浙教版初中数学八年级下册第二章《一元二次方程》单元复习试题精选 (932)
- 格式:pdf
- 大小:299.06 KB
- 文档页数:5
浙教版八年级下册数学第二章一元二次方程含答案一、单选题(共15题,共计45分)1、判断一元二次方程式x2-8x-a=0中的a为下列哪一个数时,可使得此方程式的两根均为整数?()A.12B.16C.20D.242、方程x2+3x=2的正根是()A. B. C. D.3、已知α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足+=-1,则m的值是()A.3或-1B.3C.1D.–3或14、若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个不相等的实数根分别为a和b,且a2﹣ab+b2=18,则+ 的值是()A.3B.﹣3C.5D.﹣55、一件商品的原价是300元,经过两次提价后的价格为363元.如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是()A.300(1﹣2x)=363B.300(1+x)=363C.300(1﹣x)2=363D.300(1+x)2=3636、一元二次方程x2+x-2=0的两根之积是()A.-1B.-2C.1D.27、已知x1、x2是一元二次方程x2﹣4x+1=0的两个根,则x1•x2等于()A.-4B.-1C.1D.48、已知是方程x2-2x-1=0的两个根,则的值为()A. B.2 C. D.-29、方程x2﹣5=0的实数解为()A. B. C. D.±510、已知1是关于x的一元二次方程(m-1)x2+x+1=0的一个根,则m的值是()A.1B.-1C.0D.无法确定11、下列说法中①一个角的两边分别垂直于另一个角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两直角边a,b分别是方程x2-7x+7=0的两个根,则AB边上的中线长为正确命题有()A.0个B.1个C.2个D.3个12、关于x的一元二次方程mx2+2x+1=0有两个不相等的实数根,则m的取值范围是()A.m<1B.m≤1C.m<1且m≠0D.m≤1且m≠013、用配方法解一元二次方程x2﹣2x﹣1=0时,下列配方正确的是()A.(x﹣1)2+1=0B.(x+1)2+1=0C.(x﹣1)2﹣1=0D.(x﹣1)2﹣2=014、下列说法:①长度相等的弧是等弧;②圆周角的度数等于圆心角度数的一半;③相等的圆心角所对的弦相等;④方程x2+x+1=0的两个实数根之积为-1.你认为正确的共有( )A.0个B.1个C.2个D.3个15、某树主干长出若干数目的枝干,每个枝干又长出同样数目小分支,主干、枝干和小分支总数共57根,则主干长出枝干的根数为()A.7B.8C.9D.10二、填空题(共10题,共计30分)16、已知关于x的一元二次方程(m-2)2x2+(2m+1)x+1=0有两个实数根,则m的取值范围是________.17、已知关于x 的一元二次方程x2- x + k = 0 有两个相等的实数根,则k 的值为________.18、如果2+ 是方程的一个根,那么c的值是________.19、如果关于x的一元二次方程x2﹣6x+c=0(c是常数)没有实根,那么c的取值范围是________.20、若关于x的方程(a+3)x|a|-1﹣3x+2=0是一元二次方程,则a的值为________.21、如果方程ax2+2x+1=0有两个不等实根,则实数a的取值范围是________ .22、菱形的两条对角线的长是方程的两根,则菱形的面积是________.23、若方程的两根为、,则________.24、如果关于的一元二次方程有一个根是2 ,那么另一个根是________.25、把方程(2x+1)2﹣x=(x+1)(x﹣1)化成一般形式是________.三、解答题(共5题,共计25分)26、解方程:x2-3x=5x-127、解方程:(1)x2+2x﹣9999=0(用配方法求解);(2)3x2﹣6x﹣1=0(用公式法求解)28、某奶茶店每杯奶茶的成本价为5元,市场调查表明,若每杯定价a元,则一天可卖出(800﹣100a)杯,但物价局规定每件商品的利润率不得超过20%,商品计划一天要盈利200元,问每杯应定价多少元?一天可以卖出多少杯?29、已知方程的一根是2,求它的另一根及k的值.30、将一块正方形的铁皮四角剪去一个边长为4 的小正方形,做成一个无盖的盒子,如下图所示,已知盒子的容积是400 ,求原铁皮的边长.参考答案一、单选题(共15题,共计45分)1、C2、D3、B4、D5、D6、B7、C8、D9、C10、B11、C12、C13、D14、A15、A二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
第二章一元二次方程一、单选题1.下列方程中,关于X的一元二次方程是0A. ax1 +Z?x + c = OB. —+ —-2 = 0 厂xC. x(x-3)=2+x2D.小 x2-7=^x2.方程2x2-6x-5=0的二次项系数、一次项系数、常数项分别为( )A. 6、2、5B. 2、-6、5C. 2、-6、- 5D. -2、6、 53.已知x=l是关于x的一元二次方程x2+kx+4=0的一个根,则k的值为( )A. 5B. -5C. 3D. -34.关于1的一元二次方程V+ax —1=0的根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根5.用配方法解一元二次方程Y+3 = 4x时,原方程可变形为OA. (X-2)2=1B. (x-2)2 =7C. (X +2)2=2D.(X +2)2=16.用因式分解法解方程,下列方法中正确的是( )A.(2x-2)(3x-4) = 0, 口2-2x=0或3x-4 = 0B.(x + 3)(x-l) = l, Z:x + 3 = 0或x-l = lC.(x—2)(x-3) = 2x3f二x —2 = 2或x—3 = 3D.x(x + 2) = 0, Dx + 2 = 07.已知关于x的方程x2-x+m=0的一个根是3,则另一个根是(A. -6B. 6C. -2D. 28.设xl, x2是方程/一工一2016 = 0的两实数根,则蜡+ 2017占一2016的值是()A. 2015B. 2016C. 2017D. 20189.若一个三角形的两条边的长度分别为2和4,且第三条边的长度是方程6x + 8 = O的解,则它的周长是()A. 10B. 8 或10C. 8D. 610.某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x,则可得方程( )A. 560(1 + %)2 =1850B. 560+560(1 + 4 =1850C. 560(1 + x)+560( 1+ J:)2 =1850D. 560+560(1+ X)+560(1+ X)2 =1850二、填空题11.若方程〃7+3x - 4 = 2f是关于x的一元二次方程,则m的取值范围是12.关于"的一元二次方程9/_6x + k=0有两个不相等的实数根,则k的取值范圉是13.已知一元二次方程产+4工一3 = 0的两实数根为。
