安阳实验中学七年级(上)数学第一章评价试卷
- 格式:doc
- 大小:117.00 KB
- 文档页数:4
河南省安阳市七年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017七上·杭州期中) 下列是具有相反意义的量的是()A . 向东走5米和向北走5米.B . 身高增加2厘米和体重减少2千克.C . 胜1局和亏本70元.D . 收入50元和支出40元.2. (2分) (2017七上·商城期中) 下列式子中,正确的是()A . ﹣6<﹣8B . ﹣>0C . ﹣<﹣D . <0.33. (2分)小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为().A . 4℃B . 9℃C . -1℃D . -9℃4. (2分) 2的倒数的相反数是()A .B .C . 2D . ﹣25. (2分) (2019七上·三台期中) 下列各数、、、0、、中,负有理数的个数是()A . 2B . 3C . 4D . 56. (2分) (2020七上·宁波期末) 如图,数轴上 A , B 两点分别对应有理数 a , b ,则下列结论正确的是()A . a-b>0B . ab>0C . a+b>0D . |a|-|b|>07. (2分)(2017·北区模拟) 计算(﹣4)×(﹣3)的结果等于()A . ﹣12B . ﹣7C . 7D . 128. (2分) (2019七上·天台月考) 下列算式中,积为负数的是()A . 0×(-5)B . 4×(-0.5)×(-10)C .D . (-1.5)×(-2)9. (2分)如果a+b<0,并且ab>0,那么()A . a<0,b<0B . a>0,b>0C . a<0,b>0D . a>0,b<010. (2分) (2018七上·佳木斯期中) 两个有理数,在数轴上的位置如图,下列四个式子中运算结果为正数的是()A .B .C .D .二、填空题 (共5题;共6分)11. (2分) (2020七上·建湖月考) 已知│m│=│- │,那么m的值是 ________.12. (1分) (2019七上·赛罕期中) 的倒数是________,相反数是________.13. (1分) (2020七上·长春月考) 化简下列分数: ________; ________.14. (1分) (2019七上·丰宁月考) 若则a-b________0.(填“>”或“<”)15. (1分) (2020七下·思明月考) 如果4m、m、6-2m这三个数在数轴上所对应的点从左到右依次排列,那么 m 的取值范围________.三、解答题 (共8题;共64分)16. (10分) (2019七上·顺德期末) 计算:(﹣3)2×[ ﹣(﹣)]+|﹣2|17. (5分) (2017七上·呼和浩特期中) 一本小说共m页,一位同学第一天看了全书的少6页,第二天看了剩下的多6页,第三天把剩下的全部看完,该同学第三天看了多少页?若m=900,则第三天看了多少页?18. (5分) (2019七上·昌平期中) 已知:、互为相反数,、互为倒数,,求代数式的值19. (2分) (2018七上·洪山期中) 在数轴上,点A表示数a,点B表示数b,在学习绝对值时,我们知道了绝对值的几何含义:数轴上A、B之间的距离记作|AB|,定义:|AB|=|a﹣b|.如:|a+6|表示数a和﹣6在数轴上对应的两点之间的距离.|a﹣1|表示数a和1在数轴上对应的两点之间的距离.(1)若a满足|a+6|+|a+4|+|a﹣1|的值最小,b与3a互为相反数,直接写出点A对应的数,点B对应的数.(2)在(1)的条件下,已知点E从点A出发以1单位/秒的速度向右运动,同时点F从点B出发以2单位/秒的速度向右运动,FO的中点为点P,则下列结论:①PO+AE的值不变;②PO﹣AE的值不变,其中有且只有一个是正确的,选出来并求其值.(3)在(1)的条件下,已知动点M从A点出发以1单位/秒的速度向左运动,动点N从B点出发以3单位/秒的速度向左运动,动点T从原点的位置出发以x单位/秒的速度向左运动,三个动点同时出发,若运动过程中正好先后出现两次TM=TN的情况,且两次间隔的时间为4秒,求满足条件的x的值.20. (10分)出租车司机小李某天上午营运时是在东西走向的大街上进行的,如果规定:向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km)如下:﹣2,+5,﹣1,+1,﹣6,﹣2,问:(1)将最后一位乘客送到目的地时,小李在什么位置?(2)若汽车耗油量为0.2L/km(升/千米),这天上午小李接送乘客,出租车共耗油多少升?(3)若出租车起步价为8元,起步里程为2.5km(包括2.5km),超过部分(不足1千米按1千米计算)每千米1.5元,问小李这天上午共得车费多少元?21. (10分) (2019九上·重庆期末) 阅读下列两则材料,回答问题,材料一:定义直线y=ax+b与直线y=bx+a互为“互助直线”,例如,直线y=x+4与直y=4x+1互为“互助直线“材料二:对于平面直角坐标系中的任意两点P1(x1 , y1)、P2(x2 , y2),P1、P2两点间的直角距离d(P1 ,P2)=|x1﹣x2|+|y1﹣y2|.