磺化聚醚砜_纳米TiO_2复合超滤膜制备及其抗污染机理_英文_
- 格式:pdf
- 大小:1.65 MB
- 文档页数:7
磺化聚醚砜超滤膜的制备研究施柳青 梁雪梅 沈卫东 陆晓峰(中国科学院上海原子核研究所膜中心)摘要 本文研究了磺化聚醚砜的制备和膜性能的测试,通过选择适当的配方研制性能稳定的较小孔径的超滤膜。
该膜在0.2 M pa操作压力下对聚乙二醇10000的截留率大于95%,水通量为55L/m2H,通过扫描电镜观察膜的断面结构,结果表明:PES膜断面形态属于典型的非对称指状孔结构,SPES 膜断面形态是海绵层结构。
关键词 磺化聚醚砜 超滤膜 膜性能随着超滤技术日益广泛地应用,人们对各种小分子量可溶性溶质的浓缩、分离、提纯和净化,对超滤膜提出了更高的要求 1。
我所早期的研究表明,聚砜磺化后引入反应基团,所制得的磺化聚砜超膜滤膜表面疏松程度得到调节,由于亲水基团-SO-3的引入,改善了膜的亲水性,制得了截留较小分子量的超滤膜,有利于提高膜的通量 3。
但磺化聚砜的制备过程较复杂,在近期的研究中我们对聚醚砜磺化工艺进行了改进,简化了磺化的步骤。
本文着重研究磺化聚醚砜超滤膜,探讨了不同添加剂,添加剂浓度,聚合物浓度,聚合物交换当量等对膜性能的影响,通过扫摸电镜观察膜的断面结构,并对膜的分离性能进行测试。
1 实验部分1.1膜材料及化学试剂磺化聚醚砜(SPES)自制;聚醚砜,吉林大学;N.N!二甲基乙酰胺(DMAC)(化学纯),上海试剂二厂;NaCl、Na2SO4皆为分析纯;聚乙二醇(分析纯),上海合成洗涤剂二厂奉贤光明化工厂。
1.2主要仪器静态杯式超滤器,自制;T OC-5000型总有机碳分析仪,日本岛津;DDS!11A型电导率仪,上海第二分析仪器厂。
1.3膜的制备以磺化聚醚砜为膜材料,N.N!二甲基乙酰胺为溶剂,按照一定配方配制成铸膜液,用L!S相转化换方法制配超滤膜。
1.4膜的性能测试1.4.1纯水通量F/(L.m-2.h-1) 将膜用去离子水洗净后,用静态杯式超滤器在室温下将去离子水在0.1Mpa压力下预压20min,然后测定一定时间内透过液的体积,按式(1)计算膜的水通量F。
磺化聚苯硫醚砜的制备和性能表征肖慧;李涛;胡祥;李瑞海【期刊名称】《塑料工业》【年(卷),期】2011(39)10【摘要】This paper studied on sulfonated process of sulfonatedpoly(phenylene sulfide sulfone) based on sulfuric aid as solvent and oleum as sulfonating agent. By changing the four factors, such as temperature, reaction time, the dosage of sulfuric acid and oleum, the sulfonated conditions were explored. The structures and properties of the obtained polymer were characterized by FT-IR, TGA, testing of solubility, sulfonation degree and reduced inherent viscosity. The results indicated the sulfonation degree was 62. 2% and reduced inherent viscosity was 0. 964 mL/g when the raction temperature was at 15℃, the sulfonated time was for 2 h, sulfuric aid was 8 mL and the ratio of oleum/PPSS was 9. 5. Decomposition temperature of sulfonic aid group and its main chain were 346℃, 534 % , respectively. It can be dissolved improvably in the polar solvent which dialectic constant exceeded 20.7.%以浓硫酸为溶剂,发烟硫酸为磺化剂对聚苯硫醚砜的磺化过程,通过改变温度、反应时间、浓硫酸的用量和发烟硫酸的用量这四个因素来探究磺化反应的条件.利用FTIR、热重分析(TGA)、磺化度、比浓黏度和溶解性测试对其结构和性能进行了表征.结果表明,采用磺化时间为2h,反应温度15℃,浓硫酸8 mL,发烟硫酸与聚苯硫醚砜的质量比为9.5时,可得到磺化度为62.2%,比浓黏度为0.964 mL/g的磺化聚苯硫醚砜.磺酸基的主要分解温度为346℃,主链的分解温度为534℃.其溶解性得到提高,可溶解在介电常数大于20.7的有机溶剂中.【总页数】4页(P26-29)【作者】肖慧;李涛;胡祥;李瑞海【作者单位】四川大学高分子科学与工程学院,四川成都610064;四川大学高分子科学与工程学院,四川成都610064;四川大学高分子科学与工程学院,四川成都610064;四川大学高分子科学与工程学院,四川成都610064【正文语种】中文【中图分类】TQ326.56【相关文献】1.磺化聚砜/聚醚砜共混非对称纳滤膜的制备与性能表征 [J], 马冯;张玉忠;丁晓莉;林立刚;李泓2.热致相分离法制备聚苯硫醚多孔膜Ⅱ.聚苯硫醚和二苯砜体系 [J], 丁怀宇;曾一鸣;孟祥福;田野;矫庆泽;施艳荞;张世民3.磺化聚砜/聚醚砜纳滤膜的制备及性能表征 [J], 李浪;张敏敏;何颖;钟金成;苏相樵;张凯舟;姚勇;秦舒浩4.磺化聚苯硫醚砜膜的耐候性 [J], 侯宏英;段继祥;刘松;孟瑞晋5.聚苯硫醚砜纤维和聚芳砜纤维的制备及其性能研究 [J], 高路遥; 王明稳; 苏坤梅; 李振环因版权原因,仅展示原文概要,查看原文内容请购买。
《纳米TiO2+Al2O3-PVDF超滤膜的制备及应用研究》篇一纳米TiO2+Al2O3-PVDF超滤膜的制备及应用研究一、引言随着水资源的日益紧张和环境污染的加剧,水处理技术已成为当今研究的热点。
超滤膜技术因其高效、环保、节能等优点,在水处理领域得到了广泛应用。
纳米TiO2和Al2O3因其优异的物理化学性质,常被用于超滤膜的改性。
本文将详细介绍纳米TiO2+Al2O3/PVDF超滤膜的制备过程及其应用研究。
二、材料与方法1. 材料制备纳米TiO2+Al2O3/PVDF超滤膜所需材料包括:聚偏二氟乙烯(PVDF)、纳米TiO2、纳米Al2O3、溶剂等。
2. 制备方法(1)溶质制备:将PVDF、纳米TiO2和纳米Al2O3按一定比例混合,加入溶剂中,制备成均匀的溶质。
(2)膜制备:采用相转化法,将溶质倒入凝固浴中,形成初生态膜。
经过一系列的后处理,如干燥、热处理等,最终得到纳米TiO2+Al2O3/PVDF超滤膜。
3. 实验设计在制备过程中,通过改变纳米TiO2和Al2O3的掺杂比例、溶剂种类等因素,探究不同工艺参数对超滤膜性能的影响。
三、结果与讨论1. 制备结果通过扫描电子显微镜(SEM)观察,发现纳米TiO2和Al2O3成功掺杂到PVDF超滤膜中,且分布均匀。
膜的表面形貌得到改善,孔隙率增加,提高了膜的通透性。
2. 性能分析(1)通量与截留率:通过实验测定,纳米TiO2+Al2O3/PVDF超滤膜的通量较纯PVDF超滤膜有所提高,同时对大分子物质的截留率也得到提高。
这主要归因于纳米粒子的掺杂改善了膜的孔隙结构和亲水性。
(2)抗污染性能:纳米TiO2具有光催化性能,可降解附着在膜表面的污染物;而Al2O3则具有较高的化学稳定性,可提高膜的抗化学污染性能。
因此,纳米TiO2+Al2O3/PVDF超滤膜的抗污染性能得到显著提高。
(3)稳定性与耐久性:经过多次循环使用和长时间运行,纳米TiO2+Al2O3/PVDF超滤膜的性能仍能保持稳定,表现出较好的耐久性。
磺化聚醚砜质子交换膜的性能研究的开题报告1. 研究背景和意义随着社会经济的迅速发展,环保和能源利用问题日益引起人们的关注,其中燃料电池作为一种绿色环保的新能源技术备受关注。
其中,聚合物电解质膜燃料电池(PEMFCs)是目前最为先进的燃料电池技术之一,而其中的关键组件为质子交换膜。
磺化聚醚砜(Sulfonated Polyether Sulfone,SPES)是一种常用的质子交换膜材料,在PEMFCs中具有许多优异的物理性质和电化学性能。
为了进一步提高其性能,目前需要在其表面引入更多的磺酸基团。
2. 研究内容和目标本研究旨在通过改变引入磺酸基团的方式,研究其对SPES质子交换膜的性能影响,并探究最佳引入方式。
具体来说,本研究将着重研究以下几个方面:- 改变不同引入方式对SPES质子交换膜性能的影响,如同步引入磺酸基团和交联、原位反应等;- 通过FTIR、NMR等手段对引入方式后的SPES质子交换膜进行表征;- 测试SPES质子交换膜的物理性质和电化学性能,如离子交换容量、电导率、热稳定性和燃料电池性能等。
3. 研究方法本研究将采用以下方法进行实验:- 合成SPES质子交换膜;- 采用同步引入磺酸基团和交联、原位反应等方式改变其引入方式;- 采用FTIR、NMR等手段对引入方式后的SPES质子交换膜进行表征;- 测试SPES质子交换膜的物理性质和电化学性能,如离子交换容量、电导率、热稳定性和燃料电池性能等。
4. 预期结果和创新点本研究的预期结果包括:- 探究不同引入方式对SPES质子交换膜性能的影响;- 确定最佳引入方式;- 提高SPES质子交换膜的性能,尤其是在燃料电池方面。
