海水脱硫
- 格式:ppt
- 大小:1.40 MB
- 文档页数:17
海水脱硫系统介绍及工艺特点后石电厂设计脱硫系统采用海水+氢氧化钠方法,初期先采用纯海水脱硫方法,设备的安装及调试工作按照纯海水系统的设计进行。
电厂海水脱硫系统可以分为烟气系统、SO2吸收系统、海水供排水系统和海水恢复系统、电气及控制系统等组成,下面就各系统的工艺特点及有关设备的情况等做一个介绍。
3.1烟气系统锅炉烟气从引风机出口通过烟道直接进入脱硫系统,不设旁路烟道。
烟气首先进入预冷却器内,预冷却器作用为冷却进入吸收塔的烟气温度使之低于100℃。
预冷却器的结构为一段扩充的圆形烟道,采用碳钢加KOKA石内衬,由台塑公司制造。
预冷器安装有两台,每个烟道设置一台预冷器。
预冷器内部设由8个喷嘴,工业水由喷嘴喷入预冷器内对烟气降温,预冷却器工业水设计喷淋流量为11m3/h/台。
冷却后的烟气自下而上流经脱硫吸收塔和除雾器,脱硫后的烟气不进行再加热,通过烟道直接进入烟囱排入大气,脱硫后烟气温度设计为40℃,脱硫吸收塔出口至烟囱一段烟道全部采用玻璃鳞片树脂进行内部防腐。
3.2SO2吸收系统吸收塔为SO2吸收系统的关键设备。
每台机组设两座吸收塔。
吸收塔设计为喷淋塔,吸收塔的尺寸为ф12m×38m H,吸收塔内部采用玻璃鳞片树脂内衬防腐,吸收塔内部的海水喷淋采用两层喷淋,管道全部采用不锈钢管道,上部喷淋分配管采用喷淋管喷淋,设计喷淋流量范围0-23000m3/h;下部喷淋分配管上安装有不锈钢加陶瓷内衬式旋流喷嘴,设计喷淋流量范围0-2600m3/h;上下两层分配管下部分别设置多孔不锈钢检修平台。
吸收塔内部安装有气流分布板,以使烟气进入吸收塔后塔内气流分布均匀。
脱硫后的海水通过吸收塔下部的溢流堰溢流排出。
脱硫吸收塔上部安装有除雾器,作用为将脱硫后烟气中携带的水滴去掉。
除雾器材质为百叶窗式聚丙烯材料,每台除雾器均配有工业水清洗装置:每台炉脱硫系统设计三台除雾器清洗水增压泵及16个清洗控制气动阀,由PLC控制对除雾器进行间断清洗。
烟气海水脱硫技术原理海水烟气脱硫是利用海水的天然碱性吸收烟气中SO2的一种脱硫工艺。
由于雨水将陆地上岩层的碱性物质(碳酸盐)带到海中,天然海水通常呈碱性,PH值一般大于7,其主要成分是氯化物、硫酸盐和一部分可溶性碳酸盐,以重碳酸盐(HCO3-)计,自然碱度约为1.2~2.5mmol/L,这使得海水具有天然的酸碱缓冲能力及吸收SO2的能力。
海水脱硫的一个基本理论依据就是自然界的硫大部分存在于海洋中,硫酸盐是海水的主要成份之一,环境中的二氧化硫绝大部分最终以硫酸盐的形式排入大海。
烟气中SO2与海水接触发生以下主要反应:SO2(气态) + H2O → H2SO3→ H+ + HSO3-HSO3-→ H+ + SO32-SO32- + 1/2O2 → SO42-上述反应为吸收和氧化过程,海水吸收烟气中气态的SO2生成H2SO3,H2SO3不稳定将分解成H+与HSO3-,HSO3-不稳定将继续分解成H+与SO32-。
SO32-与水中的溶解氧结合可氧化成SO42-。
但是水中的溶解氧非常少,一般在7~8mg/l左右,远远不能将由于吸收SO2产生的SO32-氧化成SO42-。
吸收SO2后的海水中H+浓度增加,使得海水酸性增强,PH值一般在3左右,呈强酸性,需要新鲜的碱性海水与之中和提高PH值,脱硫后海水中的H+与新鲜海水中的碳酸盐发生以下反应:HCO3- + H+→ H2CO3 → CO2↑ + H2O在进行上述中和反应的同时,要在海水中鼓入大量空气进行曝气,其作用主要有:(1)将SO32-氧化成为SO42-;(2)利用其机械力将中和反应中产生的大量CO2赶出水面;(3)提高脱硫海水的溶解氧,达标排放。
