当前位置:文档之家› ENVI遥感图像的地辐射定标

ENVI遥感图像的地辐射定标

ENVI遥感图像的地辐射定标
ENVI遥感图像的地辐射定标

实用标准文案

实验:遥感图像的辐射定标

1.实验目的与任务:

(1)了解辐射定标的原理;

(2)使用ENVI软件自带的定标工具定标

(3)学习使用波段运算进行辐射定标。

2.实验设备与数据:

设备:遥感图像处理系统

数据:焦作2004年3-7和4-8数据

【备注:当 ENVI 第一次打开一个文件,它需要关于文件特征的特定信息。通常,这些信息存储在与图像文件同名的一个独立的文本头文件,但是文件扩展名为.hdr 。若文件打开时没有找到ENVI头文件,你必须在 Header Information 对话框中输入一些基本的参数.

另外一些数据格式没有 .hdr 文件也能自动打开。这些格式包括:TIFF、 GeoTIFF、

GIF、 JPEG、 BMP、 SRF、 HDF、 PDS、 MAS-50、 NLAPS、RADARSAT 和 AVHRR 。

关于ENVI的一些基本知识,我们就介绍到这里,如果想了解更多的,请参考用户手册和ENVI中的HELP.】。下面是关于ENVI的一些具体应用.

3 辐射定标的过程

拿到一幅原始图像,我们先要进行辐射定标,目的是把图像上的DN值转为辐亮度或者是反射率(即辐射定标).另外通过大气纠正,我们可以消除一些大气的干扰(即大气校正).

本实验主要学习辐射定标。辐射定标的结果可以是表观辐亮度(L),也可以是表观反射率()。大气校正部分,感兴趣的同学可以自己去关注6S或者其ρ它大气校正的软件。

一般有两种方式:第一种:利用计算公式,在ENVI中利用band math(波段运算)计算辐亮度或者反射率;第二种:利用ENVI自带的对TM的定标工具,进行定标,获取辐亮度或者反射率。

第一种方法:利用计算公式,通过ENVI的波段运算进行定标:

1)计算表观辐亮度的公式:

radiance=((lmax-lmin)/(qcalmax-qcalmin)*(qcal-qcalmin)+lmin

其中:radiance –表观辐亮度

qcal-----DN(也就是影像数据本身);

lmax 和lmin是从参数表中查询;

qcalmax 是DN值的最大值,对于TM是8bit来说,qcalmax=255;

Qcalmin 是DN值的最小值,一般为0。

所以上面的公式针对TM数据可以简写成:

精彩文档.

实用标准文案

radiance=((lmax-lmin)/qcalmax)*qcal + lmin 即:

上面的这个公式还可以进一步简化为:

两个公式比较,可以看出,公式的中字母的对应关系。

!注意:公式中需要的数据,可以通过后面的表格中查询获取!!!表观反射率的计算)

22)ESUN*cosπ*L*d(θ)/(ρ =ρ为表观反射率;其中计算出来的表观辐亮度;

为上一步L 为日地距离,这个数据通过下面的表格中获取;d; 也可以说是传感器接收处的太阳

辐射为大气层外的太阳辐射,ESUN 为太阳天顶角。(这个可以通过影像的元数据获取)θ

关于辐亮度和反射率的计算,举例说明如下:例如:表观辐亮度。运用公式:DN值转化为图

像第2004年四月份的TM3波段的我们把 1)表观辐亮度的计算:+lmin

)*(qcal-qcalminlmax-lmin()/(qcalmax-qcalmin)radiance=

( qcal-----DN

(这些数值都是从下面给出的表中获得)b3-------lmax=264,lmin=-1.17high gain:

L3=1.039880*b3-1.17

把这些数据都带入上面的公式之后变成,计算获得:

值。DN3的每个像元的数值,也就是这里面的B3就是波段只要在波段运算注意:选

择波段三就可以记得得到表观辐亮度的一副影像数据。的公式中输入上面这个公式,然后b3)

表观反射率的计算:2

2(θ))/(πρ=*L*dESUN*cos。=3.1415 =42.43 d=0.9909 πL----radiance θ 1554,查表获取)(b3的ESUN是:ESUN1554

ρ表观反射率数据。把数据带入上面公式就可以计算得到

)的这两个公式可以合并成为一个,如下的计算:1当然计算表观反射率的时

候,可以把)和22)(θ)*L3*dπESUN*cos/(3=ρ

0.9909^2/(1554*(cos42.43)) =3.1415* (1.039880*b3-1.17)*

1.17)* 0.9909^2/(1554*0.7381)

*b3-= 3.1415* (1.039880精彩文档.

实用标准文案

以上是公式的推导,下面是对结果的计算,

ρ3= 3.1415* (1.039880*b3-1.17)* 0.9909^2/(1554*0.7381)为例,说明波段以运算:

ρ3,只需要带入b3可以看出,要想获得表观反射率数据的数据就可以,b3就是波段3的

DN值;

实施运算:Basic tools > band math,输入运算式:

然后指定B3是指哪个波段的数据,如下图:

对于其它波段只要知道相关的参数,可以用同样的方法作简单的定精彩文档.

实用标准文案.

: 图像的一些参数如下其中关于TM

的参数:下面是对于ETM+Table 11.2 ETM+ Spectral Radiance Range

m)

watts/(meter squared * ster * μBand After July 1, 2000Before July 1, 2000 Number Low GainLow Gain High Gain High GainLMAX

LMIN LMIN LMAX LMAX LMIN LMIN LMAX

191.6 293.7 194.3 -6.2 1 297.5 -6.2 -6.2 -6.2

196.5 303.4 -6.0 202.4 -6.4 -6.0 2 300.9 -6.4

152.9 235.5 -4.5 158.6 -5.0 234.4 -5.0 -4.5 3

157.4

235.0

-4.5

157.5

4

-4.5

-5.1

241.1

精彩文档.

