不是有理数.故为真命题. 故正确的命题为①③④,故选B. 题型三 等价命题的应用例3 证明:已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,若f (a )+f (b )≥f (-a )+f (-b ),则a +b ≥0.证明 原命题的逆否命题为“已知函数f (x )是(-∞,+∞)上的增函数,a ,b ∈R ,若a +b <0, 则f (a )+f (b )<f (-a )+f (-b )”. 若a +b <0,则a <-b ,b <-a . 又∵f (x )在(-∞,+∞)上是增函数, ∴f (a )<f (-b ),f (b )<f (-a ), ∴f (a )+f (b )<f (-a )+f (-b ). 即原命题的逆否命题为真命题. ∴原命题为真命题.反思感悟 因为原命题与其逆否命题是等价的,可以证明一个命题的逆否命题成立,从而证明原命题也是成立的.正确写出原命题的逆否命题是证题的关键.跟踪训练3 判断命题“已知a ,x 为实数,若关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集不是空集,则a ≥1”的逆否命题的真假. 解 先判断原命题的真假.因为a ,x 为实数,且关于x 的不等式x 2+(2a +1)x +a 2+2≤0的解集不是空集, 所以Δ=(2a +1)2-4(a 2+2)≥0,即4a -7≥0,解得a ≥74,a ≥74⇒a ≥1,所以原命题为真,又因为原命题与其逆否命题等价,所以逆否命题为真.命题的等价性典例 主人邀请张三、李四、王五三个人吃饭,时间到了,只有张三、李四准时赴约,王五打电话说:“临时有急事,不能去了.”主人听了,随口说了句:“该来的没有来.”张三听了脸色一沉,起来一声不吭地走了,主人愣了片刻,又道了句:“不该走的又走了.”李四听了大怒,拂袖而去.请你用逻辑学原理解释二人离去的原因.解 张三走的原因是:“该来的没有来”的逆否命题是“来了不该来的”,张三觉得自己是不该来的.李四走的原因是:“不该走的又走了”的逆否命题是“没走的应该走”,李四觉得自己是应该走的.[素养评析] 逻辑推理是在数学活动中进行交流的基本思维品质,本例是利用原命题与其逆否命题的等价性的逻辑原理,得出相应的合理解释.1.命题“如果a ∉A ,则b ∈B ”的否命题是( ) A .如果a ∉A ,则b ∉B B .如果a ∈A ,则b ∉B C .如果b ∈B ,则a ∉A D .如果b ∉B ,则a ∉A答案 B解析 命题“如果p ,则q ”的否命题是“如果綈p ,则綈q ”,“∈”与“∉”互为否定形式.2.命题“若綈p ,则q ”的逆否命题为( ) A .若p ,则綈q B .若綈q ,则綈p C .若綈q ,则p D .若q ,则p 答案 C3.下列命题为真命题的是( ) A .命题“若x >y ,则x >|y |”的逆命题 B .命题“若x =1,则x 2>1”的否命题C.命题“若x=1,则x2+x-2=0”的否命题D.命题“若x2>1,则x>1”的逆否命题答案 A解析对A,即判断:若x>|y|,则x>y的真假,显然是真命题.4.在原命题“若A∪B≠B,则A∩B≠A”与它的逆命题、否命题、逆否命题中,真命题的个数为________.答案 4解析逆命题为“若A∩B≠A,则A∪B≠B”;否命题为“若A∪B=B,则A∩B=A”;逆否命题为“若A∩B=A,则A∪B=B”,全为真命题.5.已知命题p:“若ac≥0,则二次不等式ax2+bx+c>0无解”.(1)写出命题p的否命题;(2)判断命题p的否命题的真假.解(1)命题p的否命题为:“若ac<0,则二次不等式ax2+bx+c>0有解”.(2)命题p的否命题是真命题.