本研究的创新点在于,采用不同的引入方式并比较其性能,为SPES质子交换膜的改进提供了新思路和方法,从而为燃料电池技术的发展做出积极贡献。
磺化聚砜聚醚砜等聚合物在膜材料方面的作用概述说明1. 引言1.1 概述膜材料作为一种重要的功能材料,在多个领域中起着关键作用。
其中,磺化聚砜和聚醚砜等聚合物在膜材料领域具有广泛的应用潜力。
这些聚合物通过特殊的化学结构和性质,能够为膜材料带来许多独特的功能和性能提升。
1.2 文章结构本文将对磺化聚砜、聚醚砜及其复合薄膜材料在膜技术方面的作用进行详细介绍与分析。
首先,我们将概述这些聚合物的基本特征和制备方法。
然后,重点探讨了磺化聚砜在改善渗透性能、提升机械强度以及增强抗氧化性能方面的作用。
接下来,我们将讨论聚醚砜在提高高温稳定性、优化抗酸碱性能以及调控电导率方面所起到的作用。
最后,我们将对磺化聚砜与聚醚砜复合薄膜材料在分离技术领域、能源存储领域和生物医学领域的应用前景进行分析。
1.3 目的本文的目的是全面了解磺化聚砜和聚醚砜等聚合物在膜材料方面的作用,并提供对其应用前景进行展望。
通过系统地介绍这些聚合物的特性和功能,我们希望为相关领域的科学家、工程师和研究人员提供宝贵的知识,以促进膜材料技术的发展与应用。
2. 磺化聚砜在膜材料方面的作用磺化聚砜是一种重要的功能性聚合物,广泛应用于膜材料制备领域。
它具有多种优异的性能,并能够满足不同领域的需求。
以下是磺化聚砜在膜材料方面的主要作用:2.1 渗透性能改善由于其特殊的化学结构和孔隙调控能力,磺化聚砜可以显著提高膜材料的渗透性能。
对于气体分离膜而言,磺化聚砜膜可以选择性地通过不同大小、形状和极性分子,从而实现高效率、高选择性的分离过程。
此外,对于液体分离膜,磺化聚砜也能够减少渗透阻力,提高传质速率。
2.2 机械强度提升相比其他常见的聚合物材料,如聚酯和聚丙烯等,磺化聚砜具有更好的机械强度和耐久性。
这使得它成为一种理想的膜材料,可以承受高温、高压和其他恶劣条件下的应力,并具有较长的使用寿命。
2.3 抗氧化性能增强磺化聚砜在膜材料方面还具有优异的抗氧化性能。
其化学结构中的硫醇基团(-SH)和硫酸酯键(-OSO3H)能够提供很好的抗氧化保护,防止膜材料在使用过程中因氧化而降解。
磺化聚砜聚醚砜等聚合物在膜材料方面的作用磺化聚砜(sulfonated polysulfone,SPSF)是一种重要的离子交换膜材料,广泛应用于电力、环境保护、化学合成、海水淡化、生物技术等领域。
它是由聚酰亚胺聚合物经过磺化反应处理而得到的。
聚醚砜(polysulfone,PSU)是一种高性能工程塑料,具有优良的化学稳定性、机械性能和耐热性。
下面将针对这两种聚合物在膜材料方面的作用进行详细介绍。
磺化聚砜作为离子交换膜材料,最显著的特点是其具有良好的离子交换能力。
这是因为磺化反应将聚酰亚胺骨架中的一些酰亚胺键转化为磺酸基团,形成了离子通道。
这些离子通道具有高度的亲水性,能够吸附和传递离子,并在离子转运过程中维持电中性。
此外,磺化聚砜材料的磺酸基团容易与离子交换膜的基体形成强烈的静电作用力,使离子能够更容易地被捕获和释放。
磺化聚砜材料的离子交换能力使其在许多应用中具有广泛的用途。
例如,在电力领域,磺化聚砜膜常被用作燃料电池中的质子交换膜(proton exchange membrane,PEM)。
它能够将燃料电池中产生的氢气阳极侧的质子和氧气阴极侧的氢离子有效地传输和分离,从而实现电能的生成。
磺化聚砜材料具有较高的离子传导率和化学稳定性,能够在高温和高湿度环境中长期稳定工作。
在环境保护领域,磺化聚砜膜广泛用于电解法水处理和气体分离。
磺化聚砜的亲水性可以有效地吸附和分离水中的离子、颗粒物和有机物。
在气体分离中,磺化聚砜膜能够高效地分离二氧化碳、氧气等气体,用于石油化工、煤矿等领域中的气体分离和净化。
此外,磺化聚砜膜还在化学合成、海水淡化和生物技术等领域有着广泛的应用。
在化学合成中,磺化聚砜膜可以用作酸碱催化剂的载体,通过离子交换反应来促进化学反应的进行。
在海水淡化中,磺化聚砜膜能够通过离子通道选择性地去除海水中的离子,以获得高纯度的淡水。
在生物技术领域,磺化聚砜膜可以作为生物传感器和药物输送系统的材料,用于检测和传递生物活性物质。
海藻酸钙—磺化聚砜-聚醚砜抗污染纳滤膜的制备及性能研究海藻酸钙—磺化聚砜/聚醚砜抗污染纳滤膜的制备及性能研究摘要:纳滤膜作为一种重要的分离技术,在水处理、食品加工、生物医药等领域具有广泛应用。
然而,纳滤膜在实际应用中常常受到污染物附着和堵塞等问题的限制,从而导致膜通量的降低和寿命的缩短。
本文以海藻酸钙为模板,通过原位磺化聚砜和聚醚砜等方法制备了具有抗污染性能的纳滤膜,并对其性能进行了研究。
1. 引言纳滤膜的抗污染性能是影响其实际应用的关键因素之一。
目前,研究人员常常通过改变膜材料的表面性质或添加污染物拦截层来提高纳滤膜的抗污染性能。
海藻酸钙作为一种环保的天然材料,具有良好的生物相容性和可降解性,在纳滤膜的制备中具有很大潜力。
2. 实验方法2.1 材料准备首先,将适量的海藻酸钙溶解在去离子水中,并通过离心沉淀得到固体海藻酸钙。
然后,将固体海藻酸钙分解为气态的CO2和CaO,并与磺化聚砜和聚醚砜进行反应,得到抗污染性能的纳滤膜材料。
2.2 膜的制备将磺化聚砜和聚醚砜按一定比例溶解在混合溶剂中,得到膜材料溶液。
然后,将溶液均匀涂覆在玻璃纤维膜支撑层上,采用浸渍-干燥-固化的方法制备纳滤膜。
3. 结果与讨论3.1 膜的表面形貌分析通过扫描电子显微镜对纳滤膜的表面形貌进行观察和分析。
结果显示,聚集的海藻酸钙颗粒均匀分布在膜表面,形成了类似于海绵状的结构,这种结构有利于污染物的拦截和清除。
3.2 膜的抗污染性能测试通过模拟实际应用环境,使用含有有机污染物的模拟水体进行膜的抗污染性能测试。
结果显示,海藻酸钙材料能够有效抑制有机污染物的附着和堵塞,保持较高的膜通量和稳定的性能。
3.3 膜的分离性能测试通过对不同分子量的溶液进行分离性能测试,评估纳滤膜的分离效果。
结果表明,海藻酸钙材料具有较高的分离性能,能够有效拦截小分子溶质,同时保留大分子溶质。
4. 总结与展望本文成功制备了海藻酸钙材料为基础的抗污染纳滤膜,具有良好的分离性能和抗污染能力。
SEPARATION SCIENCE AND ENGINEERINGChinese Journal of Chemical Engineering, 19(1) 45—51 (2011)Fabrication of SPES/Nano-TiO2 Composite Ultrafiltration Membrane and Its Anti-fouling Mechanism*LUO Mingliang (罗明良)**, WEN Qingzhi (温庆志), LIU Jialin (刘佳林), LIU Hongjian (刘洪见) and JIA Zilong (贾自龙)College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266555, ChinaAbstract Membrane fouling is one of the major obstacles for reaching a high flux over a prolonged period of ul-trafiltration (UF) process. In this study, a sulfonated-polyethersulfone (SPES)/nano-TiO2 composite UF membrane with good anti-fouling performance was fabricated by phase inversion and self-assembly methods. The TiO2 nanoparticle self-assembly on the SPES membrane surface was confirmed by X-ray photoelectron spectroscopy (XPS) and FT-IR spectrometer. The morphology and hydrophilicity were characterized by scanning electron mi-croscopy (SEM), atomic force microscopy (AFM) and contact angle goniometer, respectively. The anti-fouling mechanism of composite UF membrane was discussed through the analysis of the micro-structure and component of UF membrane surface. The results showed that the TiO2 content and the micro-structure of the composite UF membrane surface had great influence on the separation and anti-fouling performance.Keywords anti-fouling, ultrafiltration membrane, sulfonated-polyethersulfone, TiO2 nanoparticle, phase