例如:Q1(﹣3,1)、Q2(2,4)两点间的直角距离为d(Q1 , Q2)=|﹣3﹣2|+|1﹣4|=8设P0(x0 , y0)为一个定点,Q(x,y)是直线y=ax+b上的动点,我们把d(P0 , Q)的最小值叫做P0到直线y=ax+b的直角距离.(1)计算S(﹣1,6),T(﹣2,3)两点间的直角距离d(S,T)=________,直线y=2x+3上的一点H(a,b)又是它的“互助直线”上的点,求点H的坐标.________(2)对于直线y=ax+b上的任意一点M(m,n),都有点N(3m,2m﹣3n)在它的“互助直线”上,试求点L (5,﹣)到直线y=ax+b的直角距离.22. (15分) (2018七上·易门期中) 有20筐白菜,以每筐25千克为标准,超过或不足的分别用正、负来表示,记录如下:(1)与标准质量比较,20筐白菜总计超过或不足多少千克?(2)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?23. (7分) (2018七上·天台期末) 规定:求若干个相同的有理数(不等于0)的除法运算叫做除方,如,等.类比有理数的乘方,记作④ ,读作“ 的圈4次方”,一般地,我们把()记作ⓝ,读作“a 的圈n次方”.(1)直接写出计算结果:2③= ________,④=________.(2)有理数的除方可以转化为乘方幂的形式.如④= == = ,直接将下列的除方形式写成乘方幂的形式:④=________;5ⓝ=________.(3)计算:.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共5题;共6分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:三、解答题 (共8题;共64分)答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、答案:19-3、考点:解析:答案:20-1、答案:20-2、答案:20-3、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:。
七年级上册数学第一章有理数单元检测001一、填空题(每空2分,共28分)1、31-的倒数是____;321的相反数是____.2、比–3小9的数是____;最小的正整数是____.3、计算:._____59____;2123=--=+-4、在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是5、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.6、某旅游景点11月5日的最低气温为 2-,最高气温为8℃,那么该景点这天的温差是____. C7、计算:.______)1()1(101100=-+-8、平方得412的数是____;立方得–64的数是____.9、用计算器计算:._________95=10、观察下面一列数的规律并填空:0,3,8,15,24,_______.二、选择题(每小题3分,共24分)11、–5的绝对值是…………………………………………………( )A 、5B 、–5C 、51D 、51-12、在–2,+3.5,0,32-,–0.7,11中.负分数有………………( )A 、l 个B 、2个C 、3个D 、4个13、下列算式中,积为负数的是……………………………( )A 、)5(0-⨯B 、)10()5.0(4-⨯⨯C 、)2()5.1(-⨯D 、)32()51()2(-⨯-⨯-14、下列各组数中,相等的是……………………………( )A 、–1与(–4)+(–3)B 、3-与–(–3)C 、432与169D 、2)4(-与–16 15、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是…………( )A 、90分B 、75分C 、91分D 、81分16、l 米长的小棒,第1次截止一半,第2次截去剩下的一半,如此下去,第6次后剩下的小棒长为…………………………( )A 、121 B 、321 C 、641 D 、1281 17、不超过3)23(-的最大整数是……………………………( ) A 、–4 B –3 C 、3 D 、418、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称以8折(80%)大拍卖,那么该商品三月份的价格比进货价………………………………………( )A 、高12.8%B 、低12.8%C 、高40%D 、高28%三、解答题(共48分)19、(4分)把下面的直线补充成一条数轴,然后在数轴上标出下列各数:–3,+l ,212,-l.5,6.20、(4分)七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简记为+10,–15,0,+20,–2.问这五位同学的实际成绩分别是多少分?21、(8分)比较下列各对数的大小.(1)54-与43- (2)54+-与54+- (3)25与52 (4)232⨯与2)32(⨯22、(8分)计算.(1)15783--+- (2))6141(21--(3))4(2)3(623-⨯+-⨯- (4)61)3161(1⨯-÷23、(12分)计算.(l )51)2(423⨯-÷- (2)75.04.34353.075.053.1⨯-⨯+⨯-(3)[]2)4(231)5.01(-+⨯÷-- (4))411()2(32)53()5(23-⨯-÷+-⨯-24、(4分)已知水结成冰的温度是 0C ,酒精冻结的温度是–117℃。