第2章一元二次方程一.选择题(共10小题)1.方程x2=3x的解是()A.x=3B.x=0C.x1=3,x2=0D.x1=﹣3,x2=0 2.下列方程是一元二次方程的是()A.x+2y=1B.x=2x3﹣3C.x2﹣2=0D.3x+=43.一元二次方程x2﹣2x﹣1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根4.方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A.(x+3)2=14B.(x﹣3)2=14C.(x+3)2=4D.(x﹣3)2=4 5.解方程(x﹣2)2=3(x﹣2)最适当的方法应是()A.因式分解法B.配方法C.直接开方法D.公式法6.关于x的一元二次方程(m+2)x2+x+m2﹣4=0有一根为0,则m的值为()A.2B.﹣2C.2或﹣2D.7.六一儿童节当天,某班同学每人向本班其他每个同学送一份小礼品,全班共互送1035份小礼品,如果全班有x名同学,根据题意列出方程为()A.x(x+1)=1035B.x(x﹣1)=1035×2C.x(x﹣1)=1035D.2x(x+1)=10358.我们知道方程x2+2x﹣3=0的解是x1=1,x2=﹣3,现给出另一个方程(2x+3)2+2(2x+3)﹣3=0,它的解是()A.x1=1,x2=3B.x1=1,x2=﹣3C.x1=﹣1,x2=3D.x1=﹣1,x2=﹣39.三角形两边的长分别是8和4,第三边的长是方程x2﹣11x+24=0的一个实数根,则三角形的周长是()A.15B.20C.23D.15或2010.某建筑工程队在工地一边靠墙处,用81米长的铁栅栏围成三个相连的长方形仓库,仓库总面积为440平方米.为了方便取物,在各个仓库之间留出了1米宽的缺口作通道,在平行于墙的一边留下一个1米宽的缺口作小门.若设AB=x米,则可列方程()A.x(81﹣4x)=440B.x(78﹣2x)=440C.x(84﹣2x)=440D.x(84﹣4x)=440二.填空题(共8小题)11.关于x的方程(m+1)x2+2mx﹣3=0是一元二次方程,则m的取值范围是.12.把一元二次方程(x﹣3)2=4化为一般形式为:,二次项为,一次项系数为,常数项为.13.若a﹣b+c=0,则方程ax2+bx+c=0必有一个根是.14.某校去年投资2万元购买实验器材,预计今明2年的投资总额为8万元.若该校这两年购买的实验器材的投资年平均增长率为x,则可列方程为.15.已知x=1是方程x2+mx﹣n=0的一个根,则m2﹣2mn+n2=.16.已知a为实数,且满足(a2+b2)2+2(a2+b2)﹣15=0,则代数式a2+b2的值为.17.将一些半径相同的小圆按如图的规律摆放,请仔细观察,第个图形有94个小圆.18.用锤子以均匀的力敲击铁钉入木板,随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子的长度后一次为前一次的x倍,已知一个钉子受击3次后恰好全部进入木板,且第一次受击进入木板部分的铁钉长度是钉长的,设铁钉的长度为1,那么符合这一事实的方程是.(只列方程)三.解答题(共5小题)19.解方程:(1)x2+3x﹣4=0;(2)(x+1)2=4x;(3)x(x+4)=﹣5(x+4);(4)2x2﹣4x﹣1=0.20.已知:关于x的方程2x2+kx﹣1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是﹣1,求另一个根及k值.21.已知a、b、c为三角形三边长,且方程b(x2﹣1)﹣2ax+c(x2+1)=0有两个相等的实数根.试判断此三角形形状,说明理由.22.社区利用一块矩形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52米,宽为28米,阴影部分设计为停车位,要铺花砖,其余部分是等宽的通道.已知铺花砖的面积为640平方米.(1)求通道的宽是多少米?(2)该停车场共有车位64个,据调查分析,当每个车位的月租金为200元时,可全部租出;当每个车位的月租金每上涨10元,就会少租出1个车位,当每个车位的月租金上涨多少元时,停车场的月租金收入为14400元?23.为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B两种型号的健身器材可供选择.(1)劲松公司2018年每套A型健身器材的售价为2.5万元,经过连续两年降价,2020年每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)2020年市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元.①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?参考答案一.选择题(共10小题)1.C.2.C.3.B.4.A.5.A.6.A.7.C.8.D.9.B.10.D.二.填空题(共8小题)11.m≠﹣1.12.二次项为x2,一次项系数为﹣6,常数项为5.13.﹣1.14.2(1+x)+2(1+x)2=8.15.1.16.317.9.18.+x+x2=1.三.解答题(共5小题)19.解:(1)∵x2+3x﹣4=0,∴(x﹣1)(x+4)=0,则x﹣1=0或x+4=0,解得x=1或x=﹣4;(2)∵(x+1)2=4x,∴(x﹣1)2=0,则x﹣1=0,解得x1=x2=1;(3)∵x(x+4)+5(x+4)=0,∴(x+4)(x+5)=0,则x+4=0或x﹣5=0,解得x=﹣4或x=5;(4)∵a=2,b=﹣4,c=﹣1,∴△=16﹣4×2×(﹣1)=24>0,则x==.20.