实用标准文案

31.06-1.0-1.047.57-1.047.70-1.031.765

12.65

0.0

0.0

17.04

63.2

3.2

17.04

12.65

10.80716.54-0.3516.60-0.3510.932-0.35-0.35

158.3

243.1

8

-4.7

244.00-5.0158.40-4.7

-5.0

ETM+ Solar Spectral IrradiancesTable 11.3

m)

watts/(meter squared *Band

1969.0001

1840.0002

1551.0003

1044.0004

225.7005

82.077

1368.000

8

in Astronomical UnitTable 11.4Earth-Sun Distanc JulJulianJulianJulianJulianDistanDistance

DistanceanDistanceDayDayDayDayeDay

.9925 1.0140 227 305 1 .9832 74 152 1.0128 .9945

.9892 242 1.0158 1.0092 15 .9836 91 .9993 166 319

.9860 1.0167 335 258 32 .9853 1.0057 106 182 1.0033

.9843 349 1.0165 274 46 .9878 121 1.0076 196 1.0011

.9833

1.0149

1.0109

60

.9909

288

135

365

213

.9972

ENVI用户中的工具进行辐射定标. 第二种方法所使用的工具如下图所示:

精彩文档.

实用标准文案

打开之后,需要输入参数,如下图所示。这些参数是从所用遥感影像的元数据中获取。元数据你可以上网查。

精彩文档.

遥感影像图像处理流程

遥感影像图像处理(processing of remote sensing image data)是对遥感图像进行辐射校正和几何纠正、图像整饰、投影变换、镶嵌、特征提取、分类以及各种专题处理等一系列操作,以求达到预期目的的技术。 一.预处理 1.降噪处理 由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进行消除或减弱方可使用。 (1)除周期性噪声和尖锐性噪声 周期性噪声一般重叠在原图像上,成为周期性的干涉图形,具有不同的幅度、频率、和相位。它形成一系列的尖峰或者亮斑,代表在某些空间频率位置最为突出。一般可以用带通或者槽形滤波的方法来消除。

消除尖峰噪声,特别是与扫描方向不平行的,一般用傅立叶变换进行滤波处理的方法比较方便。 (2)除坏线和条带 去除遥感图像中的坏线。遥感图像中通常会出现与扫描方向平行的条带,还有一些与辐射信号无关的条带噪声,一般称为坏线。一般采用傅里叶变换和低通滤波进行消除或减弱。

2.薄云处理 由于天气原因,对于有些遥感图形中出现的薄云可以进行减弱处理。 3.阴影处理 由于太阳高度角的原因,有些图像会出现山体阴影,可以采用比值法对其进行消除。二.几何纠正

通常我们获取的遥感影像一般都是Level2级产品,为使其定位准确,我们在使用遥感图像前,必须对其进行几何精纠正,在地形起伏较大地区,还必须对其进行正射纠正。特殊情况下还须对遥感图像进行大气纠正,此处不做阐述。 1.图像配准 为同一地区的两种数据源能在同一个地理坐标系中进行叠加显示和数学运算,必须先将其中一种数据源的地理坐标配准到另一种数据源的地理坐标上,这个过程叫做配准。 (1)影像对栅格图像的配准 将一幅遥感影像配准到相同地区另一幅影像或栅格地图中,使其在空间位置能重合叠加显示。 (2)影像对矢量图形的配准 将一幅遥感影像配准到相同地区一幅矢量图形中,使其在空间位置上能进行重合叠加显示。2.几何粗纠正

envi遥感图像处理之分类

ENVI遥感图像处理之计算机分类 一、非监督分类 1、K—均值分类算法 步骤:1)打开待分类得遥感影像数据 2)依次打开:ENVI主菜单栏—〉Classification—>Unsupervised—>K—Means即进入K均值分类数据文件选择对话框 3)选择待分类得数据文件 4) 选好数据以后,点击OK键,进入K-Means参数设置对话框,进行有关参数得设置,包括分类得类数、分类终止得条件、类均值左右允许误差、最大距离误差以及文件得输出等参数得设置 5)建立光谱类与地物类之间得联系:在新窗口中显示分类结果图: 然后,打开显示窗口菜单栏Tools菜单—>Color Mapping—〉Class ColorMapping…进入分类结果得属性设置对话框,在这里,可以进行类别得名称,显示得颜色等,建立了光谱类与地物类之间得联系。 设置完成以后,点击菜单栏Options-〉Save Chang es 即完成光谱类与地物类联系得确立 6) 类得合并问题:如果分出得类中,有一些需要进行合并,可按以下步骤进行:选择ENVI主菜单Classfaction-〉Post Classfiction—>bine Classes,进入待

合并分类结果数据得选择对话框 点击OK键,进入合并参数设置 对话框,在左边选择要合并得 类,在右边选择合并后得类,点击 Add bination键即完成一组合 并得设置,如此反复,对其她需 合并得类进行此项操作,点击 OK,出现输出文件对话框,选择 输出方式,即完成了类得合并得 操作. 至此,K—均值分类得方法结束。 2、 ISODATA算法 基本操作与K—均值分类相似。 1)进行分类数据文件得选择(依次打开:ENVI主菜单栏—>Cl assification—>Unsupervised—>IsoData即进入 ISODATA算法分类数据文件选择对话框,选择待分类得数据 文件) 2)进行分类得相关参数得设置(点击OK键以后,进入参数设置 对 话 框 , 可 以 进行分类得最大最小类数、 迭代次数等参数得设置) 3)如此,光谱类得划分到此结 束。 4)参瞧K—均值分类得第5-6步,进行光谱类与地物类联系得建立以及类得合并等操作至此,使用ISODATA算法进行分类完成。 二、监督分类 本实验说明以最大似然法为例,进行监督分类得讲解说明。 步骤:1)打开待分类得遥感影像数据文件2)进行训练样本得选取:在窗口中打开一张影像,选择主窗口菜单栏Tools键—〉RegionOf Interest—〉ROI Tools…(或就是在主窗口上单击右键,在弹出得快捷菜单栏中选择ROI To