inversion, self-assembly1 INTRODUCTIONIn recent years, more and more attention in ul-trafiltration (UF) membrane has been attracted for a variety of applications in wastewater treatment, sub-stance separation, solute concentration, and so on. The major drawback in the extensive use of membranes includes membrane fouling, which results in flux de-cline during operation [1]. Polyethersulfone (PES) is a special engineering plastics. It possesses many good characteristics such as high mechanical property and heat distortion temperature, good heat-aging resistance, environmental endurance as well as easy processing. It has become an important membrane material, but its hydrophobicity controlled by PES molecular structure leads to low membrane flux and poor anti-fouling performance [2]. Recently, modification methods of UF membrane involve ultraviolet irradiation [3], graft polymerization [4, 5], glow discharge [6], ozone [7, 8], and so on in order to improve PES hydrophilicity. Among these methods, blending with inorganic materials, es-pecially nanoparticles, has attracted much interest due to their convenient operation and mild conditions.Nanoparticles used to modify organic membranes include SiO2, TiO2, Al2O3, and so on [9], among which TiO2 receives most attention because of its stability, availability, and hydrophilicity [10]. Molinari et al. prepared TiO2/polymer composite membranes in order to develop photocatalytic membrane reactors for waste-water treatment [11-13]. Kwak and coworkers studied the ability of a TiO2/polymer thin film composite (TFC) reverse osmosis membrane under ultraviolet (UV) radiation to mitigate biofouling by a photobactericidal effect [14, 15], focusing on the photocatalytic or photo-bactericidal effects of TiO2 nanoparticles under UV radiation. Recently, Luo et al. [16] and Yang et al. [17] prepared PES/nano-TiO2 and polysulfone(PSF)/nano- TiO2 composite UF membrane, respectively. The hy-drophilicity, mechanistic performance and thermal sta-bility of the composite UF membrane were improved greatly, but in the UF operation, the low washing re-sistance of nanoparticles on the membrane surface affects the anti-fouling period and service perform-ance due to the weak interaction between PES (or PSF) and nano-TiO2 resulted from the less active groups.In this study, sulfonated-polyethersulfone (SPES) is used as the membrane material due to its good per-formance as well as PES, the active site and functional group in SPES. The SPES/nano-TiO2 composite UF membrane is prepared by phase inversion and self-assembly methods, which is expected to present good anti-fouling and washing resistance performance. The morphology and hydrophilicity of UF membrane are characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and contact angle goniometer, respectively. X-ray photoelectron spectroscopy (XPS) and FT-IR spectrometer are em-ployed to analyze the mechanism of nano-TiO2 self-assembly on the SPES membrane surface. To examine the fouling mitigation ability of membranes, a filtration experiment is carried out and the anti-fouling mechanism is discussed through the analysis of the micro-structure and composition of UF membrane surface.2 EXPERIMENTAL2.1 MaterialsThe SPES powder was obtained from JilinReceived 2009-12-08, accepted 2010-09-20.* Supported by the Natural Science Foundation of Shandong Province (Q2007B01). ** To whom correspondence should be addressed. E-mail: yfsailing_wxg@Chin. J. Chem. Eng., Vol. 19, No. 1, February 2011 46University, China. The inherent viscosity (ηinh) of the polymer in N-methyl pyrrolidone solvent and the equilibrium moisture uptake under ambient condition (relative humidity of 82% and 26 °C) were 1.27 dl·g−1 and 2.07%, respectively. The solvent N,N-dimethyl acetamide (DMAc) was in AR grade, and TiO2 col-loidal suspension was prepared by the sol-gel method in our laboratory [2].2.2 Fabrication of SPES/TiO2 composite ultrafil-tration membranesThe SPES ultrafiltration membrane was fabri-cated by phase inversion method. N,N-dimethyl acetamide (DMAc) solvent was used to dissolve the