从上述反应中可以看出,海水脱硫除海水和空气外不添加任何化学脱硫剂,海水经恢复后主要增加了SO42-,但海水盐分的主要成分是氯化钠和硫酸盐,天然海水中硫酸盐含量一般为2700mg/l,脱硫增加的硫酸盐约70-80 mg/l,属于天然海水的正常波动范围。
烟气海水脱硫技术的运行探讨摘要:烟气海水脱硫技术在我国沿海地区火电厂的脱硫项目中广泛应用,本文结合深圳妈湾电力有限公司#1--#6机组烟气海水脱硫系统自投运以来积累的丰富的运行经验,探讨运行中存在的一些问题和优化改进的建议。
关键词:海水脱硫;脱硫效率;碱度一、烟气海水脱硫系统介绍天然海水中含有大量的可溶盐,其主要成分是氯化物和硫酸盐,也含有一定量的可溶性碳酸盐。
海水通常呈碱性,自然碱度为1.2-2.5mmol/L。
这使得海水具有天然的酸碱缓冲能力及吸收SO2能力。
利用海水这种特性洗涤并吸收烟气中的SO2,达到烟气净化之目的。
与他脱硫技术相比,海水脱硫有以下优点:1、技术成熟、工艺简单、运行维护方便、设备投资费用低。
2、系统脱硫效率高,一般可达90%。
3、只需要海水和空气,不需任何添加剂,避免了石灰石的开采、加工、运输和贮存等。
4、不存在副产品及废弃物,脱硫后循环水的温升≤ 1℃,PH 值和溶解氧有少量降低。
国外对海水脱硫工艺对环境和生态影响的研究表明,其排放的重金属和多环芳烃的浓度均未超过规定的排放标准。
海水脱硫工艺主要由烟气系统、供排海水系统、海水恢复系统等组成。
其主要流程是:锅炉排出的烟气经除尘器后,送入气一气换热器的热侧降温,然后进入吸收塔,在吸收塔中被来自循环冷却系统的部分海水经吸收泵增压后洗涤,烟气中的SO2在海水中发生以下化学反应:SO2(气)--SO2(液)SO2(液)+H2O—SO32- +H+在吸收塔中,通过向下喷射与烟气逆向流动的海水洗涤脱去烟气中的 SO2,形成亚硫酸根 SO32- 和氢离子 H+。
亚硫酸是一种不稳定的中等程度的酸,易分解成 SO2和 H2O。
为使溶于水中形成的亚硫酸固定下来,向海水处理曝气池中鼓入大量的空气,使亚硫酸根离子(SO32-)与空气中的氧(O2)反应生成稳定的硫酸根离子(SO42-)和一部分硫酸盐;同时,利用海水中的碳酸根离子(CO32-)和碳酸氢根离子(HCO32-)中和氢离子(H+)使海水的 PH 值得以恢复。
我国是燃煤大国,一次能源中燃煤约占75%,而SO2排放量的90%来自燃煤。
在SO2排放中,燃煤发电厂占总量53.3%,工业锅炉占38.8%,工业窑炉占7.9%。
电力、冶金、化工、建材等工业是排放SO2的主要工业群。
1国内外发展概况海水脱硫与其它烟气脱硫技术相比,具有脱硫效率高,运行成本低,系统简单、投资少等特点。
早在上个世纪60年代末,美国加州伯克利大学就研究了利用海水中天然碱度来吸收烟气中SO2的工艺原理。
在此基础上,上个世纪70年代,挪威ABB-Flakt公司和Norsk-Hydro 公司合作,经实验台装置成功运行后,确立了Flakt-Hydro工艺,在挪威广泛用于炼油厂及工业窑炉的烟气脱硫。
挪威以.ALSTOM(阿尔斯通)技术(曾称为ABB)为主流,世界上已经投产项目中,采用ALSTOM技术的占有率达到80%,其它技术还有德国比绍夫和日本富士化水。
近年来,有30多套海水脱硫装置投入或即将投入运行,例如:1974年成功地应用于Porsgurnn 的工业燃油锅炉烟气脱硫;1988年在挪威Husnes炼铝厂实施了F-FGD(Flue Gas Desulfurization)工艺;同年印度塔塔(TaTa)电厂位于海边河口地区的Trombay(特罗姆贝)电厂5号机组(500MW)部分烟气脱硫分期实施了F-FGD工艺,其中第一期125 MW烟气脱硫采用预冷却器,这是世界上第一台用海水进行火电厂FGD的装置;第二期125 MW容量烟气脱硫改用气--气热交换器(GGH),1994年投产,1995年,西班牙UNELCO电厂在4台80MW机组安装;1999年印度尼西亚:Paiton电厂4×335 MW使用海水脱硫投入运行;马来西亚发电厂2×700 MW机组于2002-2003年先后投入运行;英国苏格兰电力公司地处重要生态保护区的Longannet电厂4×600 MW燃煤发电机组的海水脱硫装置于2005年建设;其它如:日本炼油厂270 MW,塞浦路斯130 MW也都在建设之中。
