电路等仿真实验
- 格式:doc
- 大小:130.50 KB
- 文档页数:8
电子电路仿真实验报告
本次实验是一次电子电路的仿真实验,旨在通过使用电路仿真软件进行电路实验的模拟,通过对模拟的数据和仿真结果进行分析和总结,进一步掌握电子电路的实验知识和技能,在理论和实践中加深对电子电路的理解和掌握。
实验一:开关电源
1.实验目的
掌握开关电源基本工作原理,理解电源的稳压和稳流的基本原理,掌握开关电源的设
计和布局方法。
2.实验步骤
(1)根据实验手册,搭建开关电源电路,包括开关电源 IC、滤波电感、电容、稳流
二极管和稳压二极管。
(2)进行仿真实验,记录各个参数数据。
(3)分析实验结果,了解电源电路的工作原理和性能。
3.实验结果分析
(1)开关频率:在实验中,我们通过改变开关频率,观察电路的输出。
结果表明,当开关频率增加时,电路的效果也增强。
(2)输出电压:在实验中,我们对电路的输出电压进行了测量,结果表明,当输入电压较高时,输出电压也较高;当输入电压较低时,输出电压也较低。
4.实验总结
开关电源是一种高效率、小体积、轻量化的电源,广泛应用于电子产品中,是电子领
域不可或缺的核心器件之一。
掌握开关电源的设计和布局方法,对于我们理解和掌握电子
电路的原理和技术具有重要的意义。
通过本次实验,我们加深了对开关电源的理解和掌握,为日后的学习和实践打下了基础。
Multisim模拟电路仿真实验1.实验目的(1)学习用Multisim实现电路仿真分析的主要步骤。
(2)用仿真手段对电路性能作较深入的研究。
2.实验内容实验19-1 基本单管放大电路的仿真研究(2)静态工作点理论上,由V E=1.2V得:I E=V E/(R E1+R E2)=1mA,I B=I E/(β+1)=16.39uA,I C=βI B=0.9836mA;U CE=Vcc- I C*Rc-V E=7.554V。
实测值I B =13.995uA,Ic=0.9916mA,U CE=7.521V;相对误差分别为14.63%,0.817%,0.438%(3)电压放大倍数理论值r be=1.886kΩ,Au=-14.0565实测值Au=-13.8476,相对误差1.486%(4)波特图观察电压放大倍数为Au=-13.8530,下限截止频率为17.6938Hz,上限截止频率为18.07MHz,带宽为18.07MHz。
(5)用交流分析功能测量幅频和相频特性。
(6)加大输入信号强度,观测波形失真情况。
失真度为31.514%(7)测量输入电阻、输出电阻。
测输入电阻:U rms=1.00mV,I rms=148nA,则输入电阻R i= U rms/I rms=6.757kΩ;测输出电阻:空载时U oO=14.0mV,带载时U oL=10.6mV,R L=10kΩ,则输出电阻R o=(U oO/U oL-1)* R L =3.208kΩ(8) 将R E1去掉,R E2=1.2kΩ,重测电压放大倍数,上下限截止频率及输入电阻,对比说明R E1对这三个参数的影响。
测得放大倍数Au=-95.2477,下限截止频率为105.7752Hz,上限截止频率为18.9111MHz,带宽为18.9110MHz,输入电阻R i=1.859kΩ。
由表易知,去掉R E1后电压放大倍数变大;上下截止频率都略有增加,通频带变宽;输入电阻变小。
电路实验仿真实验报告电路实验仿真实验报告摘要:本实验通过电路仿真软件进行了一系列电路实验的仿真,包括电路基本定律验证、电路元件特性研究以及电路参数计算等。
通过仿真实验,我们深入理解了电路的工作原理和性能特点,并通过仿真结果验证了理论计算的准确性。
引言:电路实验是电子工程专业学生必修的一门重要课程,通过实际操作和观察电路的实际运行情况,加深对电路理论知识的理解。
然而,传统的电路实验需要大量的实验设备和实验器材,并且操作过程复杂,存在一定的安全风险。
因此,电路仿真技术的出现为电路实验提供了一种新的解决方案。
方法:本实验采用了电路仿真软件进行电路实验的仿真。
通过在软件中搭建电路原理图,设置电路元件参数,并进行仿真运行,观察电路的电压、电流等参数变化,以及元件的特性曲线等。