证明:(1)∵a=2,b=k,c=﹣1∴△=k2﹣4×2×(﹣1)=k2+8,∵无论k取何值,k2≥0,∴k2+8>0,即△>0,∴方程2x2+kx﹣1=0有两个不相等的实数根.解:(2)把x=﹣1代入原方程得,2﹣k﹣1=0∴k=1∴原方程化为2x2+x﹣1=0,解得:x1=﹣1,x2=,即另一个根为.21.解:方程整理得(b+c)x2﹣2ax﹣(b﹣c)=0,∵方程b(x2﹣1)﹣2ax+c(x2+1)=0有两个相等的实数根,∴△=4a2﹣4(b+c)•[﹣(b﹣c)]=0,∴a2+b2=c2,∴三角形为直角三角形.22.解:(1)设通道的宽为x米,根据题意得:(52﹣2x)(28﹣2x)=640解得:x=34(舍去)或x=6,答:甬道的宽为6米;(2)设月租金上涨a元,停车场的月租金收入为14400元,根据题意得:(200+a)(64﹣)=14400整理,得a2﹣440a+16000=0解得:a1=400,a2=40由于是惠民工程,所以a=40符合题意.答:每个车位的月租金上涨40元时,停车场的月租金收入为14400元.23.解:(1)依题意得:2.5(1﹣n)2=1.6,则(1﹣n)2=0.64,所以1﹣n=±0.8,所以n1=0.2=20%,n2=1.8(不合题意,舍去).答:每套A型健身器材年平均下降率n为20%;(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,依题意得:1.6m+1.5×(1﹣20%)×(80﹣m)≤112,整理,得1.6m+96﹣1.2m≤112,解得m≤40,即A型健身器材最多可购买40套;②设总的养护费用是y元,则y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m),∴y=﹣0.1m+14.4.∵﹣0.1<0,∴y随m的增大而减小,∴m=40时,y最小.∵m=40时,y最小值=﹣0.1×40+14.4=10.4(万元).又∵10万元<10.4万元,∴该计划支出不能满足养护的需要.。
浙教版八年级下册数学第二章一元二次方程含答案一、单选题(共15题,共计45分)1、方程(x﹣5)(x﹣6)=x﹣5的解是()A.x=5B.x=5或x=6C.x=7D.x=5或x=72、某商品原价为200元,为了吸引更多顾客,商场连续两次降价后售价为162元,求平均每次降价的百分率是多少?设平均每次降价的百分率为x,根据题意可列方程为()A. B. C.D.3、用配方法解一元二次方程x2﹣6x+1=0,则配方后所得的方程为()A.(x+3)2=10B.(x+3)2=8C.(x﹣3)2=10D.(x﹣3)2=84、关于x的一元二次方程(a﹣1)x2+x+|a|﹣1=0的一个根是0,则实数a的值为()A.﹣1B.0C.1D.﹣1或15、用配方法解方程x2-4x+1=0时,配方后所得的方程是( )A.(x-2) 2=1B.(x-2) 2=-1C.(x-2) 2=3D.(x+2) 2=36、已知x1, x2是一元二次方程x2+4x﹣3=0的两个实数根,则x1+x2﹣x1x2的值是()A.6B.0C.7D.-17、设a、b是整数,方程x2+ax+b=0的一根是,则的值为()A.2B.0C.-2D.-18、已知方程x2﹣2x﹣1=0,则此方程A.无实数根B.两根之和为﹣2C.两根之积为﹣1D.有一根为-1+9、若关于x的一元二次方程(k-1)x2+6x+3=0有实数根,则实数k的取值范围()A.k≤4且k≠1B.k<4且k≠1C.k<4D.k≤410、设x1, x2是方程x2+5x﹣3=0的两个根,则x12+x22的值是()A.19B.25C.31D.3011、若x1, x2是方程x2+px+q=0的两个实数根,则下列说法中正确的是()A.x1+x2=p B.x1•x2=﹣q C.x1+x2=﹣p D.x1•x2=p12、一元二次方程x2-9=0的根是()A.x=3B.x=4C.x1=3,x2=-3 D.x1= ,x2=-13、关于的方程有两实数根,则实数的取值范围是()A. B. C. D.14、方程的解是()A. B. C. , D. ,15、一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.有两个实数根二、填空题(共10题,共计30分)16、为应对金融危机,拉动内需,吉祥旅行社3月底组织赴风凰古城、张家界风景区旅游的价格为每人1000元,为了吸引更多的人赴凤凰古城、张家界旅游,在4月底.、5月底进行了两次降价,两次降价后的价格为每人810元,那么这两次降价的平均降低率为________.17、有长为20m的铁栏杆,利用它和一面墙围成一个矩形花圃ABCD(如图),若花圃的面积为48m2,求AB的长.若设AB的长为xm,则可列方程为________.18、若关于x的一元二次方程(a-1)x2+ax+a2-1=0的一个根是0,则a的值是________。
第二章 一元二次方程测试(120分)(附答案)班级 学号 姓名 得分(A )()()12132+=+x x (B )02112=-+x x(C )02=++c bx ax (D ) 1222-=+x x x 2、已知3是关于x 的方程012342=+-a x 的一个解,则2a 的值是( ) (A )11 (B )12 (C )13 (D )143、关于x 的一元二次方程02=+k x 有实数根,则( )(A )k <0 (B )k >0 (C )k ≥0 (D )k ≤0 4、已知x 、y 是实数,若0=xy ,则下列说法正确的是( )(A )x 一定是0 (B )y 一定是0 (C )0=x 或0=y (D )0=x 且0=y 5、若12+x 与12-x 互为倒数,则实数x 为( ) (A )±21(B )±1 (C )±22 (D )±26、若方程02=++c bx ax )0(≠a 中,c b a ,,满足0=++c b a 和0=+-c b a ,则方程的根是( )(A )1,0 (B )-1,0 (C )1,-1 (D )无法确定 7、用配方法解关于x 的方程x 2+ px + q = 0时,此方程可变形为( )(A ) 22()24p p x +=(B ) 224()24p p qx -+=(C ) 224()24p p qx +-=(D ) 224()24p q p x --=8、使分式2561x x x --+ 的值等于零的x 是 ( )(A )6 (B )-1或6 (C )-1 (D )-6 9、方程0)2)(1(=-+x x x 的解是( )(A )—1,2 (B )1,—2 (C )、0,—1,2 (D )0,1,—210、某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为 ( ) (A )x(x +1)=1035 (B )x(x -1)=1035×2 (C )x(x -1)=1035 (D )2x(x +1)=1035二、填空题(每格2分,共36分)11、把一元二次方程4)3(2=-x 化为一般形式为: ,二次项为: ,一次项系数为: ,常数项为: 。