SPES for several hours under continuous agitation for complete dissolution and elimination of bubbles. The uniform transparent solution was then cast on a smooth glass plate with a knife edge. The thickness of the membrane was controlled by varying the thickness of adhesive tapes on the sides of the glass plate. The glass plate was kept in an environment with controlled tem-perature and humidity during membrane casting. After casting, the glass plate was immediately immersed in a gelling bath, which is generally demineralized water maintained at certain temperature, and the phase in-version started. After a few minutes, the thin polymeric film was taken from the glass. The film was washed repeatedly with demineralized water and stored wetted.The wet UF membrane was rinsed in a sodium carbonate solution [0.2% (by mass)] and then washed with demineralized water. The neat SPES membrane with an area of 38.5 cm2 was dipped in the transparent TiO2 colloidal solution, stirred for 1 min by ultrasonic method and immersed for 1 h, and then washed with demineralized water.2.3 Characterization2.3.1Characterization of the SPES/TiO2 composite UF membraneThe size of TiO2 nanoparticles was determined by a JEOL transmission electron microscope (TEM, JEOL JEM-200CX) at 120 kV. The surface morphol-ogy, roughness and mean pore size of the neat SPES membrane and the composite membrane were ob-served with a JSM-5800 scanning electron microscope (SEM) and a DualSope TM atomic force microscope (AFM). The pore sizes were measured by inspecting line profiles of different low valleys (i.e. pores) and high peaks (i.e. nodules) on the AFM images at differ-ent locations of a membrane surface. Then the mean pore size of membrane was calculated.The contact angle of membrane surface was the average value of 10 measurements by Eromag-1 contact angle goniometer and the measurement error was ±3°.A FT-IR spectrum of the composite was recorded on a Perkin-Elmer RXI over the range of 400-4000 cm−1. The spectral resolution was 4 cm−1. X-ray pho-toelectron spectroscopy (XPS) was employed to ana-lyze the component of the composite membrane sur-face with a PHI-5400 spectrometer. The spectra were taken at the takeoff angle (defined as the angle between the detected photoelectron beam and the membrane surfaces) of 45° to give a sampling depth of ca. 2.3 nm.2.3.2Separation performance of the SPES/TiO2 composite UF membraneThe mass transfer characteristics of UF membrane for 0.02% (by mass) polyethylene glycol (PEG-5000) aqueous solution were determined in an apparatus with a continuous flow at 0.2 MPa and 25 °C for 30 min. The water flux was calculated by direct meas-urement of the mass of the permeate flow:/J V A t=⋅(1) where J is the membrane flux (L·m−2·h−1), V is the permeate volume (L), A is the membrane area (m2), and t is ultrafiltration time (h).The solute rejection was defined aspf1100%cRc⎛⎞=−×⎜⎟⎝⎠(2)where R is the solute rejection, c f is the feed concen-tration, and c p is the permeate concentration.3 RESULTS AND DISCUSSION3.1 Morphology, roughness and pore size of the composite membrane surfaceThe TiO2 nanoparticle size assembled on the SPES membrane is determined by TEM, as shown in Fig. 1. The particle size is about 5-42 nm. The SEM graphs of the surface morphology before and after treated by TiO2 colloidal solution are shown in Fig. 2. The neat SPES membrane has the typical surface morphology of a ridge-and-valley structure [Fig. 2 (a)], but the structure is not apparent. Fig. 2 (b) displays the surface morphology of the TiO2 self-assembled com-posite membrane, where TiO2 nanoparticles appear as nodular shapes on the ridges so that the membranesurface has clear ridge-and-valley structure. Fig. 3Figure 1 TEM micrograph of TiO2 nanoparticlesChin. J. Chem. Eng., Vol. 19, No. 1, February 2011 47demonstrates the 3D AFM image of membrane sur-face for the neat SPES membrane and the SPES/TiO 2 composite membrane at a scan size of 5 µm×5 µm. The brightest area presents the highest point of the membrane surface and the dark regions indicate valley or membrane