实验一:欧姆定律验证在仿真软件中搭建一个简单的电路,包括一个电源、一个电阻和一个电流表。
设置电源电压为10V,电阻阻值为100Ω。
通过测量电路中的电流和电压,验证欧姆定律的准确性。
仿真结果显示,电路中的电流为0.1A,电压为10V,符合欧姆定律的要求。
实验二:二极管特性研究在仿真软件中搭建一个二极管电路,包括一个二极管、一个电阻和一个电压表。
通过改变电阻阻值和电压源电压,观察二极管的正向导通和反向截止特性。
仿真结果显示,当电压源电压大于二极管的正向压降时,二极管正向导通,电压表显示有电压输出;当电压源电压小于二极管的正向压降时,二极管反向截止,电压表显示无电压输出。
实验三:RC电路响应特性研究在仿真软件中搭建一个RC电路,包括一个电阻、一个电容和一个电压源。
通过改变电阻阻值和电容容值,观察RC电路的充放电过程和响应特性。
仿真结果显示,当电压源施加一个方波信号时,RC电路会出现充放电过程,电压信号会经过RC电路的滤波作用,输出信号呈现出不同的响应特性。
实验四:电路参数计算在仿真软件中搭建一个复杂的电路,包括多个电阻、电容、电感和电压源。
1. 理解电路基本理论,掌握电路分析方法。
2. 掌握电路仿真软件(如Multisim)的使用方法。
3. 分析电路参数对电路性能的影响。
二、实验内容本次实验主要针对一阶RC电路进行仿真分析,包括零输入响应、零状态响应和全响应的规律和特点。
三、实验原理一阶RC电路由一个电阻R和一个电容C串联而成,其电路符号如下:```+----[ R ]----[ C ]----+| |+---------------------+```一阶RC电路的传递函数为:H(s) = 1 / (1 + sRC)其中,s为复频域变量,R为电阻,C为电容,RC为电路的时间常数。
根据传递函数,可以得到以下结论:1. 当s = -1/RC时,电路发生谐振。
2. 当s = 0时,电路发生零输入响应。
3. 当s = jω时,电路发生零状态响应。
四、实验仪器与设备1. 电脑:用于运行电路仿真软件。
2. Multisim软件:用于搭建电路模型和进行仿真实验。
1. 打开Multisim软件,创建一个新的仿真项目。
2. 在项目中选择“基本电路库”,搭建一阶RC电路模型。
3. 设置电路参数,如电阻R、电容C等。
4. 选择合适的激励信号,如正弦波、方波等。
5. 运行仿真实验,观察电路的响应波形。
6. 分析仿真结果,验证实验原理。
六、实验结果与分析1. 零输入响应当电路处于初始状态,即电容电压Uc(0-) = 0V时,给电路施加一个初始电压源,电路开始工作。
此时,电路的响应为电容的充电过程。
通过仿真实验,可以得到以下结论:(1)随着时间t的增加,电容电压Uc逐渐增大,趋于稳态值。
(2)电容电流Ic先减小后增大,在t = 0时达到最大值。
(3)电路的时间常数τ = RC,表示电路响应的快慢。
2. 零状态响应当电路处于初始状态,即电容电压Uc(0-) = 0V时,给电路施加一个激励信号,电路开始工作。
此时,电路的响应为电容的放电过程。
通过仿真实验,可以得到以下结论:(1)随着时间t的增加,电容电压Uc逐渐减小,趋于0V。
电路仿真实验报告一、实验目的通过电路仿真实验,了解和掌握电路设计和分析的基本原理和方法,培养学生解决实际电路问题的能力。
二、实验器材1.计算机2.电路仿真软件3.电路设计平台4.万用表三、实验内容1.选择一个电路仿真软件,并了解其基本操作方法。
2.使用电路仿真软件进行简单电路的仿真设计。
3.基于仿真结果,根据实验内容进行电路设计和分析。
四、实验步骤1.打开电路仿真软件,并了解其基本操作方法。
2.根据实验要求,选择一个简单电路进行设计,例如二阶低通滤波器。
3.使用电路设计平台进行电路的搭建,包括选择合适的电阻、电容和运放等器件。
4.在电路设计平台上进行参数设置,例如频率范围和截止频率等。
5.运行仿真,观察电路的响应曲线和频率特性。
6.根据仿真结果,分析电路的性能和特点,并进行相关讨论。