八年级数学下册《一元二次方程》测试卷学校:__________一、选择题1.(2分)若12+x 与12-x 互为倒数,则实数x 为( )A .±21B .±1C .±22 D .±2 2.(2分)一元二次方程022=-+x x 根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定3.(2分)三角形的两边长分别为3和6,第三边的长是方程x 2-6x +8=0的一个根,则这个三角形的周长是( )A .9B .11C .13D .11或134.(2分)关于x 的一元二次方程()220x mx m -+-=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定5.(2分)以3,-4为根的一元二次方程是( )A .x x 2120+-=B .x x 2120++=C .x x 2120-+=D . x x 2120--=6.(2分)若x 为任意实数时,二次三项式26x x c -+的值都不小于0,则常数c 满足的条件是( )A .c ≥0B . c ≥9C . c >0D . c >97.(2分)一个跳水运动员从10米高台上跳水,他每一时刻所在的高度(单位:米)与所用时间(单位:秒)的关系是h =-5(t -2)(t +1).则运动员起跳到入水所用的时间( )A .-5B .-1C .1D . 28.(2分)关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 的值为( )A .1B .1-C .21D .1或1-9.(2分)把方程)2(5)2(-=+x x x 化成一般式,则a 、b 、c 的值分别是( )A .10,3,1-B .10,7,1-C .12,5,1-D .2,3,110.(2分) 已知关于x 的方程220x kx k +-=的一个根是2-,则k 的值是( )A . 1B .1-C . 1D . 1-11.(2分)在方程20ax bx c ++=(0a ≠)中,当240b ac -=时方程的解是( )A .2b x a =±B .b x a =±C .2b x a =-D .2b x a= 12.(2分)已知213y x x =-,226y x =-,当12y y =时,x 的值为( )A .2x =或3x =B .1x =或6x =C .1x =-或6x =D .2x =-或3x =-13.(2分)下列关于x 的方程,一定是一元二次方程的是( )A . 2(2)210m x x +-+=B . 2230m x m +-=C . 21320x x +-=D 21203x --=二、填空题14.(3分)方程2220x x --=的二次项系数是 ,一次项系数是 ,常数项是 .15.(3分)关于x 的一元二次方程()423=-x x 的一般形式是_____ _____.16.(3分) 关于x 的方程22220x ax a b ++-=的根为 .17.(3分) 方程2530x x -+=的根是 .18.(3分)为使27x x b -+在整数范围内可以因式可分解,则b 可能取的值为 (任写一个).19.(3分)判断下列各方程后面的两个数是不是都是它的解(是的打“√”,不是的打“×”)(1)2670x x --=;(-1,7) ( )(2)23520x x +-=;(53,23-) ( ) (3)22310x x -+=;(3, 1) ( )(4)2410x x -+=;(2-2- ( )20.(3分)关于x 的方程一元二次方程的2(1)30k x kx -+-=.(1)当k 时,是一元一次方程;(2)当 k 时,一元二次方程.三、解答题21.(6分)现将进货为 40元的商品按50元售出时,就能卖出 500件. 已知这批商品在50元的基础上每件涨价 1 元,其销售量将减少10件. 为了赚取 8000元利润,售价应定为多少?这时应进货多少件?22.(6分)若规定两数a ,b 通过“※”运算,得到4ab ,即a ※b =4ab ,例如 2※6=4×2×6 =48.(1)求3※5 的值;(2)求x ※x +2※x -2※4=0中x 的值.23.(6分) 国家为了加强对香烟产销的宏观管理,对销售香烟实行征收附加税政策. 现在知道某种品牌的香烟每条的市场价格为70元,不加收附加税时, 每年产销100万条,若国家征收附加税,每销售100元征税x 元(叫做税率x%), 则每年的产销量将减少10x 万条.要使每年对此项经营所收取附加税金为168万元,并使香烟的产销量得到宏观控制,年产销量不超过50万条,问税率应确定为多少?24.(6分)已知关于x 的方程01)1(22=+-++-m m x x m 有一个根为-1,分析根的情况,并求出方程所有的根.25.(6分)已知关于x 的一元二次方程x 2-(k +1) x -6=0的一个根是2,求方程的另一根和k 的值.26.(6分)在一块边长为1m的正方形铁板上截出一个面积为800cm2的矩形铁板,使长比宽多20cm,问矩形铁板的长和宽各为多长?27.(6分)某物品原价25元,连续两次降价后为20.25元,求平均每次降价的百分率.28.(6分)用公式法解方程:(1)246y y+=;(2)2-=-x x38229.(6分)解关于x方程:222x ax a ab b-+--=.32030.(6分)在长度为3的线段上取一点,使此点到线段两端点的距离的乘积为2,求此点所分得的两线段长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C2.A3.C4.A5.A6.B7.D8.B9.A10.D11.C12.A13.D二、填空题14.2,-1,-215.04632=--x x16.a b -+或a b --17.x =18.6(不唯一)19.(1)√(2)×(3)× (4)×20.(1)=1;(2)≠1三、解答题21.设售价定为x 元,由题意得(40)[50010(50)]8000x x -⋅--=,160x =,280x =, ∴当售价定为 60元/件时,应进货400件;当售价定为 80元/件时,应进货200件22.(1) 60 (2)12x =,24x =-23.6%.24.当m =1时,方程为一元一次方程,解为一1;当m ≠1时,方程为一元二次方程,解为一1,23. 25.3,2--=另一根为k .26.长 40 cm ,宽 20 cm27.10%28.(1)3y =;(2)x =29.12x a b =+,2x a b =- 30.1,2。