判断如下:因为ac<0,所以-ac>0⇒Δ=b2-4ac>0⇒二次方程ax2+bx+c=0有实根⇒ax2+bx+c>0有解,所以该命题是真命题.写一个命题的否命题时,要对命题的条件和结论都进行否定,避免出现不否定条件,而只否定结论的错误.若由p经逻辑推理得出q,则命题“若p,则q”为真;确定“若p,则q”为假时,则只需举一个反例说明即可.一、选择题1.“如果x>y,则x2>y2”的逆否命题是()A.如果x≤y,则x2≤y2B.如果x>y,则x2<y2C.如果x2≤y2,则x≤y D.如果x<y,则x2<y2答案 C解析由互为逆否命题的定义可知,把原命题的条件的否定作为结论,原命题的结论的否定作为条件即可得逆否命题.2.命题“如果a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为() A.1 B.2 C.3 D.4答案 B解析原命题显然为真命题,故其逆否命题为真命题,而其逆命题为“如果a>-6,则a>-3”,这是假命题,从而否命题也是假命题,因此只有两个真命题.3.“△ABC中,若∠C=90°,则∠A,∠B全是锐角”的否命题为()A.△ABC中,若∠C≠90°,则∠A,∠B全不是锐角B.△ABC中,若∠C≠90°,则∠A,∠B不全是锐角C.△ABC中,若∠C≠90°,则∠A,∠B中必有一钝角D.以上都不对答案 B解析若∠C≠90°,则∠A,∠B不全是锐角,此处“全”的否定是“不全”.4.若命题p的否命题为q,命题p的逆否命题为r,则q与r的关系是()A.互逆命题B.互否命题C.互为逆否命题D.以上都不正确答案 A解析设p为“如果A,则B”,那么q为“如果綈A,则綈B”,r为“如果綈B,则綈A”.故q与r为互逆命题.5.有下列四个命题:①“如果x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“如果q≤1,则x2+2x+q=0有实根”的逆命题;④“不等边三角形的三个内角相等”的逆否命题.其中真命题的序号为()A.①②B.②③C.①③D.③④答案 C解析 命题①:“如果x ,y 互为相反数,则x +y =0”是真命题;命题②:可考虑其逆命题“面积相等的三角形是全等三角形”是假命题,因此命题②是假命题;命题③:“如果x 2+2x +q =0有实根,则q ≤1”是真命题;命题④是假命题.6.原命题为“若a n +a n +12<a n ,n ∈N +,则{a n }为递减数列”,关于其逆命题、否命题、逆否命题真假性的判断依次如下,正确的是( ) A .真、真、真 B .假、假、真 C .真、真、假 D .假、假、假答案 A解析 从原命题、逆命题的真假入手,a n +a n +12<a n ⇔a n +1<a n ⇔{a n }为递减数列,即原命题、逆命题都为真命题,则其逆否命题、否命题也为真命题.7.设原命题:若a +b ≥2,则a ,b 中至少有一个不小于1,则原命题与其逆命题的真假情况是( )A .原命题为真命题,逆命题为假命题B .原命题为假命题,逆命题为真命题C .原命题与逆命题均为真命题D .原命题与逆命题均为假命题 答案 A解析 逆否命题:若a ,b 都小于1,则a +b <2,是真命题,所以原命题是真命题.逆命题:若a ,b 中至少有一个不小于1,则a +b ≥2.例如,a =3,b =-3满足条件a ,b 中至少有一个不小于1,但a +b =0,故逆命题是假命题.故选A.8.关于命题“若拋物线y =ax 2+bx +c 开口向下,则{x |ax 2+bx +c <0}⇏∅”的逆命题、否命题、逆否命题的真假性,下列结论正确的是( ) A .都是真命题 B .都是假命题 C .否命题是真命题 D .