7.如果仿真结果不符合预期,可以调整电路参数或者改变电路结构,重新运行仿真并分析结果。
8.根据实验要求,记录仿真结果并撰写实验报告。
五、实验结果与分析在本次实验中,我们选择了一个二阶低通滤波器进行仿真设计。
根据实验要求,我们选择了合适的电阻、电容和运放等器件进行电路搭建。
通过仿真软件运行仿真,我们得到了电路的频率响应曲线和频率特性的结果。
根据图表分析,我们可以看到,在低频时,滤波器具有较好的通过性能,而在高频时,滤波器开始出现截止的现象。
我们还可以通过改变电路参数来观察电路的变化。
例如,增大电容值可以降低截止频率,使滤波器具有较好的低频通过特性。
而增大电阻值则可以增加滤波器的阻带特性。
通过实验结果的分析,我们可以得到滤波器的性能和特点,并根据实际应用的需求来调整电路参数和结构。
六、实验总结与心得体会通过电路仿真实验,我们学习到了电路设计和分析的基本原理和方法。
通过选择合适的电路仿真软件,并根据实验要求进行电路搭建和参数设置,运行仿真并分析结果,我们可以对电路的性能和特点有更深入的了解。
通过本次实验,我还发现了电路设计和分析的一些问题和挑战。
一、实验目的本次电力电子仿真实验实训旨在通过MATLAB/Simulink软件,对电力电子电路进行仿真分析,加深对电力电子电路工作原理、性能特点以及设计方法的了解,提高实际工程应用能力。
二、实验环境1. 软件环境:MATLAB R2020b、Simulink R2020b2. 硬件环境:计算机三、实验内容本次实验主要涉及以下内容:1. 单相桥式整流电路仿真2. 三相桥式整流电路仿真3. 逆变器电路仿真4. 直流斩波电路仿真四、实验步骤1. 单相桥式整流电路仿真(1)建立仿真模型:在Simulink中搭建单相桥式整流电路模型,包括二极管、电源、负载等元件。
(2)设置仿真参数:设置电源电压、负载电阻等参数。
(3)运行仿真:启动仿真,观察仿真结果。
(4)分析仿真结果:分析仿真结果,包括输出电压、电流、功率等参数。
2. 三相桥式整流电路仿真(1)建立仿真模型:在Simulink中搭建三相桥式整流电路模型,包括二极管、电源、负载等元件。
(2)设置仿真参数:设置电源电压、负载电阻等参数。
(3)运行仿真:启动仿真,观察仿真结果。
(4)分析仿真结果:分析仿真结果,包括输出电压、电流、功率等参数。
3. 逆变器电路仿真(1)建立仿真模型:在Simulink中搭建逆变器电路模型,包括电力电子器件、驱动电路、负载等元件。
(2)设置仿真参数:设置电源电压、负载电阻等参数。
(3)运行仿真:启动仿真,观察仿真结果。
(4)分析仿真结果:分析仿真结果,包括输出电压、电流、功率因数等参数。
4. 直流斩波电路仿真(1)建立仿真模型:在Simulink中搭建直流斩波电路模型,包括电力电子器件、驱动电路、负载等元件。
(2)设置仿真参数:设置电源电压、负载电阻等参数。
(3)运行仿真:启动仿真,观察仿真结果。
(4)分析仿真结果:分析仿真结果,包括输出电压、电流、功率等参数。
五、实验结果与分析1. 单相桥式整流电路仿真结果通过仿真实验,我们得到了单相桥式整流电路的输出电压、电流、功率等参数。
xxxx大学信控学院实验报告课程名称:电工技术与电子技术实验成绩:实验名称:基本电路的仿真实验班级: 3 姓名:学号:实验日期:教师签字:实验二十九基本电路的仿真实验——仿真实验一一、实验目的1.熟悉EWB仿真软件的使用2.学会用EWB仿真软件分析交流电路,并利用仿真仪器观察RLC电路的频率特性3.通过EWB仿真,观察RC电路的暂态过程及微分电路和积分电路的工作波形二、实验内容与步骤1.RC暂态电路观察并记录电路的充电、放电波形,测量充电时间常数和放电时间常数(1)Timebase=0.5s/div, ChannelA=5V/Div, ChannelB=5V/Div放电常数=200ms,充电常数=1.17s改变电路参数,观察时间常数对电容充放电波形的影响。