浙教版八年级下数学第二章 一元二次方程 单元测试一、选择题:1、下列方程中,是关于x 的一元二次方程为 ( )A .3157x x +=+B .2110x x +-= C .)(为常数和b a bx ax 52=- D .)1(2)1(32+=+x x2、方程2x x =的解是 ( )A .1x =B .0x =C .1210x x ==,D .1210x x =-=,3、方程 x 2的解的个数为 ( )A .0B .1C .2D .1或24、已知m是方程x2-x-1=0的一个根,则代数 m2-m=( )A ..-1B .0C .1D .25、用配方法解一元二次方程2870x x ++=,则方程可化为( )A .2(4)9x +=B .2(4)9x -=C .23)8(2=+xD .9)8(2=-x6、下列方程中,有两个不等实数根的是 ( )A .238x x =-B .2510x x +=-C .271470x x -+=D .2753x x x -=-+ 7、已知关于x 的方程260x kx --=的一个根为3x =,则实数k 的值为( )A .1B .1-C .2D .2-8、某市2009年国内生产总值(GDP )比2008年增长了12%,由于受到国际金融危机的影响,预计今年比2009年增长7%,若这两年GDP 年平均增长率为%x ,则%x 满足的关系式是 ( )A .12%7%%x +=B .()()()112%17%21%x ++=+C .12%7%2%x +=·D .()()()2112%17%1%x ++=+二、填空题:9、方程(x –1)(2x +1)=2化成一般形式是 ,它的二次项系数是 ,一次项是 .10、方程()052=-x 的根是 . 11、关于x 的方程是(m 2-1)x 2+(m -1)x -2=0,当m 时,方程为一元二次方程;当m 时,方程为一元一次方程.12、 已知x =1是关于x 的一元二次方程2x 2 + kx -1=0的一个根,则实数k = .13、请你给出一个c 值, c = ,使方程x 2-3x +c =0无实数根.14、若一元二次方程ax 2+bx+c=0一个根是1,且a 、b 满足等式333+-+-=a a b 则c= .15、由于甲型H1N1流感(起初叫猪流感)的影响,在一个月内猪肉价格两次大幅下降.由原来每斤16元下调到每斤9元,求平均每次下调的百分率是多少?设平均每次下调的百分率为x ,则根据题意可列方程为 .三、解答题16、用适当的方法解下列方程(1)0362=--x x ; (2)()x x x 21=+;(3)22)21()3(x x -=+; (4)012022=-+x x .17、已知方程111=-x 的解是k ,求关于x 的方程x 2 + kx = 0 解.18、(1)对于二次三项式2 -1036x x +,小明同学得到如下结论:无论x 取何值,它的值都不可能是10.你是否同意他的说法?请你说明理由.(2)当x 取何值时,代数式752+-x x 取得最大(小)值,这个最大(小)值是多少?19、西瓜经营户以2元/千克的价格购进一批西瓜,以3元/千克的价格出售,每天可售出200千克,为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0.1元/千克,每天可多出售40千克。
第二章一元二次方程单元检测卷姓名:__________ 班级:__________一、选择题(共12小题;每小题3分,共36分)1.请判别下列哪个方程是一元二次方程()A. x+2y=1B. x2+5=0C. 2x+=8D. 3x+8=6x+22.一元二次方程﹣x2+2x=﹣1的两个实数根为α,β,则α+β与α•β的值分别为()A. 2,﹣1B. ﹣2,﹣1C. 2,1D. ﹣2,13.方程2x2=3(x-6)化为一般式后二次项系数、一次项系数和常数项分别为 ( )A. 2、3、-6B. 2、-3、18C. 2、-3、6D. 2、3、64.如果一元二次方程x2﹣2x﹣3=0的两根为x1、x2,则x12x2+x1x22的值等于()A. -6B. 6C. -5D. 55.因春节放假,某工厂2月份产量比1月份下降了5%,3月份将恢复正常,预计3月份产量将比2月份增长15%.设2、3月份的平均增长率为x,则x满足的方程是()A. 15%﹣5%=xB. 15%﹣5%=2xC. (1﹣5%)(1+15%)=2(1+x)D. (1﹣5%)(1+15%)=(1+x)26.方程2x2﹣6x+3=0较小的根为p,方程2x2﹣2x﹣1=0较大的根为q,则p+q等于()A. 3B. 2C. 1D.7.商场在促销活动中,将标价为200元的商品,在打a折的基础上再打a折销售,现该商品的售价为128元,则a的值是()A. 0.64B. 0.8C. 8D. 6.48.下列说法不正确的是()A. 方程x2=x有一根为0B. 方程x2﹣1=0的两根互为相反数C. 方程(x﹣1)2﹣1=0的两根互为相反数D. 方程x2﹣x+2=0无实数根9.下列方程中,两根之和是3的是()A. x2﹣3x+ =0B. ﹣x2+3x+ =0C. x2+3x﹣=0D. x2+3x+ =010.近几年安徽省民生事业持续改善,2012年全省民生支出3163亿元,2014年全省民生支出4349亿元,若平均每年民生支出的增长率相同,设这个增长率为x,则下列列出的方程中正确的是()A. 3163(1+x)2=4349B. 4349(1﹣x)2=3163C. 3163(1+2x)=4349D. 4349(1﹣2x)=316311.关于x的方程kx2+3x﹣1=0有实数根,则k的取值范围是()A. k≤B. k≥﹣且k≠0C. k≥﹣D. k>﹣且k≠012.一元二次方程x(x﹣2)=x﹣2的根是()A. 0B. 1C. 1,2D. 0,2二、填空题(共10题;共40分)13.若(x2+y2)(x2+y2﹣1)=12,则x2+y2=________.14.