pores. The surface morphology is greatly changed due to TiO 2 nanoparticles assembled on SPES membrane and the ridge-and-valley structure on the composite membrane is distinct.The average pore size and roughness of mem-brane surface were obtained from AFM images using Danish Micro Engineering Scanning Probe Micro-scopes (DME SPM) software. The size of 30 pores in 1 µm×1 µm area of membrane surface was measured from height profile of two-dimensional AFM images using SPM software and the average value was re-ported. The results are given in Table 1. The mean pore size of the composite membrane surface decreases slightly due to the self-assembly of TiO 2 nanoparticles on the SPES membrane surface. The surface rough-ness parameters of the membrane, expressed in terms of the mean roughness (S a ), the root mean square of the Z data (S q ) and the mean difference between the highest peaks and lowest valleys (S z ), were calculated by DME SPM software in 10 µm×10 µm scan sizeand are presented in Table 1. The roughness parame-ters for the composite membranes increase remarkably. Since the roughness parameters depend on the Z -value, which is the vertical distance that the piezoelectric scanner moves, this relationship is expected. When the surface includes deep depressions (pores) and high peaks (nodules), the tip moves up and down over a wide range and the roughness parameter of surface is high. 3.2 XPS and FT-IR analyses of the composite membrane surfaceTo confirm the self-assembly TiO 2 nanoparticleson the composite membrane surface and further to(a) Neat SPES (b) SPES/TiO 2Figure 2SEM micrograph of UF membrane surface(a) Neat SPES (b) SPES/TiO 2Figure 3 AFM micrographs of UF membraneTable 1 Mean pore size and roughness of the neat SPESand SPES/TiO 2 membrane surfaceRoughness/nm SampleMean pore size/nmS aS qS zSPES 98 7.86 9.64 69.5 SPES/TiO 2 85 55.2 67.3 325Chin. J. Chem. Eng., Vol. 19, No. 1, February 201148 estimate the abrasive resistance of the membrane sur-face, FT-IR method was employed to analyze the in-teraction between nano-TiO 2 and SPES. X-ray photo-electron spectroscopic (XPS) was carried out for in-vestigating the change of membrane surface elements under various UF conditions.The FT-IR spectra of the neat SPES polymer and SPES/TiO 2 composites are shown in Fig. 4. Curve a is the FT-IR spectrum of the neat SPES. The absorption peaks at 1300 cm −1 and 1151 cm −1 attribute to the asymmetrical and symmetrical vibrations of the sul-fone group, respectively [18]. The absorption peak at 1243 cm −1 attributes to the stretching vibration of the ether C O C bond in the SPES polymer [19]. The absorption peak at 1028 cm −1 attributes to the sym-metrically stretching vibration of O S O in the sul-fonic group SO 3OH. The absorption peaks at 1465 cm −1 and 737 cm −1 are produced by substituent num-ber from 2 to 3 due to the incorporation of sulfonic group to the benzene ring [20]. Curve b is the FT-IR spectrum of the SPES/TiO 2 composite. In comparison to curve a, the positions of the peaks at 1243 cm −1 and 968 cm −1 shift to 1239 cm −1 and 975 cm −1, respec-tively, due to the self-assembly of TiO 2 nanoparticles in the SPES. Some new absorption peaks appear at 3435 cm −1, 1638 cm −1 and 1357 cm −1 due to the asso-ciated hydroxyl O H stretching vibration, C O in amide group characteristic peak [21] and Ti O bond vibration [22]. The existence of C O in amide group characteristic peak indicates the presence of a little DMAc in the composites. The results show that the hydrolysis and condensation of a tetra-n -butyl titanate (TBT) leads the formation of TiO 2 sol, and partially cross-linking reactions occur in the ultrasonic wave processing. It reveals that there is hydrogen bonding and bidentate coordination interaction between Ti OH or Ti OCH 2CH 3 and sulfonic group SO 2OH, ether CO C bond (or sulfone SO 2 group). The poten-tial chemical bond structure model of the SPES/TiO 2composite is shown in Fig. 5.Figure 5 Chemical bond structure models of SPES/TiO 2 compositeThe constituent elements of the composite mem-brane