实验二 遥感图像的辐射定标

实验二遥感图像的辐射定标 1.实验目的与意义: (1)了解辐射定标原理 (2)使用ENVI软件自带的定标工具定标 (3)学习波段运算进行辐射定标 2.为什么要进行辐射定标,定标的原理是什么? 目的:消除传感器本身的误差,确定传感器入口处的准确辐射值。 原理:辐射定标是将传感器记录的电压或数字量化值(DN)转换为绝对辐射亮度值(辐射率)的过程,或者转换为与地表(表观)反射率、表面温度等物理量有关的相对值的处理过程。 3.辐射定标过程 一般有两种方式: 第一种:利用计算公式,在ENVI中利用band math计算福亮度和反射率。 第二种:利用ENVI自带的定标工具进行定标,获取福亮度或反射率。 第一种方法:用波段运算得到Radiance和Reflectance (1)表观辅亮度radiance的计算 radiance=((lmax-lmin)/(qcalmax-qcalmin)*(qcal-qcalmin)+lmin 其中:radiance –表观辐亮度 qcal-----DN(也就是影像数据本身); lmax 和lmin是从参数表中查询; qcalmax 是DN值的最大值,对于TM是8bit来说,qcalmax=255; Qcalmin 是DN值的最小值,一般为0 即 (2)表观反射率的计算 ρ=π*L*d2/(ESUN*cos(θ)) 其中ρ为表观反射率; L为上一步计算出来的表观辐亮度; d为日地距离,这个数据通过下面的表格中获取; ESUN为大气层外的太阳辐射,也可以说是传感器接收处的太阳辐射; θ为太阳天顶角。(这个可以通过影像的元数据获取)在本次实验的数据中radiance=(193+1.52)/255*b1-1.52 Reflectance=3.14*(b1)*1.0128^2/(1957*0.7381)步骤如下:打开文件L5120036_03620100819_MTL.txt ,点击Band Math,输入(193+1.52)/255*b1-1.52,之后即可计算出辐射度,文件保存为radiance1。

遥感数字图像处理教程复习分析

第一章. 遥感概念 遥感(Remote Sensing,简称RS),就是“遥远的感知”,遥感技术是利用一定的技术设备和系统,远距离获取目标物的电磁波信息,并根据电磁波的特征进行分析和应用的技术。 遥感技术的原理 地物在不断地吸收、发射(辐射)和反射电磁波,并且不同物体的电磁波特性不同。 遥感就是根据这个原理,利用一定的技术设备和装置,来探测地表物体对电磁波的反射和地物发射的电磁波,从而提取这些物体的信息,完成远距离识别物体。 图像 人对视觉感知的物质再现。图像可以由光学设备获取,如照相机、镜子、望远镜、显微镜等;也可以人为创作,如手工绘画。图像可以记录、保存在纸质媒介、胶片等等对光信号敏感的介质上。随着数字采集技术和信号处理理论的发展,越来越多的图像以数字形式存储。因而,有些情况下“图像”一词实际上是指数字图像。 物理图像:图像是人对视觉感知的物质再现 数字图像:图像以数字形式存储。 图像处理 运用光学、电子光学、数字处理方法,对图像进行复原、校正、增强、统计分析、分类和识别等的加工技术过程。 光学图像处理 应用光学器件或暗室技术对光学图像或模拟图像(胶片或图片)进行加工的方法技术 数字图像处理 是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。图像处理能做什么?(简答) 是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。数字图像处理主要目的:提高图像的视感质量,提取图像中所包含的某些特征或特殊信息,进行图像的重建,更好地进行图像分析,图像数据的变换、编码和压缩,更好图像的存储和传输。数字图像处理在很多领域都有应用。 遥感图像处理(processing of remote sensing image data )是对遥感图像进行辐射校正和几何纠正、图像整饰、投影变换、镶嵌、特征提取、分类以及各种专题处理的方法。常用的遥感图像处理方法有光学的和数字的两种。

ENVI遥感图像处理方法

《ENVI遥感图像处理方法》科学出版社2010年6月正式出版 上一篇/ 下一篇 2010-05-26 15:02:30 / 个人分类:ENVI 查看( 643 ) / 评论( 5 ) / 评分( 0 / 0 ) 从上个世纪六十年代E.L.Pruitt提出“遥感”这个词至今,遥感已经成为人类提供了从多维和宏观角度去认识宇宙世界的新方法与新手段。目前,遥感影像日渐成为一种非常可靠、不可替代的空间数据源。ENVI (The Environment for Visualizing Images)是由遥感领域的科学家采 用交互式数据语言IDL(Interactive Data Language)开发的一套功能强大的遥感图像处理软件。ENVI以其强大的图像处理功能,尤其是与ArcGIS 一体化集成,使得众多的影像分析师和科学家选择ENVI来处理遥感图像和获得图像中的信息,从而全面提升了影像的价值。ENVI已经广泛应用于科研、环境保护、气象、石油矿产勘探、农业、林业、医学、国防&安全、地球科学、公用设施管理、遥感工程、水利、海洋、测绘勘察和城市与区域规划等众多领域。与此形成鲜明对比的是,目前关于ENVI 的中文教程非常少,给广大用户学习软件和应用软件带来诸多不便。 针对上述情况,在ESRI中国(北京)有限公司的大力支持下,根据多年遥感应用研究和软件操作经验,历时一年半编著完成本书。全书按照遥感图像处理流程由浅到深逐步引导读者掌握ENVI软件操作。各个章节相对独立,读者可视个人情况进行选择阅读。全书分为17章,第1、2、3章介绍了ENVI软件的基础知识,可作为ENVI软件入门,也可作为参考内容;第4、5、6、7、8章介绍了遥感图像处理一般流程,包

ENVI遥感图像的地辐射定标

实用标准文案 实验:遥感图像的辐射定标 1.实验目的与任务: (1)了解辐射定标的原理; (2)使用ENVI软件自带的定标工具定标 (3)学习使用波段运算进行辐射定标。 2.实验设备与数据: 设备:遥感图像处理系统 数据:焦作2004年3-7和4-8数据 【备注:当 ENVI 第一次打开一个文件,它需要关于文件特征的特定信息。通常,这些信息存储在与图像文件同名的一个独立的文本头文件,但是文件扩展名为.hdr 。若文件打开时没有找到ENVI头文件,你必须在 Header Information 对话框中输入一些基本的参数. 另外一些数据格式没有 .hdr 文件也能自动打开。这些格式包括:TIFF、 GeoTIFF、 GIF、 JPEG、 BMP、 SRF、 HDF、 PDS、 MAS-50、 NLAPS、RADARSAT 和 AVHRR 。 关于ENVI的一些基本知识,我们就介绍到这里,如果想了解更多的,请参考用户手册和ENVI中的HELP.】。下面是关于ENVI的一些具体应用. 3 辐射定标的过程 拿到一幅原始图像,我们先要进行辐射定标,目的是把图像上的DN值转为辐亮度或者是反射率(即辐射定标).另外通过大气纠正,我们可以消除一些大气的干扰(即大气校正). 本实验主要学习辐射定标。辐射定标的结果可以是表观辐亮度(L),也可以是表观反射率()。大气校正部分,感兴趣的同学可以自己去关注6S或者其ρ它大气校正的软件。 一般有两种方式:第一种:利用计算公式,在ENVI中利用band math(波段运算)计算辐亮度或者反射率;第二种:利用ENVI自带的对TM的定标工具,进行定标,获取辐亮度或者反射率。 第一种方法:利用计算公式,通过ENVI的波段运算进行定标: 1)计算表观辐亮度的公式: radiance=((lmax-lmin)/(qcalmax-qcalmin)*(qcal-qcalmin)+lmin 其中:radiance –表观辐亮度 qcal-----DN(也就是影像数据本身); lmax 和lmin是从参数表中查询; qcalmax 是DN值的最大值,对于TM是8bit来说,qcalmax=255; Qcalmin 是DN值的最小值,一般为0。 所以上面的公式针对TM数据可以简写成: 精彩文档. 实用标准文案 radiance=((lmax-lmin)/qcalmax)*qcal + lmin 即:

遥感影像分类envi

遥感课程教学实验之二: 遥感影像分类 实验二遥感影像的分类遥感影像的监督分类 ?实验目的

理解计算机图像分类的基本原理以及监督分类的过程,学会利用遥感图像处理软ENVI 件对遥感图像进行分类的方法。 ?实验内容 1、遥感图像分类原理。 2、遥感图像监督分类。 3、最大似然法分类 ?实验条件 电脑、ENVI4.5软件。厦门市TM遥感影像。 ?实验步骤 1、启动ENVI软件,从文件菜单打开多波段影像文件,从可用波段列表中装载彩色或假色 影像,显示遥感影像。 2、从主图像窗口的工具Tools →Region of Interest →ROI Tools; 3、在自动打开的ROI Tools窗口中,设定ROI_Type 为“Polygon”(多边形),选定样本采 集的窗口类型,用Zoom(缩放窗口)进行采集。。

4、在选定的窗口如Zoom用鼠标左键画出样本区域,在结束处击鼠标右键二次,样本区域 被红色充填,同时ROI Tools窗口中显示采集样本的信息。采集新的样本点击“New Region”,重新上述步骤进行多个地物样本采集。。 5、从ENVI主菜单中,选 Classification > Supervised > Maximum Likelihood;或在端元 像元采集对话框 Endmember Collection中选择 Algorithm >MaximumLikelihood 进行最大似然法分类。

6、在出现Classification Input File 对话框中,选择输入影像文件,出现 Maximum Likelihood Parameters 对话框。 7、输入常规的分类参数。 设定一个基于似然度的阈值(Set Prpbability Threshold):如不使用阈值,点击“None” 按钮。要对所有的类别使用同一个阈值,点击“Single Value”按钮,在“Probability Threshold”文本框中,输入一个0 到1 之间的值。似然度小于该值的像元不被分入该类。 要为每一类别设置不同的阈值: ●在类别列表中,点击想要设置不同阈值的类别。 ●点击“Multiple Values”来选择它。 ●点击“Assign Multiple Values”按钮。 ●在出现的对话框中,点击一个类别选中它,然后在对话框底部的文本框中输入阈值。为每 个类别重复该步骤。 最后给定输出结果的保存方式:文件或内存,当影像较大时建设保存到文件中,以免因内存不够而出错运算错误。 点击“OK”计算机开始自动分类运算。 8、在可用波段列表中显示分类图像。 ?实验总结

利用ENVI软件进行遥感图像的融合和增强实习报告

遥感图像处理实习报告实验内容:影像融合与增强 班级:测绘1102班 学号: 1110020213 姓名: 指导老师:陈晓宁、黄远程、竞霞、史晓亮 西安科技大学 测绘科学与技术学院 二零一三年一月 实习三影像融合与增强

一、实习内容: 1.掌握ENVI中各种影像融合方法,并比较各方法的优缺点; 2.熟悉ENVI图像增强操作; 3.本实习的数据源为上节已经过校正的资源三号多光谱和全色影像。 二、实习目的: 1.了解和认识各种图像融合方法的原理、内容及要点; 2.熟悉、熟练操作ENVI软件中各种图像融合的方法、步骤并学会加以比较; 3.学习利用ENVI软件进行各种图像增强处理操作; 4.学会定性、定量分析比较图像融合的差异。 三、实习步骤: 1.图像融合: 三波段融合: HSV和Color Normalized (Brovey)变换: 1)从ENVI主菜单中,选择File → Open Image File,分别加载校正后的资源三号多光谱与全色影像到可用波段列表Available Bands List中; 2)选择多光谱3,2,1波段(可以根据需要选择)对应R,G,B,点击Load RGB将多光谱影像加载到显示窗口display#1; 3)在ENVI的主菜单选择Transform → Image Sharpening → HSV; 4)在Select Input RGB Input Bands对话框中,选择Display #1,然后点击OK。 5)从High Resolution Input File对话框中选择全色影像,点击OK。 6)从HSV Sharpening Parameters对话框中,选择重采样方法,并输入输出路径和文件名,点击OK。即可完成HSV变换融合; 与上述方法类似,选择Transform → Image Sharpening → Color Normalized (Brovey),使用Brovey进行融合变换。 多光谱融合: Gram-Schmidt、主成分(PC)和color normalized (CN)变换