逆否命题是真命题 答案 D解析 原命题为真命题,所以其逆否命题也为真命题.逆命题“若{x |ax 2+bx +c <0}D =/∅,则拋物线y =ax 2+bx +c 开口向下”是一个假命题,因为当不等式ax 2+bx +c <0的解集非空时,可以有a >0,即拋物线的开口可以向上,因此否命题也是假命题,故选D. 二、填空题9.下列命题:①“如果xy =1,则x ,y 互为倒数”的逆命题; ②“四边相等的四边形是正方形”的否命题; ③“梯形不是平行四边形”的逆否命题; ④“如果ac 2>bc 2,则a >b ”的逆命题. 其中真命题是________.(填序号) 答案 ①②③解析 ①“如果xy =1,则x ,y 互为倒数”的逆命题是“如果x ,y 互为倒数,则xy =1”,是真命题;②“四边相等的四边形是正方形”的否命题是“四边不都相等的四边形不是正方形”,是真命题;③“梯形不是平行四边形”本身是真命题,所以其逆否命题也是真命题;④“如果ac 2>bc 2,则a >b ”的逆命题是“如果a >b ,则ac 2>bc 2”,是假命题.所以真命题是①②③.10.已知命题“若m -1<x <m +1,则1<x <2”的逆命题为真命题,则m 的取值范围是________. 答案 [1,2]解析 由已知得,若1<x <2成立,则m -1<x <m +1也成立.∴⎩⎪⎨⎪⎧m -1≤1,m +1≥2,∴1≤m ≤2. 11.下列命题中:①若一个四边形的四条边不相等,则它不是正方形; ②若一个四边形对角互补,则它内接于圆; ③正方形的四条边相等; ④圆内接四边形对角互补; ⑤对角不互补的四边形不内接于圆;⑥若一个四边形的四条边相等,则它是正方形.其中互为逆命题的有________;互为否命题的有______;互为逆否命题的有________. 答案 ②和④,③和⑥ ①和⑥,②和⑤ ①和③,④和⑤解析 命题③可改写为“若一个四边形是正方形,则它的四条边相等”;命题④可改写为“若一个四边形是圆内接四边形,则它的对角互补”;命题⑤可改写为“若一个四边形的对角不互补,则它不内接于圆”,再依据四种命题间的关系便不难判断. 三、解答题12.判断下列命题的真假.(1)对角线不相等的四边形不是等腰梯形;(2)若x∉A∩B,则x∉A且x∉B;(3)若x2+y2≠0,则xy≠0.考点四种命题间的相互关系题点利用四种命题的关系判断真假解(1)该命题的逆否命题是“若一个四边形是等腰梯形,则它的对角线相等”,它为真命题,故原命题为真.(2)该命题的逆否命题是“若x∈A或x∈B,则x∈A∩B”,它为假命题,故原命题为假.(3)该命题的逆否命题是“若xy=0,则x2+y2=0”,它为假命题,故原命题为假.13.判断命题:“若b≤-1,则关于x的方程x2-2bx+b2+b=0有实根”的逆否命题的真假.解方法一(利用原命题)因为原命题与逆否命题真假性一致,所以只需判断原命题真假即可.方程判别式为Δ=4b2-4(b2+b)=-4b,因为b≤-1,所以Δ≥4>0,故此方程有两个不相等的实根,即原命题为真,故它的逆否命题也为真.方法二(利用逆否命题)原命题的逆否命题为“若关于x的方程x2-2bx+b2+b=0无实根,则b>-1”.方程判别式为Δ=4b2-4(b2+b)=-4b,因为方程无实根,所以Δ<0,即-4b<0,所以b>0,所以b>-1成立,即原命题的逆否命题为真.14.已知命题“非空集合M中的元素都是集合P中的元素”是假命题,那么下列命题中真命题的个数为()①M中的元素都不是P的元素;②M中有不属于P的元素;③M中有属于P的元素;④M 中的元素不都是P的元素.A.1 B.2 C.3 D.4考点四种命题间的相互关系题点利用四种命题的关系判断真假命题的个数答案 B解析由于“M⊆P”为假命题,故M中至少有一个元素不属于P,∴②④正确.M中可能有属于P的元素,也可能都不是P的元素,故①③错误.