七年级(上)数学第一章单元测试班级____________姓名__________得分___________一、填空(42分)1、正方体或长方体是一个立体图形,它是由_____个面,_______条棱,_______个顶点组成的.2、要把一个长方体剪开展成平面图形,需要剪开________条棱.3、一物体的外形为正方体,为探明其内部结构,给其“做CT ”,用一组垂直的平面从左向右截这个物体,按顺序得到如下截面,请你猜猜这个正方体的内部构造________________.4、在同一平面内,用游戏棒(同样长)搭4个一样大小的等边三角形,至少要_____根,在空间搭四个一样大小的等边三角形,至少要________根.5、如图,截去正方体一角变成一个多面体,这个多面体有____个面,____条棱,___个顶点.6、若要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为6,x=_______,y=______.7、四棱柱按如图粗线剪开一些棱,展成平面图形,请画出平面图来:_____________________.(第5题)1 2 3x y(第6题)(第7题)第3题图8、薄薄的硬币在桌面上转动时,看上去象球,这说明了______________. 二、选择题(9分)1、下图中是正方体的展开图的有……………………………( ) A 、2个 B 、3个 C 、4个 D 、5个2、用一个平截圆柱,则截面形状不可能是………………………( ) A 、圆 B 、正方形 C 、长方形 D 、梯形3、从多边形一条边上的一点(不是顶点)发出发,连接各个顶点得到2003个三角形,则这个多边形的边数为……………………………( ) A 、2001 B 、2005 C 、2004 D 、2006三、下列各数中,哪些是正数?哪些是负数?哪些是整数?哪些是分数?(8分)11,-8.3,-73,-103,274,13.52,0,-3.14,四、画图题(12分)a) 画出下列几何体的三种视图b) 用小立方块搭成的几何体,主视图和俯视图如下,问这样的几何体最多需要多少小立方块?最少需要多少小立方块?请画出最多和最少时的左视图。
2023-2024学年第一学期教学质量检测七年级数学试卷注意事项:1.本试卷分试题卷和答题卡两部分,试题卷共4页,三个大题,满分120分,考试时间100分钟.2.请直接将答案写在答题卡上,写在试题卷上的答案无效.3.答题时,必须使用2B 铅笔按要求规范填涂,用0.5毫米的黑色墨水签字笔书写.一、选择题(每小题3分,共30分)1.-3的倒数是( )A .B.C .-3D .32.2023年11月29日,安阳红旗渠机场正式通行,该机场位于安阳、濮阳、鹤壁三市交界区域,机场的通航直接服务豫北三市1160万人航空出行.将数据1160万用科学记数法表示为()A .B .C .D .3.如图所示的平面图形绕轴旋转一周,可得到的立体图形是()A .B .C .D .4.如图,建筑工人砌墙时,经常用细绳在墙的两端之间拉一条参照线,使砌的每一层砖在一条直线上,这样做蕴含的数学原理是()13-13611610⨯.711610⨯.511610⨯811610⨯.第4题A .过一点有无数条直线B .两点之间线段最短C .两点确定一条直线D .线段是直线的一部分5.下列计算正确的是( )A .B .C .D .6.下列变形正确的是()A .由,得到B .由,得到C .由,得到D .由,得到7.若关于的方程的解为,则的值为( )A .2B .-2C .10D .-108.如图,一副三角板(直角顶点重合)摆放在桌面上,若,则等于()第8题A .20°B .30°C .50°D .70°9.农历新年即将来临,某校书法兴趣班计划组织学生写一批对联.如果每人写7副,则比计划多5副;如果每人写6副,则比计划少10副,设这个兴趣班有个学生,由题意,下面所列方程正确的是( )A .B .C .D .10.有一种石棉瓦(如图),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么(为正整数)块石棉瓦覆盖的宽度为()325a b ab +=22330x y xy -=224m m m+=32ab ab ab-+=512x +=125x =+112x x =-21x x =-27x =27x =326x x =+326x x -=x 26x a +=2x =a 160AOD ∠=︒BOC ∠x 75610x x +=+75610x x +=-75610x x -=+75610x x -=-n n第10题A .厘米B .厘米C .厘米D .厘米二、填空题(每小题3分,共15分)11.