(2)Timebase=1.00s/ds, ChannelA=5V/Div, ChannelB=5V/Div(增大Timebase)放电常数=200ms,充电常数=1.15s(3)Timebase=0.2s/dv, ChannelA=5V/Div, ChannelB=5V/Div(减小Timebase)放电常数=205ms,充电常数=1.27s(4)Timebase=0.5s/dv, ChannelA=10V/Div, ChannelB=5V/Div(增大ChannelA)放电常数=220ms,充电常数=1.27s(5)Timebase=0.5s/dv, ChannelA=2V/Div, ChannelB=5V/Div(减小ChannelA)放电常数=220ms,充电常数=1.27s2. 微分电路观察并记录微分电路的输入、输出电压波形,标出输出脉冲的周期和幅值。
输出脉冲的周期=1.0000.ms幅值V1=10.0000V,V2=7.0765V3.积分电路观察并记录积分电路的输入、输出电压波形,标出输出波形的最大值和最小值。
波形VB最大值=6.1940V,周期1.0000ms4.单相交流RLC串联电路电路截图:(输出频率3kHz—6kHz)(1)在谐振曲线上读出谐振频率f0,下限截止频率f L和上限截止频率f H,并计算谐振电路的通频带F0=4.260kHz fl=4.116kHz f2=4.391kHz通频带f=0.131kHz谐振曲线:(2) 改变电阻R=100 ,观察幅频特性的变化,再读出谐振频率f0、下限截止频率f L和上限截止频率f H,计算通频带。
实验1 叠加定理的验证一、电路图二、实验步骤1.原理图编辑:分别调出接地符、电阻R1、R2、R3、R4,直流电压源、直流电流源,电流表电压表(注意电流表和电压表的参考方向),并按上图连接;2.设置电路参数:电阻R1=R2=R3=R4=1Ω,直流电压源V1为12V,直流电流源 I1为 10A。
3.实验步骤:1)、点击运行按钮记录电压表电流表的值U1和I1;2)、点击停止按钮记录,将直流电压源的电压值设置为0V,再次点击运行按钮记录电压表电流表的值U2和I2;3)、点击停止按钮记录,将直流电压源的电压值设置为12V,将直流电流源的电流值设置为0A,再次点击运行按钮记录电压表电流表的值U3和I3;根据电路分析原理,解释三者是什么关系并在实验报告中验证原理。
三、实验数据:四、实验数据处理:U2 + U3 = + = = U3I2 + I3 = + = = I1五、实验结论:由电路分析叠加原理知:由线性电路、线性受控源及独立源组成的电路中,每一元件的电流或电压可以看成是每一个独立源单独作用时,在该元件上产生的的电流或电压的代数和。
本次实验中,第一组各数据等于第二组与第三组各对应实验数据之和,与叠加原理吻合,验证了叠加原理的正确性,即每一元件的电流或电压可以看成是每一个独立源单独作用时,在该元件上产生的的电流或电压的代数和。
实验2 并联谐振电路仿真一、电路图:二、实验步骤:1.原理图编辑:分别调出接地符、电阻R1、R2,电容C1,电感L1,信号源V1,并按上图连接;2.设置电路参数:将交流分析量值设置为5V,电压源V1设置为5V,频率设为500Hz,设置电阻R1=10Ω,电阻R2=2KΩ,电感L1=,电容C1=40uF。
并如图所示对电容上方的线名称改为“out”。
3.分析参数设置:(1)AC分析①类型设置仿真→分析→交流分析。
②参数设置起始频率设为1Hz,停止频率设为100MHz,扫描类型为十倍频程,每十倍频程点数设为10,垂直刻度设为线性,其他保持默认,单击“确定”。
电路仿真实验报告本次实验旨在通过电路仿真软件进行电路实验,以加深对电路原理的理解,掌握电路仿真软件的使用方法,以及提高实验操作能力。
1. 实验目的。
通过电路仿真软件进行电路实验,掌握电路原理,加深对电路知识的理解。
2. 实验仪器与设备。
电脑、电路仿真软件。
3. 实验原理。
电路仿真软件是一种利用计算机进行电路仿真的工具,可以模拟各种电路的性能,包括直流电路、交流电路、数字电路等。
通过电路仿真软件,可以方便地进行电路实验,观察电路中各种参数的变化,从而加深对电路原理的理解。
4. 实验步骤。
(1)打开电路仿真软件,创建新的电路实验项目。