关于x的一元二次方程x2﹣3x+k=0有一个根为1,则k的值等于________.15.若对于实数a,b,规定a*b=,例如:2*3,因2<3,所以2*3=2×3﹣22=2.若x1, x2是方程x2﹣2x﹣3=0的两根,则x1*x2=________ .16.请你给出一个c值,c=________,使方程x2﹣3x+c=0无实数根.17.以3、-5为根且二次项系数为1的一元二次方程是________.18.若x=2是方程x2+3x﹣2m=0的一个根,则m的值为________.19.若方程x2﹣3x+1=0的两根分别为x1和x2,则代数式x1+x2﹣x1x2=________.20.已知如图所示的图形是一无盖长方体的铁盒平面展开图,若铁盒的容积为3m3,则根据图中的条件,可列出方程:________.21.一元二次方程x2﹣6x﹣4=0两根为x1和x2,则x1+x2=________x1x2=________x1+x2﹣x1x2=________.22.如图,是一个长为30m,宽为20m的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m2,那么小道进出口的宽度应为________米.三、计算题(共2小题;共24分)23.解方程(1)x2+x﹣1=0;(2)(x﹣1)(x+3)=5.(3) x2﹣2x﹣3=0;24.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?参考答案一、选择题B A B A D BC C B A C C二、填空题13. 4 14. 2 15. 12或﹣416. 3 17. 18. 519. 2 20. x(x+1)=3 21. 6;﹣4;10 22. 1三、计算题23. (1)解:x2+x﹣1=0; a=1,b=1,c=﹣1,∵b2﹣4ac=5>0,∴x= ,∴x1= ,x2=(2)解:(x﹣1)(x+3)=5.整理得,x2+2x﹣8=0,分解因式得,(x+4)(x﹣2)=0,∴x+4=0,x﹣2=0,∴x1=﹣4,x2=2(3 ) 解:因式分解得:(x+1)(x﹣3)=0,即x+1=0或x﹣3=0,解得:x1=﹣1,x2=3;24. 解:设AB的长度为x,则BC的长度为(100﹣4x)米.根据题意得 : (100﹣4x)x=400,解得 x1=20,x2=5.则100﹣4x=20或100﹣4x=80.∵80>25,∴x2=5舍去.即AB=20,BC=20.答:羊圈的边长AB,BC分别是20米、20米。
第二章 一元二次方程复习测试一、选择题(每小题3分,共30分)1.方程(y+8)2=4y+(2y-1)2化成一般式后a ,b ,c 的值是( )A .a=3,b=-16,c=-63;B .a=1,b=4,c=(2y-1)2C .a=2,b=-16,c=-63;D .a=3,b=4,c=(2y-1)22.方程x 2-4x+4=0根的情况是( )A .有两个不相等的实数根;B .有两个相等的实数根;C .有一个实数根;D .没有实数根3.方程y 2+4y+4=0的左边配成完全平方后得( )A .(y+4)2=0B .(y-4)2=0C .(y+2)2=0D .(y-2)2=04.设方程x 2+x-2=0的两个根为α,β,那么(α-1)(β-1)的值等于( )A .-4B .-2C .0D .25.下列各方程中,无解的方程是( )A =-1B .3(x-2)+1=0C .x 2-1=0D .1x x -=26.已知方程=0,则方程的实数解为( )A .3B .0C .0,1D .0,37.已知2y 2+y-2的值为3,则4y 2+2y+1的值为( )A .10B .11C .10或11D .3或118.方程x 2+2px+q=0有两个不相等的实根,则p ,q 满足的关系式是( )A .p 2-4q>0B .p 2-q ≥0C .p 2-4q ≥0D .p 2-q>09.已知关于x 的一元二次方程(m-1)x 2+x+m 2+2m-3=0的一个根为0,则m 的值为( )A .1B .-3C .1或-3D .不等于1的任意实数 10.已知m 是整数,且满足210521m m ->⎧⎨->-⎩,则关于x 的方程m 2x 2-4x-2=(m+2)x 2+3x+4的解为( )A .x 1=-2,x 2=-32B .x 1=2,x 2=32C .x=-67D .x 1=-2,x 2=32或x=67二、填空题(每题3分,共30分)11.一元二次方程x 2+2x+4=0的根的情况是________.12.方程x 2(x-1)(x-2)=0的解有________个.13.如果(2a+2b+1)(2a+2b-2)=4,那么a+b的值为________.14.已知二次方程3x2-(2a-5)x-3a-1=0有一个根为2,则另一个根为________.15.关于x的一元二次方程x2+bx+c=0的两根为-1,3,则x2+bx+c•分解因式的结果为_________.16.若方程x2-4x+m=0有两个相等的实数根,则m的值是________.17.若b(b≠0)是方程x2+cx+b=0的根,则b+c的值为________.18.一元二次方程(1-k)x2-2x-1=•0•有两个不相等的实根数,•则k•的取值范围是______.19.若关于x的一元二次方程x2+bx+c=0没有实数根,则符合条件的一组b,c的实数值可以是b=______,c=_______.20.等腰三角形ABC中,BC=8,AB,AC的长是关于x的方程x2-10x+m=0的两根,则m•的值是________.三、解答题21.(12分)选用适当的方法解下列方程:(1)(x+1)(6x-5)=0;(2)2x2;(3)2(x+5)2=x(x+5);(4x2=0.22.(5分)不解方程,判别下列方程的根的情况:(1)2x2+3x-4=0;(2)16y2+9=24y;(32x+2=0;(4)3t2t+2=0;(5)5(x2+1)-7x=0.23.(4分)已知一元二次方程a x2+bx+c=0(a≠0)的一个根是1,且a,b满足,•求关于y的方程14y2-c=0的根.24.(4分)已知方程x2+kx-6=0的一个根是2,求它的另一个根及k的值.25.(4分)某村的粮食年产量,在两年内从60万千克增长到72.6万千克,问平均每年增长的百分率是多少?26.(5分)为了合理利用电力资源,缓解用电紧张状况,我市电力部门出台了使用“峰谷电”的政策及收费标准(见表).已知王老师家4月份使用“峰谷电”95kMh,缴电费43.40元,问王老师家427.(6分)印刷一张矩形的张贴广告(如图),•它的印刷面积是32dm2,•上下空白各1dm,两边空白各0.5dm,设印刷部分从上到下的长是xdm,四周空白处的面积为Sd m2.(1)求S与x的关系式;(2)当要求四周空白的面积为18dm2时,求用来印刷这张广告的纸张的长和宽各是多少?答案:1.A 2.B 3.C 4.C 5.A 6.A 7.B 8.D 9.B 10.D11.无实数根 •12.3 13.32或-1 14.-5315.(x+1)(x-3) 16.4 17.-1 18.k<2且x ≠1 19.略 20.25或1621.(1)-1,56 (2,-32(3)-5,-10 (4± 22.略 23.±2 24.-3,1 25.•10% 26.60,3527.(1)s=x+64x +2 (2)10,5。