ENVI+遥感图像的辐射定标

实验:遥感图像的辐射定标 1.实验目的与任务: (1)了解辐射定标的原理; (2)使用 ENVI 软件自带的定标工具定标 (3)学习使用波段运算进行辐射定标。 2.实验设备与数据: 设备:遥感图像处理系统 数据:焦作 2004 年 3-7 和 4-8 数据 【备注:当 ENVI第一次打开一个文件,它需要关于文件特征的特定信息。通常,这些信 息存储在与图像文件同名的一个独立的文本头文件,但是文件扩展名为.hdr。若文件打开 时没有找到ENVI 头文件,你必须在Header Information对话框中输入一些基本的参数. 另外一些数据格式没有.hdr 文件也能自动打开。这些格式包括:TIFF 、 GeoTIFF 、GIF 、 JPEG、 BMP 、 SRF、 HDF 、 PDS、 MAS-50 、 NLAPS 、RADARSAT和AVHRR。关于 ENVI 的一些基本知识 ,我们就介绍到这里 ,如果想了解更多的 ,请参考用户手册和 ENVI 中的HELP. 】。下面是关于 ENVI 的一些具体应用 . 3辐射定标的过程 拿到一幅原始图像,我们先要进行辐射定标,目的是把图像上的DN 值转为辐亮度或者是反射率(即辐射定标) .另外通过大气纠正,我们可以消除一些大气的干扰(即大气校正). 本实验主要学习辐射定标。辐射定标的结果可以是表观辐亮度(L ),也可以是表观反射率 (ρ)。大气校正部分,感兴趣的同学可以自己去关注 6S 或者其它大气校正的软件。 一般有两种方式:第一种:利用计算公式,在 ENVI 中利用 band math(波段运算)计算辐亮度或者反射率;第二种:利用ENVI 自带的对TM 的定标工具,进行定标,获取辐亮度或者反射率。 第一种方法:利用计算公式,通过ENVI 的波段运算进行定标: 1)计算表观辐亮度的公式: radiance=(( lmax-lmin ) /( qcalmax-qcalmin ) *( qcal-qcalmin ) +lmin 其中: radiance –表观辐亮度 qcal-----DN (也就是影像数据本身); lmax 和 lmin 是从参数表中查询; qcalmax 是 DN 值的最大值,对于TM 是 8bit 来说, qcalmax=255; Qcalmin 是 DN 值的最小值,一般为0。 所以上面的公式针对TM 数据可以简写成:

Landsat系列辐射定标参数整理

辐射定标参数整理 1.亮度温度计算 亮度温度是一个常用的温度概念,是在卫星高度上传感器探测波段范围内普朗克黑体辐射函数与传感器响应函数乘积积分得到的辐射值.亮度温度包含有大气和地表对热辐射传导的影响,不是真正意义上的地表温度。 计算公式: 其中,Lλ为传感器探孔处光谱辐射强度,即星上辐射亮度值,实现像素DN值转化为绝对辐射亮度值。 1.1.星上辐射亮度(Lλ) 遥感影像的亮度值(DN值)都是经过量化和纠正过的以8bit编码的数字影像,为了精确反演地物特性,有必要将DN值转化为星上辐射亮度值。 https://www.doczj.com/doc/16256943.html,ndsat8 Lλ= M L*Q cal + A L 通过查看影像的头文件,可以获取偏差参数:M L(RADIANCE_MULT_BAND_x)和A L(RADIANCE_ADD_BAND_x)为图像的增益和偏置。 1.1. https://www.doczj.com/doc/16256943.html,ndsat5/7

QCAL为经过辐射校正的图像灰度值即DN值;L max为探测器可检测到的最大辐射亮度,也是最大灰度值所相应的辐射亮;L min为探测器可检测到的最小辐射亮度,也是最小灰度值所相应的辐射亮度。 表 1 Landsat5 TM的Lmin和Lmax值 表 2 Landsat7 ETM+的Lmin和Lmax值 QCAL max为传感器接收到的最大灰度值,QCAL min为传感器接收到的最小灰度值。(1)如

果没有元数据信息,QCAL MIN默认值1(TM和ETM+1)或者0(MSS);QCAL MAX取默认值255(TM 和ETM+)或者127(MSS)。(2)如果有元数据信息,QCAL MIN取值如下:对于LPGS Products(The level 1 product generation system)取值为1,对于NLAPS Products(National Landsat Archive Production System)在04 April 2004之前取值为0,在04 April 2004之后取值为1;QCAL MAX 取值为127(MSS), 255(TM、ETM)。 注:LPGS和NLAPS分别是两种数据处理系统得到的产品,从2008年12月份开始,L7 ETM+ 和L5都是以LPGS系统处理,L4 TM和MSS以NLAPS系统处理。 表 3 Landsat5/7的QCALmin和QCALmax的值 1.2.预设常量K K1和K2是发射前预设的常量,具体值如下表所示。 2.大气顶层反射率(表观发射率) https://www.doczj.com/doc/16256943.html,ndsat 5/7(TM/ETM) ρ= π?Lλ?d2 ESUN?cosθ 其中:ρ——地面相对反射率;D——日地天文单位距离;Lλ——传感器光谱辐射值,即大气顶层的辐射能量;ESUN——大气顶层的太阳平均光谱辐射,即大气顶层太阳辐照度;1注:Landsat7热红外波段(Band 6)在格式1时总设置为低增益(6L),格式2时总设置为高增益(6H)

遥感影像处理步骤

一.预处理 1.降噪处理 由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进行消除或减弱方可使用。 (1)除周期性噪声和尖锐性噪声 周期性噪声一般重叠在原图像上,成为周期性的干涉图形,具有不同的幅度、频率、和相位。它形成一系列的尖峰或者亮斑,代表在某些空间频率位置最为突出。一般可以用带通或者槽形滤波的方法来消除。 消除尖峰噪声,特别是与扫描方向不平行的,一般用傅立叶变换进行滤波处理的方法比较方便。 (2)除坏线和条带 去除遥感图像中的坏线。遥感图像中通常会出现与扫描方向平行的条带,还有一些与辐射信号无关的条带噪声,一般称为坏线。一般采用傅里叶变换和低通滤波进行消除或减弱。

2.薄云处理 由于天气原因,对于有些遥感图形中出现的薄云可以进行减弱处理。 3.阴影处理 由于太阳高度角的原因,有些图像会出现山体阴影,可以采用比值法对其进行消除。二.几何纠正

通常我们获取的遥感影像一般都是Level2级产品,为使其定位准确,我们在使用遥感图像前,必须对其进行几何精纠正,在地形起伏较大地区,还必须对其进行正射纠正。特殊情况下还须对遥感图像进行大气纠正,此处不做阐述。 1.图像配准 为同一地区的两种数据源能在同一个地理坐标系中进行叠加显示和数学运算,必须先将其中一种数据源的地理坐标配准到另一种数据源的地理坐标上,这个过程叫做配准。 (1)影像对栅格图像的配准 将一幅遥感影像配准到相同地区另一幅影像或栅格地图中,使其在空间位置能重合叠加显示。 (2)影像对矢量图形的配准 将一幅遥感影像配准到相同地区一幅矢量图形中,使其在空间位置上能进行重合叠加显示。2.几何粗纠正