(2)按照实验要求,设计电路图并进行仿真。
(3)观察电路中各种参数的变化,并记录实验数据。
(4)分析实验数据,总结实验结果。
5. 实验结果与分析。
通过电路仿真软件进行实验,我们可以方便地观察电路中各种参数的变化,比如电压、电流、功率等。
通过对实验数据的分析,我们可以得出一些结论,加深对电路原理的理解。
6. 实验总结。
通过本次实验,我们掌握了电路仿真软件的使用方法,加深了对电路原理的理解,提高了实验操作能力。
电路仿真软件为我们进行电路实验提供了便利,让我们可以更直观地观察电路中各种参数的变化,从而更好地理解电路知识。
7. 实验心得。
通过本次实验,我深刻体会到了电路仿真软件的重要性,它为我们进行电路实验提供了极大的便利。
通过电路仿真软件,我们可以更直观地观察电路中各种参数的变化,从而更好地理解电路原理。
我相信,在今后的学习和工作中,我会继续利用电路仿真软件进行电路实验,不断提高自己的实验操作能力和电路知识水平。
8. 参考文献。
[1] 《电路原理》,XXX,XXX出版社,200X年。
电力电子仿真实验报告电力电子仿真实验报告概述:电力电子是现代电力系统中的重要组成部分,其在电能转换、调节和控制方面发挥着关键作用。
为了更好地理解电力电子的工作原理和性能特点,本次实验通过电力电子仿真实验平台进行了一系列电路的仿真实验,以探索电力电子在电力系统中的应用。
实验一:单相半桥逆变器单相半桥逆变器是一种常见的电力电子设备,可以将直流电压转换为交流电压。
本实验中,通过仿真平台搭建了一个单相半桥逆变器电路,并进行了性能测试。
通过改变输入直流电压和负载电阻,观察逆变器的输出波形和效率变化。
实验结果表明,逆变器的输出波形呈现出交流正弦波,并且随着输入电压和负载电阻的变化,逆变器的效率也相应变化。
实验二:三相全桥整流器三相全桥整流器是一种常用的电力电子设备,可以将三相交流电转换为直流电。
本实验中,通过仿真平台搭建了一个三相全桥整流器电路,并进行了性能测试。
通过改变输入交流电压的幅值和频率,观察整流器的输出直流电压和纹波变化。
实验结果表明,整流器的输出直流电压稳定,纹波较小,且随着输入电压的增加,输出直流电压也相应增加。
实验三:PWM调制技术PWM调制技术是电力电子中常用的调节技术,通过改变脉冲宽度来实现对输出电压的调节。
本实验中,通过仿真平台搭建了一个PWM调制电路,并进行了性能测试。
通过改变调制信号的频率和占空比,观察PWM调制电路的输出波形和频谱变化。
实验结果表明,PWM调制电路能够产生稳定的输出波形,并且通过调节占空比可以实现对输出电压的精确调节。
实验四:电力电子应用案例电力电子在现代电力系统中有着广泛的应用,例如变频器、充电器、逆变器等。
本实验中,选择了一个典型的电力电子应用案例进行仿真实验。
通过搭建相应的电路和参数设置,观察电力电子设备在实际应用中的性能表现。
实验结果表明,电力电子设备能够实现电能的高效转换和精确控制,为现代电力系统的稳定运行提供了重要支持。
结论:通过电力电子仿真实验,我们深入了解了电力电子的工作原理和性能特点。
实验1、支路电流法、节点电压法、运算放大电路一、用支路电流法求图1电路中各支路电流,及节点电压。
1、支路电流法求解电路,计算各支路电流和节点电压。
2、用PSPISE仿真(1)在Analog库中取出电阻R分别置于R1、R2、R3、R4处,在Analog库中取出取出电压控制电压源E置于受控源处,在SOURCE库中取出支流电压源VDC 分别置于(2)在图中设置各电阻和电压源参数,(鼠标双击要设置参数的元件即可进行设置),双击受控源E,在其属性GAIN中设置受控源控制参数3。
(3)保存电路(4)设置分析类型;PSPISE/NEW simulationprofile/analysis/analysis type/bias point,按确定结束设置(5)仿真电路,查看各支路电流及节点电压。
二、用节点电压法求图2电路中各支路电流,及节点电压。
1、节点电压法求解电路,计算各支路电流和节点电压。
(取不同的节点为参考点)2、用PSPISE仿真具体步骤可参考支路电流法。