浙教版初中数学八年级下册第二章 一元二次方程单元测试一、单选题1.下列方程是一元二次方程的是 ( )A. −6x +2=0B. 2x 2−y +1=0C. x 2+2x =0D. 1x 2+x =22.如果关于x 的一元二次方程(m+1)x 2+x+m 2﹣2m ﹣3=0有一个根为0,则m 的值( ) A. ﹣1 B. 3 C. ﹣1或3 D. 以上答案都不对3.将方程x(x-2)=x+3化成一般形式后,二次项系数和常数项分别为( ) A. -3,3 B. -1,-3 C. 1,3 D. 1,-34.一元二次方程2x 2+6x +3= 0 经过配方后可变形为( )A. (x +3)2 =6B. (x −3)2 =12C. (x +32)2=34 D. (x −32)2=1545.用公式法解方程 √2 x 2+4 √3 x=2 √2 ,其中求的Δ的值是( ) A. 16 B. ± 4 C. √32 D. 646.方程x (x ﹣1)=5(x ﹣1)的解是( )A. 1B. 5C. 1或5D. 无解 7.如果关于x 的方程x 2﹣ √k x+1=0有实数根,那么k 的取值范围是( ) A. k >0 B. k≥0 C. k >4 D. k≥48.受新冠肺炎疫情影响,某企业生产总值从1月份的300万元,连续两个月降至260万元,设每月平均下降率为x ,则可列方程( )A. 300(1+x)2=260B. 300(1−x 2)=260C. 300(1−2x)=260D. 300(1−x)2=260 9.如图,有一长方形鸡场,鸡场的一边靠墙(墙长 18 米),另三边用竹篱笆围成,竹篱笆的总长为 35 米,与墙平行的边留有 1 米宽的门(门用其它材料做成),若鸡场的面积为 160 平方米,则鸡场与墙垂直的边长为( )A. 7.5 米B. 8米C. 10米D. 10米或8米 10.若α,β是方程x 2﹣2x ﹣3=0的两个实数根,则α2+β2+αβ的值为( ) A. 10 B. 9 C. 7 D. 5二、填空题11.关于x 的一元二次方程ax 2+bx -2020=0有一个根为x =-1,写出一组满足条件的实数a ,b 的值:a =________,b =________.12.若关于x 的一元二次方程 2x 2+(2k +1)x −(4k −1)=0 的二次项系数、一次项系数、常数项的和是0,则 k = ________.13.若2(x-1)2-8=0,则x的值为________.14.关于x的一元二次方程(a+1)x2-2x+3=0有实数根,则整数a的最大值是________.15.某服装店经销一种品牌服装,平均每天可销售20件,每件赢利44元,经市场预测发现:在每件降价不超过10元的情况下,若每件降价1元,则每天可多销售5件,若该专卖店要使该品牌服装每天的赢利为1600元,则每件应降价____________元.16.如图,已知AB⊥BC,AB=12cm,BC=8cm.一动点N从C点出发沿CB方向以1cm/s的速度向B点运动,同时另一动点M由点A沿AB方向以2cm/s的速度也向B点运动,其中一点到达B点时另一点也随之停止,当△MNB的面积为24cm2时运动的时间t为________秒.三、解答题17.已知x1,x2是关于x的方程x2﹣kx+5(k﹣5)=0的两个正实数根,且满足2x1+x2=7,求实数k的值.18.解方程:(1)(x+2)2=4(自选方法) (2)2x²-x-1=0(配方法)、(3)x²-1=4x(公式法) (4)x²-1=2x+2(因式分解法)19.已知m是方程x2−3x=0的一个根,求(m−3)2+(m+2)(m−2)的值.20.阅读第(1)题的解题过程,再解答第(2)题:( 1 )例:解方程x2﹣|x|﹣2=0.解:当x≥0时,原方程可化为x2﹣x﹣2=0.解得:x1=2,x2=﹣1(不合题意.舍去)当x<0时,原方程可化为x2+x﹣2=0.解得:x1=﹣2,x2=1(不合题意.舍去)∴原方程的解是x1=2,x1=﹣2.( 2 )请参照上例例题的解法,解方程x2﹣x|x﹣1|﹣1=0.21.如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,研究发现了此类方程的一般性结论:设其中一根为t,则另一个根为2t,因ac=0;我们记“ K=b2−此ax2+bx+c=a(x−t)(x−2t)=ax2−3atx+2t2a,所以有b2−929ac”即K=0时,方程ax2+bx+c=0为倍根方程;2下面我们根据此结论来解决问题:这几个方程中,是倍根(1)方程①2x2−3x+1=0;方程②x2−2x−8=0;方程③x2+x=−29方程的是________(填序号即可);的值为________;(2)若(x−1)(mx−n)=0是倍根方程,则2nm22.将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成 |b a |d c ,定义 |b a |d c=ad -bc ,上述记号就叫做2阶行列式.(1)若 |492x |3x 1 =0,求x 的值; (2)若 |1−x x+1|x+1x−1 =6,求x 的值.23.随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G 等为代表的战略性新兴产业.据统计,目前广东5G 基站的数量约1.5万座,计划到2020年底,全省5G 基站数量是目前的4倍,到2022年底,全省5G 基站数量将达到17.34万座.(1)计划到2020年底,全省5G 基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G 基站数量的年平均增长率; (3)求2021年底全省5G 基站的数量.24.