绝对辐射定标系数

国产陆地观测卫星2013年外场绝对辐射定标系数 1、 资源三号(ZY-3)卫星绝对辐射定标系数见表2 表2 ZY-3卫星在轨绝对辐射定标系数 卫星载荷 波段 光谱范围(μm ) Gain 资源三号 多光谱相机 Band-1 0.45 ~ 0.52 0.2551 Band-2 0.52 ~ 0.59 0.2353 Band-3 0.63 ~ 0.69 0.1944 Band-4 0.77 ~ 0.89 0.2107 注:利用绝对定标系数将ZY-3卫星CCD 图像DN 值转换为辐亮度图像的公式为: ()e e L Gain DN Bias λ=?+ 式中:式中()e e L λ为转换后辐亮度,单位为211W m sr m μ---???,DN 为卫星载荷观测值;Gain 为定标斜率,单位为211W m sr m μ---???,Bias 为定标截距,单位为211W m sr m μ---???。

2、 资源一号02C (ZY-1 02C )卫星绝对辐射定标系数见表3 表3 ZY-1 02C 星CCD 相机的定标系数 卫星载荷 波段号 Gain Bias ZY-1-02C-PMS Band1(P) 0.6208 -13.826 Band2 0.7397 -22.246 Band3 0.6904 -15.438 Band4 0.6369 -14.201 注:利用绝对定标系数将ZY-1 02C 卫星CCD 图像DN 值转换为辐亮度图像的公式为: ()e e L Gain DN Bias λ=?+ 式中:式中()e e L λ为转换后辐亮度,单位为211W m sr m μ---???,DN 为卫星载荷观测值;Gain 为定标斜率,单位为211W m sr m μ---???,Bias 为定标截距,单位为211W m sr m μ---???。

遥感卫星图像处理方法

北京揽宇方圆信息技术有限公司 遥感卫星图像处理方法 随着遥感技术的快速发展,获得了大量的遥感影像数据,如何从这些影像中提取人们感兴趣的对象已成为人们越来越关注的问题。但是传统的方法不能满足人们已有获取手段的需要,另外GIS的快速发展为人们提供了强大的地理数据管理平台,GIS数据库包括了大量空间数据和属性数据,以及未被人们发现的存在于这些数据中的知识。将GIS技术引入遥感图像的分类过程,用来辅助进行遥感图像分类,可进一步提高了图像处理的精度和效率。如何从GIS数据库中挖掘这些数据并加以充分利用是人们最关心的问题。GIS支持下的遥感图像分析特别强调RS和GIS的集成,引进空间数据挖掘和知识发现(SDM&KDD)技术,支持遥感影像的分类,达到较好的结果,专家系统表明了该方法是高效的手段。 遥感图像的边缘特征提取观察一幅图像首先感受到的是图像的总体边缘特征,它是构成图像形状的基本要素,是图像性质的重要表现形式之一,是图像特征的重要组成部分。提取和检测边缘特征是图像特征提取的重要一环,也是解决图像处理中许多复杂问题的一条重要的途径。遥感图像的边缘特征提取是对遥感图像上的明显地物边缘特征进行提取与识别的处理过程。目前解决图像特征检测/定位问题的技术还不是很完善,从图像结构的观点来看,主要是要解决三个问题:①要找出重要的图像灰度特征;②要抑制不必要的细节和噪声;③要保证定位精度图。遥感图像的边缘特征提取的算子很多,最常用的算子如Sobel算子、Log算子、Canny算子等。 1)图像精校正 由于卫星成像时受采样角度、成像高度及卫星姿态等客观因素的影响,造成原始图像非线性变形,必须经过几何精校正,才能满足工作精度要求一般采用几何模型配合常规控制点法对进行几何校正。 在校正时利用地面控制点(GCP),通过坐标转换函数,把各控制点从地理空间投影到图像空间上去。几何校正的精度直接取决于地面控制点选取的精度、分布和数量。因此,地面控制点的选择必须满足一定的条件,即:地面控制点应当均匀地分布在图像内;地面控制点应当在图像上有明显的、精确的定位识别标志,如公路、铁路交叉点、河流叉口、农田界线等,以保证空间配准的精度;地面控制点要有一定的数量保证。地面控制点选好后,再选择不同的校正算子和插值法进行计算,同时,还对地面控制点(GCPS)进行误差分析,使得其精度满足要求为止。最后将校正好的图像与地形图进行对比,考察校正效果。 2)波段组合及融合 对卫星数据的全色及多光谱波段进行融合。包括选取最佳波段,从多种分辨率融合方法中选取最佳方法进行全色波段和多光谱波段融合,使得图像既有高的空间分辨率和纹理特性,又有丰富的光谱信息,从而达到影像地图信息丰富、视觉效果好、质量高的目的。 3)图像镶嵌

利用ENVI软件进行遥感图像的融合和增强实习报告

遥感图像处理实习报告 实验内容:影像融合与增强 班级:测绘1102班 学号:13 姓名: 指导老师:陈晓宁、黄远程、竞霞、史晓亮 西安科技大学 测绘科学与技术学院 二零一三年一月 实习三影像融合与增强

一、实习内容: 1.掌握ENVI中各种影像融合方法,并比较各方法的优缺点; 2.熟悉ENVI图像增强操作; 3.本实习的数据源为上节已经过校正的资源三号多光谱和全色影像。 二、实习目的: 1.了解和认识各种图像融合方法的原理、内容及要点; 2.熟悉、熟练操作ENVI软件中各种图像融合的方法、步骤并学会加以比较; 3.学习利用ENVI软件进行各种图像增强处理操作; 4.学会定性、定量分析比较图像融合的差异。 三、实习步骤: 1.图像融合: 三波段融合: HSV和Color Normalized (Brovey)变换: 1)从ENVI主菜单中,选择File → Open Image File,分别加载校正后的资源三号多光谱与全色影像到可用波段列表Available Bands List中; 2)选择多光谱3,2,1波段(可以根据需要选择)对应R,G,B,点击Load RGB将多光谱影像加载到显示窗口display#1; 3)在ENVI的主菜单选择Transform → Image Sharpening → HSV; 4)在Select Input RGB Input Bands对话框中,选择Display #1,然后点击OK。 5)从High Resolution Input File对话框中选择全色影像,点击OK。 6)从HSV Sharpening Parameters对话框中,选择重采样方法,并输入输出路径和文件名,点击OK。即可完成HSV变换融合;