分别取4个节点为参考点,分别仿真。
三、用节点电压法求图3电路中各支路电流,及节点电压。
(OPAMP库)1、节点电压法求解电路,计算各支路电流和节点电压。
2、用PSPISE仿真,求各支路电流和节点电压。
四、反相放大器1、计算图示电路输出电压。
2、用PSPISE仿真(1)如图示电路用PSPISE仿真,查看输出电压与输入电压关系。
(2)改变R2阻值,查看输出电压与输入电压关系。
若R2大于3K查看输出电压与输入电压关系,并说明仿真结果。
(3)若运算放大器偏置电压改为单电源,再重新进行(1)(2)步,说明仿真结果。
五、同相放大器1、计算图示电路输出电压。
2、用PSPISE仿真(1)如图示电路用PSPISE仿真,查看输出电压与输入电压关系。
(2)改变R2阻值,查看输出电压与输入电压关系。
若R2大于15K查看输出电压与输入电压关系,并说明仿真结果。
(3)若运算放大器偏置电压改为单电源,再重新进行(1)(2)步,说明仿真结果。
六、三输入加法电路1、计算图示电路输出电压。
2、用PSPISE仿真(1)如图示电路用PSPISE仿真,查看输出电压与输入电压关系。
(2)改变R1 R2 R3 R4阻值,查看输出电压与输入电压关系。
并说明仿真结果。
七、差分放大电路1、计算图示电路输出电压。
2、用PSPISE仿真(1)如图示电路用PSPISE仿真,查看输出电压与输入电压关系。
说明输入电压和输出电压关系(2)若R4/R1=R3/R2,查看输出电压与输入电压关系。
并说明仿真结果。
实验2、一阶电路一、RC零状态1、图中电容初始值U C(0-)=0V开关在t=0时闭合t<0时已稳态,计算图示电路中t>0电容端电压,及各个支路电流。
计算时间常数2、用PSPISE仿真(1)如图示电路用PSPISE仿真,查看电容电压与各个支路电流。
并运用示波器探头查看电容电压与各个支路电流波形。
(2)改变电容、电阻大小使τ增大到原先2倍,查看电容电压与各个支路电流。
并运用示波器探头查看电容电压与各个支路电流波形,改变电容、电阻大小使τ减小到原先2倍,查看电容电压与各个支路电流。
并运用示波器探头查看电容电压与各个支路电流波形。
二、RC零输入(设置IC值即为电容初值)1、图中电容初始值U C(0-)=30V开关在t=0时闭合t<0时已稳态,计算图示电路中t>0电容端电压,及各个支路电流。
计算时间常数2、用PSPISE仿真(1)如图示电路用PSPISE仿真,查看电容电压与各个支路电流。
并运用示波器探头查看电容电压与各个支路电流波形。
(2)改变电容、电阻大小使τ增大到原先2倍,查看电容电压与各个支路电流。
并运用示波器探头查看电容电压与各个支路电流波形,改变电容、电阻大小使τ减小到原先2倍,查看电容电压与各个支路电流。
并运用示波器探头查看电容电压与各个支路电流波形。
三、全响应1、图中电容初始值U C(0-)=-30V开关在t=0时闭合t<0时已稳态,计算图示电路中t>0电容端电压,及各个支路电流。
计算时间常数2、用PSPISE仿真(1)如图示电路用PSPISE仿真,查看电容电压与各个支路电流。
并运用示波器探头查看电容电压与各个支路电流波形。
(2)改变电容、电阻大小使τ增大到原先2倍,查看电容电压与各个支路电流。
并运用示波器探头查看电容电压与各个支路电流波形,改变电容、电阻大小使τ减小到原先2倍,查看电容电压与各个支路电流。
并运用示波器探头查看电容电压与各个支路电流波形。
四、把上述(一到三中的电容改为1H的电感,重复上述三步,其中电感电流初始大小为1A)实验三 二阶电路1、 求零状态响应,查看各个元件电压及回路电流.波形,比较下面三种情况下波形特点。
(1)C L R /2>(2)C L R /2<(3)C L R /2=2、 求零输入响应,U C (0-)=30V 查看各个元件电压及回路电流. 比较下面三种情况下波形特点。
(1)C L R /2>(2)C L R /2<(3)C L R /2=3、 求零输入响应,I L (0-)=3A 查看各个元件电压及回路电流. 比较下面三种情况下波形特点。