surface are hydrogen, carbon, oxygen, sulfur, chlorine, and titanium. XPS analyses were performed on the elements of carbon, oxygen, sulfur, chlorine, and titanium, but not on hydrogen because its photo-electron cross-section is too small to be characterized by XPS. The core-electron binding energies of the constituent elements are typically 287eV (C1s), 537eV (O1s), 23eV (O2s), 229eV (S2s), 270eV (Cl2s), 199eV (Cl2p) and 458eV (Ti2p) [23]. Fig. 6 shows the result-ing spectrum, in which all the photoelectron peaks appear at positions similar to the above values and Ti peaks appear. The results provide the evidence of TiO 2 self-assembly on the composite membrane surface.On the basis of the observed photoelectron peaks and corresponding sensitivity factors, the relative atomic concentrations of the individual elements can be calculated://i ii mj jjA S C A S =∑(3)where A i is the photoelectron peak area of element i , S i is the sensitivity factor for element i , and m is theFigure 4 FT-IR spectra of pure SPES and SPES/TiO 2 composites a —SPES; b —SPES/TiO 2Chin. J. Chem. Eng., Vol. 19, No. 1, February 2011 49number of the elements in the sample. In Table 2, the elemental compositions determined by an angle-resolved XPS analysis are summarized for the composite membranes with different washing conditions and UF operation time. There is an initial drop in the relative atomic concentration of Ti element after washing the composite membrane, which attaches to the surface when dipping into the TiO 2 colloidal solution. An ad-ditional loss of TiO 2 nanoparticles is observed in the UF operation for 5 h. The UF process was operated in the cross-flow mode where the feed solution was pumped across the composite membrane parallel to its surface. Some TiO 2 particles are wiped out and the loosely bound TiO 2 nanoparticles cannot overcome the shear force. However, the TiO 2 loss does not con-tinue as the UF operation time increases, and the amount of TiO 2 changes little after 15 h of UF opera-tion as shown by the samples No. 4 and No. 5. This result indicates that a considerable amount of TiO 2 nanoparticles remains tightly bound on the membrane surface under actual UF operation conditions, which is expected to improve the hydrophilicity of SPES mem-brane and prevent the membrane from fouling. The results of samples No. 4 and No. 6 indicate that the washing resistance of the SPES/TiO 2 composite mem-brane increases remarkably compared to the PES/TiO 2 composite membrane [16]. Thus the increase of active site, functional group and electronegativity on the SPES membrane surface enhances the interaction be-tween SPES and nano-TiO 2 based on the FT-IR and XPS analyses.3.3 Anti-fouling mechanism and separation per-formance of the composite membraneTiO 2 nanoparticles in the anatase form are very hydrophilic, photoactive and practical for wide envi-ronmental applications such as water purification, wastewater treatment, hazardous waste control, air purification, and water disinfection [24]. In this work, the composite UF membrane is devised by the self-assembly between TiO 2 nanoparticle and SPES with the ether bond, sulfuryl group and sulfonic group (as shown in Fig. 5) because of the strong electro-negative oxygen in the ether bond, sulfuryl group and sulfonic group of the SPES. As the UF process was operated in the cross-flow mode under high pressure, simply adsorbed particles may be detached from the membrane surface. XPS results in Table 2 indicate that some TiO 2 particles in the composite membrane have sufficient binding strength for the actual operation, which agrees with other researches on the interaction behavior of TiO 2 nanoparticles [25]. It is concluded that a novel organic-inorganic membrane is success-fully prepared by self-assembly process.The hydrophilic and separation performance ofFigure 6 XPS spectra of the elements on the composite membraneTable 2 Elements compositions of the SPES/TiO 2composite membrane under various washingconditions and UF timeRelative atomic concentration/% Sample ①Takeoff angle/(°) C O S Ti Cl 1 