中国是最早采用正负数表示相反意义的量并进行负数运算的国家.若零上5℃记作+5℃,则零下10℃可记作______℃.12.比较大小:-0.5______(用“>”,“<”或“=”填空).13.若单项式和单项式是同类项,则=______.14.如图,在灯塔处观测到轮船位于北偏西70°的方向,同时轮船在南偏东10°的方向,那么的度数为______.第14题15.“整体思想”是数学中的一种重要的思想方法,它广泛应用于数学运算中.例如:已知,,则,利用上述思想方法计算:已知,,则=______.三、解答题(本大题共8个小题,满分75分)16.(10分)计算:(1)(2)17.(9分)先化简,再求值:,其中,.18.(9分)果农张大伯采摘了7筐脐橙,以每筐20千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:第一筐第二筐第三筐第第四筐第五筐第六筐第七筐1.3______-0.51______-1.5-250n ()5010n +60n ()6010n +23-2ma b -32na b m n -O A B AOB ∠2a b +=3ab =-()22238a b ab x +-=--=22a b -=1ab =-()()2a b ab b ---()()353624-+⨯---÷111245384⎛⎫-⨯+---⎪⎝⎭()()2223532xy x xy x xy +---2x =13y =已知第二筐的重量为17千克,第五筐的重量为20.7千克.(1)请补全表格;(2)若这批脐橙以10元/千克全部售出,可售得多少元?19.(10分)(1)解方程:(2)下面是小林同学解一元一次方程的过程,请认真阅读并解答相应问题.解方程:解:去分母,得.…第一步去括号,得.…第二步移项,得.…第三步合并同类项,得.…第四步系数化为1,得.…第五步填空:①以上求解步骤中,第______步开始出现错误,错误的原因是______;②该方程的正确解为______.20.(9分)如图,点是线段的中点,点,是线段上两点,,.(1)求的长;(2)若,求的长.21.(9分)在美术课上,老师组织七年级一班的学生做圆柱形笔筒.七年级一班共有学生44人,每名学生一节课能做筒身25个或筒底60个.若每个筒身需要匹配2个筒底,为了使本节课做的筒身和筒底刚好配套,应该分配多少名学生做筒身,多少名学生做筒底?22.(9分)如图,以直线上一点为端点作射线,使,将一个直角三角板的直角顶点放在处,即,且在的内部.(1)若恰好平分,求和的度数;(2)若,请直接写出的度数.(用含的式子表示).5236x x -=+1126x x --=()316x x --=316x x -+=361x x -=+27x =72x =O AB C E AB 12AB =2OC =AC :1:3BE CE =CE AB O OC 40BOC ∠=︒DOE O 90DOE ∠=︒OE BOC ∠OD AOC ∠AOD ∠COE ∠BOE α∠=COD ∠α23.(10分)如图,数轴上,两点对应的有理数分别为-2和16,点从点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为秒.(1)当时,的长为______,点表示的有理数为______;(2)当=______时,点为的中点;(3)当时,求的值.2023—2024学年第一学期七年级数学参考答案及评分标准评分说明:解答题中,对于一题多解的题目,视学生解法过程的合理性恰当评分。
河南省安阳市七年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)一个立体图形由4个相同的正方体组成,如果从左面看到的图形如图所示,那么这个立体图形不可能是()A .B .C .D .2. (2分)在数轴上距 -2有3个单位长度的点所表示的数是().A . -5B . 1C . -1D . -5或13. (2分)(2017·南通) 在0、2、﹣1、﹣2这四个数中,最小的数为()A . 0B . 2C . ﹣1D . ﹣24. (2分)有理数、在数轴上的对应点如图所示:则()A . a+b<0B . a+b>0C . a-b=0D . a-b>05. (2分)(2017·桂林) 如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A .B .C .D .6. (2分) (2017七上·揭西期中) 下列各数中,是负数的是()A .B .C . |-3|D .7. (2分) (2017七上·马山期中) 当a=﹣2时,代数式a2﹣2a+1的值为()A . ﹣7B . 1C . 5D . 98. (2分)若使多项式2x3-8x2+x-1与多项式3x3+2mx2-5x+3相加后不含二次项,则m=()A . 2B . -2C . 4D . -49. (2分) (2019七上·富阳期中) 已知,则的值是A . 0B . 2C . 5D . 