(1)C L R /2>(2)C L R /2<(3)C L R /2=4、 求全响应, U C (0-)=30V 查看各个元件电压及回路电流. 比较下面三种情况下波形特点。
(1)C L R /2>(2)C L R /2<(3)C L R /2=5、 求全响应,I L (0-)=3A 查看各个元件电压及回路电流. 比较下面三种情况下波形特点。
(1)C L R /2>(2)C L R /2<(3)C L R /2=6、 求全响应,I L (0-)=3A, U C (0-)=30V 查看各个元件电压及回路电流. 比较下面三种情况下波形特点。
(1)C L R /2>(2)C L R /2<(3)C L R /2=7,若为RLC 并联电路重复上述1-6.实验四 非线性非线性电阻的特性为I=10-3U 3,求U S 分别为2V ,10V 和12V 时的电压。
1、按图示电路画图。
(电压测量元件,VPRINT1)在SPECIAL 库2、设置非线性电阻属性,在COEFF 框中输入0.001,表示多项式系数。
设置VPRINT1属性,在DC 框中输入Y ,表示要求输出直流电压。
3、设置分析类型:PSPISE/MEW SIMULATION/ANALYSIS/ANALYSIS TYPE/DC SWEEPSWEEP V ARIABLE/V oltage source name /V1 sweep type/value list/2 10 124、查看仿真结果(VIEW OUTPUU FILE )附件:实验五谐振1、串联谐振电路如图所示,画出电路图并设置参数。
2、设置分析类型:PSPISE/MEW SIMULATION/ANALYSIS/ANALYSIS TYPE/AC SWEEPAC SWEEP TYPE:LOGARITHM,,START:1,END:1e+5,points/decade:1e+43、运行仿真4、查看仿真结果:打开图形窗口Plot/add plot to windows ,重复三次,得到三个坐标,分别用于显示,R,L,C上的电压。
点击最上区域子图,打开SCHEMATIC窗口,在L元件两端加示波器探头,点击中间区域子图,打开SCHEMA TIC窗口,在R元件两端加示波器探头,点击最下区域子图,打开SCHEMA TIC窗口,在C元件两端加示波器探头,,查看仿真波形,给出理论分析。
5、图示并联谐振电路,重复上述1-4步,查看P,L,C个元件的电流,电压波形实验六正弦稳态电路求回路电流1、设置各元件参数:在SPECIAL库中取出IPRINT放置在待求电流支路。
(IPRINT的电流方向为从管脚1到管脚2),设置各元件参数,在V AC的ACMAG属性框中输入电压幅值25V,ACPHASE框中输入初相位30。
在IPRINT中分别在AC,MAG,PHASE框中输入Y,表示要求输出电流幅值和相位。
2、设置分析类型PSPISE/MEW SIMULATION/ANALYSIS/ANALYSIS TYPE/AC SWEEPAC SWEEP TYPE:LINEAR,START:100,END:100,TOTAL:13、查看结果(在VIEW OUTPUTFILE中查看)∠30的交流电流源,重新求各回路电流若将交流电压源改为25︒实验七非正弦周期1、在SOURCE 库中提取脉冲电压源VPULSE。
设置脉冲电压源属性。
TD(脉冲延迟时间)TR(上升时间)TF(下降时间)均设为0,脉冲宽度(PW)设为1MS,周期(PER)设为2MS,脉冲最小值(V1)设为0V,脉冲最大值(V2)设为1V。
2、设置分析类型PESPISE/NEW SIMULATION/ANALYSIS/ANALYSIS TYPE/TIME DOMAIN RUN TO:10MS,START SA VING DATA:0 MAXIMUM STEP:50NS,OUTPUT FILE OPTION:PERFORM FOURIER ANALYSIS:CENTER:500,NUMBER OF:10,OUTPUT:V(R1)3、查看仿真结果。
显示频谱分布图(需进行局部放大处理),查看傅立叶系数输出文件。