环境减灾星座AB星各载荷在轨绝对辐射定标系数

环境减灾星座A/B 星各载荷在轨绝对辐射定标系数 1、HJ1A/B 星各载荷在轨绝对辐射定标系数见表1和表2。 表1 HJ1A/B 星CCD 与IRS 绝对辐射定标系数 定标系数 卫星 传感器 增益 参数 Band1 Band2 Band3 Band4 a (DN/W ?m ?2 ?sr ?1?μm ?1)0.57630.54100.6824 0.7209 1 L 0 (W ?m ?2 ?sr ?1?μm ?1) 9.31839.17587.5072 4.1484 a (DN/W ?m ?2 ?sr ?1?μm ?1)0.9160 0.9228 1.1277 1.0753 CCD1 2 L 0 (W ?m ?2 ?sr ?1?μm ?1) 7.3250 6.0737 3.6123 1.9028 a (DN/W ?m ?2 ?sr ?1?μm ?1)0.63600.59100.8142 0.8768 1 L 0 (W ?m ?2 ?sr ?1?μm ?1) 7.55757.0944 4.1319 1.2232 a (DN/W ?m ?2 ?sr ?1?μm ?1)0.9997 1.0016 1.3777 1.3043 HJ1A CCD2 2 L 0 (W ?m ?2 ?sr ?1?μm ?1) 4.6344 4.0982 3.7360 0.7385 a (DN/W ?m ?2 ?sr ?1?μm ?1)0.53290.528950.68495 0.72245 1 L 0 (W ?m ?2 ?sr ?1?μm ?1) 1.6146 4.0052 6.2193 2.8302 a (DN/W ?m ?2 ?sr ?1?μm ?1)0.86850.9367 1.2433 1.3002 CCD1 2 L 0 (W ?m ?2 ?sr ?1?μm ?1) 3.0089 4.4487 3.2144 2.5609 a (DN/W ?m ?2 ?sr ?1?μm ?1) 0.57820.50870.6825 0.6468 1 L 0 (W ?m ?2 ?sr ?1?μm ?1) 3.4608 5.8769 8.0069 8.8583 a (DN/W ?m ?2 ?sr ?1?μm ?1)0.9076 0.8502 1.1635 0.9800 CCD2 2 L 0 (W ?m ?2 ?sr ?1?μm ?1) 2.2219 4.0683 5.2537 6.3497 g (DN/W ?m ?2 ?sr ?1?μm ?1) 4.285718.557912.662 61.472 HJ1B IRS 1 b (DN) - - 11.489 -44.598 表2 HJ1A 星HSI 绝对辐射定标系数(DN/W ?m ?2?sr ?1?μm ?1) HJ1AHSI 绝对定标系数 波长 定标系数 波长 定标系数 波长 定标系数 460.04 0.2927 561.88 1.5462 721.61 5.8620 462.14 0.3050 565.00 1.5896 726.77 5.1258 464.25 0.3447 568.16 1.6073 732.01 5.5057 466.38 0.3786 571.36 1.6783 737.33 4.3242

遥感数字图像处理要点

遥感数字图像处理-要点 1.概论 遥感、遥感过程 遥感图像、遥感数字图像、遥感图像的数据量 遥感图像的数字化、采样和量化 通用遥感数据格式(BSQ、BIL、BIP) 遥感图像的模型:多光谱空间 遥感图像的信息内容: 遥感数字图像处理、遥感数字图像处理的内容 遥感图像的获取方式主要有哪几种? 如何估计一幅遥感图像的存储空间大小? 遥感图像的信息内容包括哪几个方面? 多光谱空间中,像元点的坐标值的含义是什么? 与通用图像处理技术比较,遥感数字图像处理有何特点? 遥感数字图像处理包括那几个环节?各环节的处理目的是什么? 2.遥感图像的统计特征 2.1图像空间的统计量 灰度直方图:概念、类型、性质、应用 最大值、最小值、均值、方差的意义 2.2多光谱空间的统计特征 均值向量、协方差矩阵、相关系数、相关矩阵的概念及意义 波段散点图概念及分析 主要遥感图像的统计特征量的意义 两个重要的图像分析工具:直方图、散点图 3.遥感数字图像增强处理 图像增强:概念、方法 空间域增强、频率域增强

3.1辐射增强:概念、实现原理 直方图修正,线性变换、分段线性变换算法原理 直方图均衡化、直方图匹配的应用 3.2空间增强 邻域、邻域运算、模板、模板运算 空间增强的概念 平滑(均值滤波、中值滤波)原理、特点、应用 锐化、边缘增强概念 方向模板、罗伯特算子、索伯尔算子、拉普拉斯算子的算法和特点 ?计算图像经过下列操作后,其中心象元的值: –3×3中值滤波 –采用3×3平滑图像的减平滑边缘增强 –域值为2的3×1平滑模板 –Sobel边缘检测 –Roberts边缘检测 –模板 3.3频率域处理 高频和低频的意义 图像的傅里叶频谱 频率域增强的一般过程 频率域低通滤波 频率域高通滤波 同态滤波的应用

第1章 感图像处理软件ENVI基本操作

第1章感图像处理软件ENVI基本操作 实验目的:掌握遥感图像处理软件基本界面信息和数据文件的打开方法 主要内容: (1)遥感图像处理软件ENVI界面总体介绍; (2)ENVI软件能识别的图像类型介绍 (3)各种图像文件的打开 重点:ENVI能识别的文件类型 第1节ENVI软件简介 遥感图像处理软件主要有ENVI,PCI ,ERDAS,ERMAPPER等。ENVI 软件(The Environment for Visualizing Images)由美国Research Systems,Inc.公司(RSI)的产品。由遥感领域的科学家采用IDL(Interactive Data Language)开发的一套功能强大的遥感图像处理系统. IDL是进行二维或多维数据可视化、分析和应用开发的理想工具。 ENVI是一个完整的遥感图像处理平台,其软件处理技术覆盖了图像数据的输入/输出、定标、图像增强、纠正、正射校正、镶嵌、数据融合以及各种变换、信息提取、图像分类、基于知识的决策树分类、与GIS的整合、DEM及3维信息提取、雷达数据处理、3维立体显示分析,提供了专业可靠的波谱分析工具和高光谱分析工具。 其主要应用领域:科研、环境保护、气象、石油矿产勘探、农业、林业、医学、国防和安全、地球科学、公用设施管理、遥感工程、水利、海洋、测绘勘察和城市与区域规划等。 IDL 是集科学数据分析、可视化表达和跨平台应用开发等功能为一体的第四代可视化计算机语言。它是面向矩阵的、完全支持对数组的直接操作,具有快速分析超大规模数据的能力,速度比传统语言如C、C++等有很大的提升。它包括了高级图像处理能力、交互式二维和三维图形技术、面向对象的编程、OpenGL 硬件图形加速功能、集成的数学分析与统计软件包、完善的信号分析和图像处理功能、灵活的数据输入输出方式、跨平台的图形拥护界面工具包、连接ODBC 兼容数据库、支持远程服务器访问数据以及具有多种外部程序连接方式。它成为数据分析和可视化的首先工具。 其主要应用领域:海洋科学、气象、遥感工程、医学、空间物理、地球科学、测试技术、信号处理、科研教育、天文学、商业等领域。