故选B.15.已知条件p :|5x -1|>a >0,其中a 为实数,条件q :12x 2-3x +1>0,请选取一个适当的a 值,利用所给出的两个条件p ,q 分别作为集合A ,B ,构造命题“若A ,则B ”,并使得构造的原命题为真命题,而其逆命题为假命题,这样的一个原命题可以是什么? 考点 四种命题间的相互关系题点 利用四种命题的关系判断真假解 由|5x -1|>a >0,得5x -1<-a 或5x -1>a ,即x <1-a 5或x >1+a 5. 由12x 2-3x +1>0,得2x 2-3x +1>0, 解得x <12或x >1. 为使“若A ,则B ”为真命题,而其逆命题为假命题,则需A B .令a =4,得p :x <-35或x >1, 满足题意,故可以选取a =4,此时原命题是“若|5x -1|>4,则12x 2-3x +1>0”。
命题的四种形式举例
命题是逻辑学的基本概念,它指的是一个判断(陈述)所表达的观点或命题。
命题可以是直言命题、条件命题、模态命题和复合命题。
下面分别介绍这四种形式的命题,并给出相应的例子。
1.直言命题
直言命题是指直接陈述一个事物的本质或属性的命题。
例如:“所有猫都是哺乳动物。
”这个命题就属于直言命题,因为它直接陈述了猫的本质属性。
2.条件命题
条件命题是指陈述两个命题之间逻辑关系的命题。
条件命题通常由两个部分组成:前件和后件。
前件是条件,后件是结果。
例如:“如果天下雨,那么地会湿。
”这个命题就是一个条件命题,其中“天下雨”是前件,“地会湿”是后件。
3.模态命题
模态命题是指陈述事物的可能性或必然性的命题。
例如:“明天可能会下雨。
”这个命题就是一个模态命题,表达了明天下雨的可能性。
4.复合命题
复合命题是指由多个简单命题组合而成的复杂命题。
复合命题通常由多个子命题组成,每个子命题都是一个简单的判断(陈述)。
例如:“如果天下雨,那么地会湿,但是今天没下雨。
”这个命题就是一个复合命题,它由两个条件命题和一个否定命题组成。
以上就是四种形式的命题及其举例。
在逻辑学中,这些命题形式被广泛用于推理和论证。
作文常见命题形式主要有以下四种:(一)全命题作文:当你在做命题作文时,不要看到题目就忙于动笔,要养成动笔之前想周全的习惯。
可按以下几个步骤进行。
(1)认真审题,明确题意:仔细地弄清题目的要求、重点和范围,这是做好命题作文最关键的第一步。
(2)确定中心,选好材料:在弄清题目的要求、重点和范围以后,就要认真回忆与这个题目有关的材料,哪些事儿是自己最熟悉的,最有新意的,准备表达一个什么思想,这就是回忆材料,确定中心。
中心明确了,就要环绕中心,选择最能表达中心的材料。
这就是环绕中心,选择材料。
(3)列好提纲,确定详略:确定中心,选好材料以后,就得列个写作计划,先写什么,再写什么最后写什么,得有个次序。
哪些内容与中心关系密切,要详写,哪些内容与中心关系不大,可以略写,得分个主次,这步要求列好提纲,确定详略。
提纲好比建造楼房的图纸。
有了好的图纸,造出的楼房才能坚固美观。
练习:(1)请以“其实我可以做得更好”为题,写一篇文章(2)请以“幸福像花儿一样”为题写一篇文章。
(3)有人说,等待是一种信念,是一种态度,是一种追求,是一种选择。
是呀,大自然的冬去春来、花开花谢、潮涨潮落,我们需要等待;人生的成长,机会的把握,形势的好转……我们都需要等待。
请以“我的心在等待”为题,写一篇文章。
(二)半命题作文所补词语宜“小”不宜“大”,力求“小”中见大,“小”中见深。