船舶废气处理中海水脱硫技术的应用摘要:由于船舶运输载货量大,总体运输成本低等突出优点,海运成为国际贸易中的重要运输手段。
由于船舶燃用劣质燃油,船舶废气排放对环境造成了很大的影响。
为此,海水脱硫技术的应用是非常有必要的,本文重点分析了船舶废气处理工作中海水脱硫技术的应用问题,以供参考。
关键词:船舶废气处理;海水脱硫技术;脱硫系统一、海水脱硫技术在船舶废气处理中的应用必要性分析当前随着我国工业生产水平的快速进步,船舶的数量和吨位等级都有所提升。
当代全球贸易运输过程中,其主要的动力源头就是柴油发动机装置,为了保证高吨位船舶在工作中能够正常运输,通常会选择使用含硫量较高的燃料,这种类型的燃料在燃烧过程中会产生较多硫化物等有害物质,在全球污染物排放总量中占有很大比例,并且呈现持续增长的趋势,长此以往,船舶的航线相对密集的区域以及港口等区域将遭受严重的环境污染,为了有效缓解这种情况,净化环境,海水脱硫技术的应用势在必行。
二、海水脱硫技术海水脱硫技术是指,利用海水的酸碱性,对船舶废气中的酸性二氧化硫进行吸收处理的技术类型,其本质上属于湿法脱硫技术的一种。
海水中含有大量的碳酸氢根和碳酸根,具有良好的酸碱中和能力,在海水脱硫吸收塔中,船舶烟气中存在的二氧化硫能够转换成为可溶解的酸性物质,然后逆向流动与喷淋出的海水相接触,转换成为硫酸氢根离子和亚硫酸氢根离子,这些离子与氧气接触之后,最终能够生成硫酸根离子,达到船舶废气净化处理的目的。
对于在海上行驶的船舶来说,海水脱硫技术在其废气处理中的主要优势就是用之不竭的海水资源,远洋航行的船舶能够利用海水直接进行废气脱硫处理,此种技术应用便捷,原理简单,不会产生大量废弃物,便于维护且应用成本较低,脱硫效果显著。
三、海水脱硫技术在船舶废气处理中的应用要点1、海水脱硫技术应用流程船舶在运行过程中,其中的柴油机会排放出大量的废气,此时船舶中的废气锅炉装置会吸收余热,对排放出的废气实施降温处理,将其温度控制在225℃左右。
海水脱硫工艺流程和原理下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!海水脱硫工艺是一种重要的环境保护技术,其主要目的是降低海水中的二氧化硫含量,减少大气中的硫氧化物排放。
海水脱硫工艺流程和原理
海水脱硫工艺流程:
1、烟气除尘和降温:锅炉排出的烟气首先经过除尘处理,然后由系统增压风机送入气气换热器的热侧进行降温。
2、海水吸收二氧化硫:降温后的烟气进入吸收塔,其中部分海水被用来洗涤烟气,烟气中的二氧化硫被海水吸收,形成亚硫酸氢根离子(HSO3^-)和氢离子(H^+)。
3、亚硫酸氢根离子的水解和中和反应:亚硫酸氢根离子(HSO3^-)在水中发生水解反应,生成亚硫酸(H2SO3)和氢离子(H^+),同时海水中的碳酸氢根离子或碳酸根离子与氢离子发生中和反应,生成碳酸。
4、曝气氧化反应:为了去除亚硫酸根离子和亚硫酸氢根离子,海水在曝气池中通过鼓入空气进行强制氧化,氧化后的亚硫酸根离子和亚硫酸氢根离子转化为稳定的硫酸根离子(SO4^2-)和硫酸氢根离子(H2SO4)。
5、水质恢复:经过上述一系列化学反应后,海水中的pH值、溶解氧(DO)和化学需氧量(COD)等指标达到排放标准,最终排入指定海域。
海水脱硫的原理:利用海水的碱度达到脱除烟气中二氧化硫的一种脱硫方法。
海水脱硫工艺