如图,在△ABC中,∠B=90°,AB=12cm,BC=16cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A、B同时出发,当一个点到达终点时,另一个点也随之停止运动.设运动的时间为t秒.(1)当t为何值时,△PBQ的面积等于35cm2?(2)当t为何值时,PQ的长度等于8 √2cm?(3)若点P,Q的速度保持不变,点P在到达点B后返回点A,点Q在到达点C后返回点B,一个点停止,另一个点也随之停止.问:当t为何值时,△PCQ的面积等于32cm2?答案解析一、单选题 1.【答案】 C【考点】一元二次方程的定义及相关的量【解析】【解答】解:A .是一元一次方程,故A 不符合题意; B .是二元二次方程,故B 不符合题意; C .是一元二次方程,故C 符合题意; D .是分式方程,故D 不符合题意. 故答案为:C .【分析】只含有一个未知数,且未知数的次数最高是2的整式方程,叫做一元二次方程,据此逐一判断即可.2.【答案】 B【考点】一元二次方程的根【解析】【解答】解:把x =0代入方程(m +1)x 2+x +m 2﹣2m ﹣3=0中,得 m 2﹣2m ﹣3=0, 解得m =3或﹣1,当m =﹣1时,原方程二次项系数m +1=0,舍去, 故答案为:B .【分析】把x =0代入方程(m 2﹣1)x 2+(m +1)x ﹣2=0中,解关于m 的一元二次方程即可求得m 的值. 3.【答案】 D【考点】一元二次方程的定义及相关的量 【解析】【解答】去括号:x 2-2x =x +3, 移项合并:x 2-3x -3=0. 二次项系数1,常数项-3. 故选D .【分析】先将方程化为一般式,然后求出结论即可. 4.【答案】 C【考点】配方法解一元二次方程 【解析】【解答】解:∵2x 2+6x +3= 0 ∴ x 2+3x =−32 ∴ x 2+3x +94=−32+94 ∴ (x +32)2=34 故答案为:C【分析】先把常数项移到方程的右边,再把二次项系数变为1,然后配方,方程两边都加上一次项系数一半的平方,即可得到答案.5.【答案】D【考点】公式法解一元二次方程【解析】【解答】解:∴√2x2+4√3x−2√2=0⋅a=√2,b=4√3,c=−2√2∴b2−4ac=(4√3)2−4×√2×(−2√2)=64故答案为:D【分析】首先把方程化简为一般形式,再得出a、b、c的值,最后求出判别式的值即可.6.【答案】C【考点】因式分解法解一元二次方程【解析】【解答】解:原方程可化为x(x﹣1)﹣5(x﹣1)=0,即(x﹣1)(x﹣5)=0,解得x1=1,x2=5.故答案为:C.【分析】先把方程右边的因式移到左边,再提取公因式x﹣1,即可利用因式分解法求出x的值.7.【答案】D【考点】一元二次方程根的判别式及应用【解析】【解答】∵关于x的方程x2- √k x+1=0有实数根,∴{k≥0Δ=(√k)2−4×1×1≥0,解得:k≥4.故答案为:D.【分析】由被开方数非负结合根的判别式△≥0,即可得出关于k的一元一次不等式组,解之即可得出k的取值范围.8.【答案】D【考点】一元二次方程的实际应用-百分率问题【解析】【解答】设每月平均下降率为x,得300(1−x)2=260故答案为:D.【分析】设每月平均下降率为x,根据1月份生产总值×(1-平均下降率)2=3月份生产总值列出方程即可.•9.【答案】C【考点】一元二次方程的实际应用-几何问题【解析】【解答】解:设鸡场的长为x,因为篱笆总长为35米,由图可知宽为:35−(x−1)2米,则根据题意列方程为:x·35−(x−1)2=160,解得:x1=16,x2=20(大于墙长,舍去),宽为:35−(16−1)2=10(米),所以鸡场的长为16米,宽为10米,即鸡场与墙垂直的边长为10米.故答案为:C.【分析】设长为x,则根据图可知一共有三面用到了篱笆,长用的篱笆为(x−1)米,与2倍的宽长的总和为篱笆的长35米,长×宽=面积160平方米,根据这两个式子可解出长和宽的值.10.【答案】C【考点】一元二次方程的根与系数的关系【解析】【解答】解:根据题意得α+β=2,αβ=﹣3,所以α2+β2+αβ=(α+β)2﹣αβ=22﹣(﹣3)=7.故答案为:C.【分析】根据根与系数的关系得到α+β=2,αβ=﹣3,再利用完全平方公式得到α2+β2+αβ=(α+β)2﹣αβ,然后利用整体代入的方法计算.二、填空题11.【答案】1;-2019 答案不唯一【考点】一元二次方程的根【解析】【解答】解:把x=-1代入ax2+bx−2020=0得a-b−2020=0,当a=1时,b=-2019.故答案为:1,-2019.答案不唯一【分析】根据一元二次方程的解的定义,把x=-1代入方程得到a-b−2020=0,于是a取1时,计算对应的b的值.答案不唯一12.【答案】2【考点】一元二次方程的定义及相关的量【解析】【解答】∵关于x的一元二次方程2x2+(2k+1)x−(4k−1)=0的二次项系数、一次项系数、常数项的和是0,∴2+2k+1+[−(4k−1)]=0,解得:k=2.故答案为:2.【分析】根据ax2+bx+c=0(a,b,c是常数且a≠0),a,b,c分别叫二次项系数,一次项系数,常数项,利用二次项系数、一次项系数、常数项的和是0列关于k的方程即可得答案.13.【答案】3或-1【考点】直接开平方法解一元二次方程【解析】【解答】解:2(x-1)2-8=0(x-1)2=4x-1=±2x1=3,x2=-1故答案为:3或-1.【分析】由题意解方程,求出方程的解即可求出答案. 14.【答案】 -2【考点】一元二次方程根的判别式及应用【解析】【解答】∵关于x 的一元二次方程(a +1)x 2-2x +3=0有实数根, ∴△=4-4(a +1)×3≥0,且a +1≠0, 解得a ≤- 23 ,且a ≠-1, 则a 的最大整数值是-2. 故答案为:-2.【分析】若一元二次方程有实数根,则根的判别式△=b 2-4ac ≥0,建立关于a 的不等式,求出a 的取值范围.还要注意二次项系数不为0. 15.【答案】 4【考点】一元二次方程的实际应用-销售问题 【解析】【解答】解:设每件应降价x 元,根据题意得 (20+5x )(44-x )=1600 解之:x 1=36,x 2=4. ∵x ≤10 ∴x =4 故答案为:4.【分析】设每件应降价x 元,用含x 的代数式表示出销售量及每一件的利润,再根据销售量×每一件的利润=1600,列方程求出方程的解,即可得到符合题意的x 的值。