例如写“窗外的__________”,补“风景”就不如补“那只蝴蝶”容易展开和挖掘;写“__________之乐”,补“游山”就不如补“雨中游普陀”更能集中地抒写游兴和乐趣。
练习:在你成长的道路上,你可能曾经做过傻事,或遇到失败,或有过后悔,或流下过伤心的泪水……但正是这些经历,使你逐步增长了知识,感受了人生,获得了启迪,体验了纯真……请将题目“告诉我(过错、挫折、失败、懊悔、眼泪……)”补充完整,写一篇不少于500字的文章。
文中不能出现考生姓名和所在学校名称。
1.3.2命题的四种形式
教材的地位与作用
数学是一门逻辑性很强的学科,几乎处处都涉及到命题之间的逻辑关系和推理论证。
本节课研究的内容既是对学生初中学习过的命题知识的延续和提高,又是后面研究充分条件和必要条件、全称量词和存在量词等知识的基础。
同时也是培养学生用逻辑用语来阐明数学知识的需要,是人们在日常生活中进行思考、交流的需要。
三维目标
知识与技能
1.了解命题的逆命题、否命题与逆否命题。
2.四种命题之间的相互关系。
3.理解一个命题的真假与其它三个命题真假间的关系。
4.用逻辑用语准确地表达数学内容。
过程与方法
通过实例说明四种命题形式的客观存在,使学生体会研究四种命题形式的必要性,采用启发式教学使学生明白四种命题的关系。
情感、态度与价值观
让学生感受用逻辑语言准确地表达数学内容的重要性,培养学生逻辑推理能力,掌握“正难则反”的数学思想。
教学重点
掌握四种命题之间的相互关系,理解互为逆否的命题同真同假的重要规律。
教学难点
在命题的四种形式中,判断其中两个命题的关系。
课时安排
1课时
教学过程
一、创设情境、导入新课
歌德是18世纪德国的一位著名文艺大师,一天,他与一位批评家“狭路相逢”,这位文艺批评家生性古怪,遇到歌德走来,不仅没有相让,反而卖弄聪明,一边高傲地往前走,一边大声说道:“我从来不给傻子让路!”面对如此的尴尬的局面,歌德只是笑容可掬,谦恭的闪在一旁,一边有礼貌回答道“呵呵,我可恰恰相反。
”结果故作聪明的批评家,反倒自讨没趣。
提问
你能分析此故事中歌德与批评家的言语表达吗?
(两人的言语表达都运用了逻辑用语)
教师口述
“数学是思维的科学”。
逻辑是研究思维形式和规律的科学。
逻辑用语是我们必不可少的工具。
万丈高楼平地起,今天我们就来学习常用逻辑用语的基础——四种命题。
二、师生互动、意义建构
新知探究
1.下列四个命题中,命题(1)与命题(2)(3)(4)的条件和结论之间分别有什么关系?
(1) 若f(x)是正弦函数,则f(x)是周期函数;
(2) 若f(x)是周期函数,则f(x)是正弦函数;
(3) 若f(x)不是正弦函数,则f(x)不是周期函数;
(4) 若f(x)不是周期函数,则f(x)不是正弦函数。
(请学生回答,教师点评补充)
回答:命题(2)的条件和结论分别是命题(1)的结论和条件,我们称这两个命题为互逆命题,把其中一个叫做原命题,另一个就叫做原命题的逆命题;
命题(3)的条件和结论分别是命题(1)的条件的否定和结论的否定,我们称这两个命题为互否命题,把其中一个叫做原命题,另一个就叫做原命题的否命题;
命题(4)的条件和结论分别是命题(1)的结论的否定和条件的否定,我们称这两个命题为互为逆否命题,把其中一个叫做原命题,另一个就叫做原命题的逆否命题。
原命题:“若p则q”,则
(原命题的)逆命题:“若q则P”,
(原命题的)否命题:“若¬p则¬q(若非p则非q)”,
(原命题的)逆否命题:“若¬q则¬p(若非q则非p)”。
说明:¬p、¬q分别表示p、q的否定。
2、回答下列问题:
命题“同位角相等,两直线平行”的逆命题是什么?否命题是什么?逆否命题是什么?
3、提问:刚刚我们分别研究了命题(2)(3)(4)与命题(1)的关系,现在请同学们再研究命题(2)(3)(4)内部有何关系?