辐射定标

辐射定标(像元亮度值,辐射亮度/亮温)、表观反射率、地表反射率、反照率、比辐射率(转) (2012-11-28 13:58:29) 转载▼ 分类:科研 标签: 杂谈 (2012-01-26 01:18:44) 标签: 校园分类:工作篇

定标系数为:增益53.473,单位:DN/(W?m-2?sr-1?μm-1);截距26.965,单位:DN。利用绝对定标系数将DN值图像转换为辐亮度图像的公式为L=(DN-b)/coe,式中coe为绝对定标系数的增益,b为截距,转换后辐亮度单位为 W?m-2?sr-1?μm-1。HJ1B红外相机中红外波段则条带较为严重,不利于定量化应用。 遥感数字图像 遥感数字图像是以数字形式记录的二维遥感信息,即其内容是通过遥感手段获得的,通常是地物不同波段的电磁波谱信息。其中的像素值称为亮度值(或称为灰度值、DN值)。 遥感概念DN值(Digital Number )是遥感影像像元亮度值,记录的地物的灰度值。无单位,是一个整数值,值大小与传感器的辐射分辨率、地物发射率、大气透过率和散射率等有关。 遥感图像量化image quantification。释文:按一定的函数关系将图像所代表的物理量分割成有限的离散等级,以使观测数据可用一定字长的二进制码表示,因此又称为数据编码。量化后的级别称为图像的像元值、灰度或亮度,记为 DN(digital number)。 DN值没有单位,数量级与像素深度有关,如果是无符号整型的就是0-255,符点型,无符号16位均根据其类型确定。 在遥感领域,定标一般分为几何定标和辐射定标两种。 几何定标即指对遥感图像几何特性进行校正,以还原为真实情况。 辐射定标指对遥感图像的辐射度进行校准,以实现定量遥感。 辐射定标一般也可称为校准,其主要目的是保证传感器获取遥感数据的准确性。通常,采用系统自身内部监视环路和外部标准目标方法对系统链路中的各个环节进行误差修正,来实现辐射定标过程。 一般在主动式遥感系统中,辐射定标可以作得很好,可以认为在一定误差范围内实现了定量遥感。而被动式遥感系统相对困难些。 几何定标相对简单,就不多说了。 辐射定标是对传感器引起的误差校正,将影像校正为星上反射率 辐射定标和辐射校正——遥感数据定量化的最基本环节 由于遥感图像成像过程的复杂性,传感器接收到的电磁波能量与目标本身辐射的能量是不一致的。传感器输出的能量包含了由于太阳位置、大气条件、地形影响和传感器本身的性能等所引起的各种失真,这些失真不是地面目标的辐射,因此对图像的使用和理解造成影响,必须加以校正和消除,而校正和消除的基本方法就是辐射定标和辐射校正。

《遥感数字图像处理》试卷及答案

2008—2009学年考试试题 课程名称:遥感数字图像处理 学号姓名成绩 一、单项选择题(2分×20=40分) 1.遥感技术是利用地物具有完全不同的电磁波(A)或()辐射特征来判断地物目标和自然现象。 A.反射发射 B.干涉衍射 C.反射干涉 D.反射衍射 2.TM6所采用的10.4~12.6um属于(C )波段。 A.红外 B.紫外 C.热红外 D.微波 3.彩红外影像上( B)呈现黑色,而( A)呈现红色。 A.植被 B. 水体 C.干土 D.建筑物 4.影响地物光谱反射率的变化的主要原因包括(A)。 A. 太阳高度角 B.不同的地理位置 C. 卫星高度 D.成像传感器姿态角 5.红外姿态测量仪可以测定(B)。 A. 航偏角 B. 俯仰角 C.太阳高度角 D. 滚动角 6.下面遥感卫星影像光谱分辨率最高的是(D)。 A. Landsat-7 ETM+ B.SPOT 5 C.IKONOS-2 D. MODIS 7.下面采用近极地轨道的卫星是(A)。 A. Landsat-5 B. SPOT 5 C. 神州7号 D. IKONOS-2 8.下面可获取立体影像的遥感卫星是( B)。 A. Landsat-7 B.SPOT 5 C.IKONOS-2 D. MODIS 9.侧视雷达图像的几何特征有(A )。 A.山体前倾 B.高差产生投影差 C.比例尺变化 D. 可构成立体像对 10.通过推扫式传感器获得的一景遥感影像,在(B)属于中心投影。 A.沿轨方向 B. 横轨方向 C. 平行于地球自转轴方向 D. 任意方向 11. SPOT 1-4 卫星上装载的HRV传感器是一种线阵(B)扫描仪。 A. 面阵 B. 推扫式 C. 横扫式 D. 框幅式 12.(A)只能处理三波段影像与全色影像的融合。 A.IHS变换 B.KL变换 C. 比值变换 D. 乘积变换 13.(B)是遥感图像处理软件系统。 A. AreInfo B.ERDAS C. AUTOCAD D. CorelDRAW 14.一阶哈达玛变换相当于将坐标轴旋转了(B)。 A.30° B. 45° C. 60° D.90° 15.遥感影像景物的时间特征在图像上以(C)表现出来。 A. 波谱反射特性曲线 B.空间几何形态 C. 光谱特征及空间特征的变化 D.偏振特性 16.遥感传感器的分辨率指标包括有(C)。 A.几何分辨率 B.光谱分辨率 C.辐射分辨率 D.时间分辨率 17.遥感图像构像方程是指地物点在图像上的( C)和其在地物对应点的大地坐标之间的数学关系。 A.投影差 B. 几何特征 C.图像坐标 D. 光谱特征

相关主题
文本预览
相关文档 最新文档