海水脱硫工艺是指利用化学方法将海水中的硫化物离子(如硫酸盐)去除的过程。
常用的海水脱硫工艺包括以下几种:
1.吸收法:利用吸收剂吸收海水中的硫化物离子,将其转化为
不溶于水的硫酸盐盐类沉淀,从而实现脱硫。
常用的吸收剂包括氧化铁、氢氧化钙等。
2.碱性氧化法:将海水中的硫酸盐转化为硫酸钠或硫酸钠等盐类,并用氢氧化钙等碱性物质进行中和反应,将硫酸盐沉淀下来实现脱硫。
该工艺具有操作简单、成本低、效果稳定等优点。
3.电解法:利用电解技术将海水中的硫酸盐分解为硫酸和氢氧
化物离子,再通过电解液中的反应将硫化物离子沉积下来,达到脱硫的目的。
电解法具有高效、高度自动化等优点,但设备和能源消耗较大。
4.生物法:利用微生物对海水中的硫酸盐进行还原或氧化反应,将硫化物转化为硫酸或硫磺,从而实现脱硫。
生物法具有环保、能源消耗较低等优点,但需要良好的工艺控制和维护。
以上是常见的海水脱硫工艺方法,根据实际情况和需求选择适合的工艺方案进行海水脱硫处理。
海水中含有大量的盐类,除了含量很高的NaCl等主要成分外,还有一些弱酸强碱的盐类,如碳酸氢盐、碳酸盐、硼酸盐、磷酸盐和硫化物等。
使得海水有自然碱度,一般为2.0--2.6mmol / L,其pH约为7.7--8.5,因此海水有着比淡水高得多的酸碱缓冲能力。
应用海水洗涤烟气脱除烟气中的二氧化硫,其基本原理可以用以下的化学反应和化学平衡来解释。
S02在水中发生以下反应:S02(g)→S02(aq) (1)S02(aq) + 2H20→HS03-+ H30+(2)HS03-+ H20→S032-+ H30+(3)海水的缓冲能力主要:由H2CO3和它的相应酸根之间的平衡(CO2/ H2CO3/ HC03-/ C032-)而引起:C02+ H20→H2CO3(4)H2CO3+ H20→HC03-+H30+(5)HC03-+ H20→C032-+H30+(6)海水中含量较低的磷酸盐、硼酸盐等亦有上述类似反应。
在对洗涤烟气的海水进行曝气氧化时,发生以下反应:S02+ H20 + 1/202→SO42-+ 2H+(7)HC03-+ H30+→CO2+ 2H20 (8)CO2的逸出使曝气池中的海水pH值升高,加快了(7)式的反应。
硫酸盐是海水的主要成分,由海水脱硫引起的增量很小,不会造成脱硫排水对海域的污染,pH值恢复到6.5,达到排放标准的要求,亦不会对海域造成危害。
35'000•ppm• 15•4.Total suspended solids (TSS)总悬浮物•5.Bicarbonates (HCO)重碳酸盐•mg/l•90•80 -1003•6.Chlorides (Cl)氯化物•mg/l•18'500•18’000 -19'000•7.Fluorides (F)氟化物•mg/l•< 1•10.Sodium (Na)钠•mg/l•10'500•10'000 -11'000•11.Magnesium (Mg)鎂•mg/l•1'300•1’270 -1’380•12.Calcium (Ca)钙•mg/l•380•360 -450•13.Potassium (K)钾•mg/l•400•400 -450•14.Chem. Oxygen Demand•mg/l•10•up to 20 (COD)化学需氧量排放海水水质保证:经曝气后的海水应达到:pH≥6.8;耗氧量CODMn:≤5mg/l;溶解氧DO:≥3mg/l;SO32-氧化率:≥90%;符合GB3097—1997《海水水质标准》◆利用海水的天然碱度来吸收烟气中的SO2,不产生任何废弃物,无环境负面影响;◆不需要添加任何化学物质;◆技术成熟;◆工艺简单;◆系统无磨损、堵塞结垢、系统可靠性高;◆脱硫效率高;◆投资和运行费用低;◆建设周期短;◆适用于沿海新建机组和老机组的改造和扩建。