三、数学应用
例题写出下列命题的的逆命题、否命题与逆否命题,同时指出它们的真假:
(1)若a=0,则ab=0;
(2)若四边形对角线相等,则四边形是平行四边形;
(3)全等三角形的对应边相等;
(4)四条边相等的四边形是正方形。
解答:(1)原命题真,逆命题假,否命题假,逆否命题真;
(2)原命题假,逆命题假,否命题假,逆否命题假;
(3)原命题真,逆命题真,否命题真,逆否命题真;
(4)原命题假,逆命题真,否命题真,逆否命题假。
设计意图:1.先将(3)(4)中的原命题改写成由“若p则q”的形式,再写其它三种命题就简单了。
2. 由以上四种不同类型的题,引导学生通过观察得出四种命题之间的相互关系。
练习
1.如果一个命题的逆命题是真命题,那么这个命题的否命题是( A )
A.真命题 C.不一定是真命题
B.假命题 D.不一定是假命题
2.命题“a,b都是奇数,则a+b是偶数”的逆否命题是( D )
A. a,b都不是奇数,则a+b是偶数
B.a+b是偶数,则a,b都是奇数
C.a+b是偶数,则a,b都不是奇数
D. a+b不是偶数,则a,b不都是奇数
3.下列说法中错误的一项是( C )
A. 一个命题的原命题为真,它的逆命题不一定为真
B. 一个命题的原命题为假,它的否命题不一定为真
C. 一个命题的否命题为真,它的逆命题一定为假
D. 一个命题的原命题为真,它的逆否命题一定为真
4.下列说法中正确的个数有( B )
(1) 四种命题中真命题的个数一定是偶数
(2) 若一个命题的逆命题是真命题,则它的否命题不一定是真命题
(3) 逆命题与否命题之间是互为逆否关系
(4) 若一个命题的逆否命题是假命题,则它的逆命题与否命题都是假命题
A.1个
B.2个
C.3个
D. 4个
5.写出下列命题的逆命题、否命题和逆否命题,并判断真假:
(1) 若x<0,则x2>0;
(2) 奇函数的图象关于原点对称;
(3) 当c>0时,若a>b,则ac>bc.
(备用)思考:判断下列命题的真假:
(1)“菱形的对角线互相垂直平分”的逆否命题;
(2)“若xy ≠0,则x ≠0”的逆命题;
(3)若x 2≠1,则x ≠1。
解析:(1)真(2)假(3)真
设计意图:利用互为逆否的两个命题真假性相同,“正难则反”。
四、小结反思(由学生回答教师补充完成)
(1)四种命题的形式,写一个命题的逆命题、否命题、逆否命题的关键是分清楚原命题的条件和结论,可以先将原命题改写成“若p 则q ”的形式(写法不一定惟一),再写出其它三种命题(大前提不变);
(2)在命题真假性的判断中,要借助原命题与逆否命题同真同假,逆命题与否命题同真同假,通过“正难则反”培养自己的逆向思维能力.这也是反证法(以后学习)证明问题的理论依据。
五、布置作业
1、自己写一个数学命题,写出它的逆命题、否命题与逆否命题,并判断它们的真假;
2、思考题:请联系自己的行为表现、学习情况判断“江苏省太湖高级中学在进步。
”是否为命题,若是命题,它的真假性如何?
六、课后巩固练习
1、“若0,22=+∈y x R y x 且则x,y 全为0”的否命题是_____________________________;
2、若p 的逆命题是r ,r 的否命题是s ,则s 是p 的否命题的_________
3、设有两个命题:①关于x 的不等式012>+mx 的解集为R ;②函数x x f m log )(=是减函
数,如果这两个命题中有且只有一个真命题,则m 的范围____________.
4、命题p :0)22lg(2≥--x x ,命题q :12
1<-x ,若p 是真命题,q 是假命题,求x 的范围.
设计感想
(1)学生的数学学习过程更应该是一个自主感受、建构数学知识的过程,让他们带着自己原有的知识背景参与学习活动,并通过自己的自主活动去建构对数学的理解。
为了让学生开展更有效的学习,我们应该为学生创建探究的平台。
因此本节课打破封闭式的教学过程,构建“问题情境——问题——探究——解决——新问题——再探究——再解决”的开放式学习过程,体现了学生是学习的主人,教师是教学活动的组织者、引导者和参与者。
(2)在使新课程中,教学观念的转变和课程意识的建立是首要的,教学不是教“教科书”,
而是经由“教科书”来教,新课程给教师留下了广阔的空间,教师要站在课程标准的角度去挖掘教材,把教学内容与学生感兴趣的事物结合起来,寓教于乐,充分调动学生的积极性。
感谢您的阅读,祝您生活愉快。