45 43.08 31.26 12.56 6.52 6.582 45 40.41 33.64 12.56 5.867.533 45 40.18 34.32 12.24 5.587.684 45 39.63 35.06 12.14 5.227.955 45 39.65 35.02 12.15 5.217.9764540.95 34.64 10.97 3.469.98① Analyses for the TiO 2 self-assembled SPES UF membranes(1) just after preparation, (2) after washing with flowing water,(3) after UF operation for 5.0 h, (4) after UF operation for an-other 15.0 h, and (5) after UF operation for another 45.0 h; (6) analysis for the TiO 2 self-assembled PES UF membranes after the same UF operation time as No. 4 sample [16].Chin. J. Chem. Eng., Vol. 19, No. 1, February 2011 50the membrane surface untreated and treated by TiO2 colloidal solution are presented in Table 3. The area of UF membrane is 38.5 cm2, the applied pressure is 0.2 MPa, operation temperature is 25 °C, and the feed concentration is 0.02% (by mass) (PEG-5000) in this test. As shown in Table 3, the contact angle of the UF membrane treated by TiO2 colloidal solution is smaller, but the flux and retention increase to some degree. Combined to the results of FT-IR and XPS analysis, it is shown that the hydrophilicity of the PES itself is im-proved through sulfonation and nano-TiO2 self-assembly on the SPES membrane surface and the antifouling performance is better. On the other hand, the SEM and AFM photographs show that the microstructure of SPES membrane surface is changed due to nano-TiO2 self-assembly. The ridge-and-valley structure with micro- or nano-scale is distinct on the SPES membrane surface (Fig. 3) and the surface roughness is changed (Table 1). Generally, the contact angle of hydrophilic surface decreases with the increases of roughness [26], so the contact angle of the composite UF membrane declines remarkably. Since the hydroxyl is rich on the nano-TiO2 surface and TiO2 nanoparticles have high hydrophilicity and large specific surface, the hydroxyl content on the composite membrane is increased greatly by the self-assembly of nanoparticles on the membrane surface and the membrane hydrophilicity is higher. The water molecules are easy to permeate through the membrane and the flux increases signifi-cantly. At the same time, the pore structure is changed with TiO2 incorporated into membrane. The pore sizes become more uniform and the surface becomes more compact, so the retention is improved.4 CONCLUSIONSMembrane fouling by hydrophobic substances is the main cause to deteriorate the ultrafiltration (UF) performance of polyethersulfone (PES)-type mem-branes. A new type of composite membrane is devel-oped as an approach to solve the fouling problem. TiO2 nanoparticles are incorporated onto the sulfonated polyethersulfone membrane surface by self-assembly. The micro- or nano-scale ridge-and-valley structure of the composite UF membrane is examined with scan-ning electron microscopy (SEM) and atomic force microscopy (AFM) and the roughness of membrane surface is determined. The FT-IR and X-ray photo-electron spectroscopy (XPS) demonstrate that TiO2 particles are tightly self-assembled with sufficient bonding strength for the actual UF process. The con-tact angle test of the composite membrane shows that the hydrophilicity of the membrane surface is improved remarkably. The separation experiment verifies the prevention of the composite membrane from the foul-ing of hydrophobic substances, suggesting a possible use as a new type of antifouling composite membrane.REFERENCES1Wang, Y., Kim, J.H., Choo, K.H., Lee, Y.S., Lee, C.H., “Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization”, J. Membr. Sci., 169 (2),269-276 (2000).2Luo, M.L., Tang, W., Zhao, J., Q, Pu, C.S., “Hydrophilic modifica-tion of polyethersulfone used TiO2 nanoparticles by a sol-gel proc-ess”, J. Mater. Process Tech., 172 (3), 431-436 (2006).3Nystrom, M., Jarvinen, P., “Modification of polysulfone ultrafiltra-tion membranes with UV irradiation and hydrophilicity increasingagents”, J. Membr. Sci., 60 (2-3), 275-296 (1991).4Wu, Y.T., Shi, Y.J., “Polysulfone ultrafiltration membranes modified by irradiation grafting with acrylic acid monomer”, Technology ofWater Treatment, 21 (1), 21-25 (1995). (in Chinese)5Fujimoto, K., Takebayashi, Y., Inoue, H., Ikada, Y., “Polyurethane surface modification by graft polymerization of acrylamide for re-duced protein adsorption and platelet adhesion”, Biomaterials, 14 (6),442-448 (1993).6Suzuki, M., Kishida, A., Iwata, H., Ikada, Y., “Graft copolymeriza-tion of acrylamide onto a polyethylene surface pretreated with aglow discharge”, Macromolecules, 19 (7), 1804-1808 (1986).7Fujimoto, K., Takebayashi, Y., Inoue, H., Ikada, Y., “Ozone-induced graft polymerization onto polymer surface”, J. Polym. Sci. Polym.Chem., 31 (4), 1035-1043 (1993).8Yamauchi, J., Yamaoka, A., Ikemoto, K., Matsui, T., “Graft copoly-merization of methyl methacrylate onto polypropylene oxidized withozone”, J. Appl. Polym. Sci., 43 (6), 1197-1203(1991).9Kim, K.M., Park, N.G., Ryu, K.S., Chang, S.H., “Characteristics of PVdF-HFp/TiO2 compositemembrane electrolytes prepared by phaseinversion and conventional casting methods”, Electrochim. Acta, 51(26), 5636-5644 (2006).10Cao, X.C., Ma, J., Shi, X.H., Ren, Z.J., “Effect of TiO2 nanoparticle size on the performance of PVDF membrane”, Appl. Surf. Sci., 253(4), 2003-2010 (2006).11Molinari, R., Mungari, M., Drioli, E., Di Paola, A., Loddo, V., Palmisano, L., Schiavello, M., “Study on a photocatalytic membranereactor for water purification”, Catal. Today, 55 (1-2), 71-78 (2000). 12Molinari, R., Grande, C., Drioli, E., Palmisano, L., Schiavello, M., “Photocatalytic membrane reactors for degradation of organic pol-lutants in water”, Catal. Today, 67 (1-3), 273-279 (2001).13Molinari, R., Palmisano, L., Drioli, E., Schiavello, M., “Studies on various reactor configurations for coupling photocatalysis and mem-brane process in water purification”, J. Membr. Sci., 206 (1-2),399-415 (2002).14Kwak, S.Y., Kim, S.H., Kim, S.S., “Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling (I) Preparationand characterization of TiO2 nanoparticle self-assembled aromaticpolyamide thin film composite (TFC) membrane”, Environ. Sci.Technol., 35 (11), 2388-2394 (2001).15Kim, S.H., Kwak, S.Y., Sohn, B.H., Park, T.H., “Design of TiO2Table 3 Contact angle and UF separationperformance of membraneSample① Contactangle/(°) Flux/L·m−2·h−1 Retention/%7 73.6 75.8 21.98 24.5 113.5 34.59 46.3 84.7 26.8① (7) neat SPES; (8) SPES/TiO2; (9) PES/TiO2 UF mem-branes [16].Chin. J. Chem. Eng., Vol. 19, No. 1, February 201151nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem”, J.Membr. Sci., 211(1), 157-165 (2003).16Luo, M.L., Zhao, J.Q., Tang, W., Pu, C.S., “Hydrophilic modification of polyethersulfone ultrafiltration membrane surface by self-assembly of TiO2 nanoparticles”, Appl. Surf. Sci., 249 (1-4), 76-84 (2005).17Yang, Y.N., Wang, P., Zheng, Q.Z., “Polysulfone/TiO2 hybrid ul-trafiltration membrane prepared by the sol-gel process”, Acta Chimica Sinica, 64 (6), 569-573 (2006).18Lu, Y.Q., Deng, Z.H., Applied Infrared Spectra Analysis, Electronic Industry Press, Beijing (1989). (in Chinese)19Lu, H.J., Shen, L.S., Wang, C.X., Jiang, D.Z., “Sulphonation and characterization of polyethersulfone(PES)”, Chem. J. Chinese U., 17(5), 833-835 (1998).20Wang, X.L., Organic Chemistry, Higher Education Press, Beijing(1987). (in Chinese)21Sun, H.W., Zhong, S.H., “Preparation of IR spectra analysis of TiO2-polyethylene complex membrane”, Membr. Sci. Technol., 17(5), 42-46 (1997). (in Chinese)22Tang, F.Q., Hou, L.P., Guo, G.S., “Preparation of TiO2 nanometer powders”, Chinese J. Inorg. Mater., 16 (4), 615-619 (2001).23Wang, J.Q., Wu, W.H., Feng, D.M., Electron Spectroscopy, National Defence Industry Press, Beijing (1992). (in Chinese)24Mills, A., Davies, R.H., Worsley, D., “Water purification by semi-conductor photocatalysis”, Chem. Soc. Rev., 22 (6), 417-434 (1993). 25Mills, A., Hunte, S.L., “An overview of semiconductor photocataly-sis”, J. Photochem. Photobiol. A: Chem., 108 (1), 1-35 (1997).26Xu, J.H., Li, M., Zhao, Y., “Advance of wetting behavior research on the superhydrophobic surface with micro- and nano- structures”, Progress in Chemistry, 18 (11), 1425-1433 (2006). (in Chinese)。