810. (2分)已知|x|=4,|y|=5且x>y,则2x-y的值为()A . -13B . +13C . -3 或+13D . +3或-13二、填空题 (共8题;共24分)11. (5分) (2017七上·瑞安期中) 在“生活中的数学”知识竞赛中,如将加20分记为+20分,则扣10分记为________分.12. (5分) (2016七上·长泰期中) 的倒数是________.13. (1分) (2019七上·临潼月考) 在知识抢答比赛中,如果得5分记得+5,那么扣5分应记为________.14. (5分)甲、乙两人同时从A地出发,如果向南走48m,记作+48m,则乙向北走—32m,记为________m15. (1分)(2017·阜宁模拟) 如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面相对面上的字是________.16. (5分) (2017七上·高阳期末) 如图,平面展开图折叠成正方体后,相对面上的两个代数式值相等,则x+y=________.17. (1分) (2017七上·县期中) 若一点P在数轴上且到原点的距离为2,则点P表示的数是________.18. (1分)观察下列算式:12-02=1+0=1;22-12=2+1=3;32-22=3+2=5;42-32=4+3=7;52-42=5+4=9;......若字母n表示自然数,请把你观察到的规律用含有n的式子表示出来________ .三、解答题 (共7题;共75分)19. (25分) (2018七上·无锡期中) 计算或化简:(1)(2)(3)4×(- )+(-2)2×5-4÷(- );(4)(5)(6)20. (5分)已知由4个相同的小立方体组成的几何体如图所示,请画出它的三视图.21. (5分) (2019七上·东莞期中) 把下面的有理数填入它所属于的集合的大括号内-5.3,+5,20%,0,,-7,-|-3|,-(-1.8)正数集合{ }整数集合{ }分数集合{ }有理数集合{ }22. (10分) (2017七下·萧山期中) 杭州市甲、乙两个有名的学校乐团,决定向某服装厂购买同样的演出服.如表是服装厂给出的演出服装的价格表:购买服装的套数1~39套(含39套)40~79套(含79套)80套及以上每套服装的价格80元70元60元经调查:两个乐团共75人(甲乐团人数不少于40人),如果分别各自购买演出服,两个乐团共需花费5600元.请回答以下问题:(1)如果甲、乙两个乐团联合起来购买服装,那么比各自购买服装最多可以节省多少元?(2)甲、乙两个乐团各有多少名学生?(3)现从甲乐团抽调a人,从乙乐团抽调b人(要求从每个乐团抽调的人数不少于5人),去儿童福利院献爱心演出,并在演出后每位乐团成员向儿童们进行“心连心活动”;甲乐团每位成员负责5位小朋友,乙乐团每位成员负责3位小朋友.这样恰好使得福利院65位小朋友全部得到“心连心活动”的温暖.请写出所有的抽调方案,并说明理由.23. (5分) (2016七上·蓬江期末) 若a , b互为相反数,c , d互为倒数,m的绝对值是1,n是有理数且既不是正数也不是负数,求20161-(a+b)+m2 -(cd)2016+n(a+b+c+d)的值.24. (10分) (2019七上·利辛月考) 为维护消费者权益,市质量技术监督局对“复兴超市”销售的某品牌大米抽取10袋进行了检查。
七年级数学第一学期第一次评价测试试卷(满分:100分时间:90分钟)姓名__________班级_______成绩________一、选择题:(每题2分,共20分)1、21-的绝对值是() A、-2 B、21- C、2 D、212、小丽制作了一个如下左图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是()3、用一个平面截圆锥,则截面形状不可能是()A、圆B、三角形C、长方形D、椭圆4、如图的四个平面图形中,不是正方体的展开图的是()(A)(B)(C)(D)5、如图所示的图形绕虚线旋转一周,所形成的几何体是()6、下列说法中,正确的个数是()①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤棱柱的侧面一定是长方形.(A)2个(B)3个(C) 4个(D)5个7、下图中几何体的主视图是()8、下列各数中是正整数的是().A.1,0 B.-2,4 C.0.3,7 D.2,19、下列说法正确的是( )。
A.41-和0.25不是互为相反数。
B.-a是负数。
C.任何一个数都有它的相反数。
D.正数与负数互为相反数。
10、在–1,–3,1,2四个数中,绝对值最大的一个数是()A、–1B、–3C、1D、2二、填空题(每空2分,共34分)1、如果向南走5000米记为是-5000米,那么向北走7000米记为__________2、在数轴上,与表示2的点距离为3个单位的点是。
3、圆锥有______个面。
五棱柱有_____个侧面,______条棱。
4、图中平面展开图折叠成正方体后,相对面上两个数之和为6,x=____,y=______.5、比较大小:43- ______54-; 0_____|-5|;6、绝对值不大于3的非负整数是_____________ ;7、计算或填空:2-|-2|=_______;()-(-21)=37;8、风扇的叶片转动看上去像一个圆,这说明了_____________.9、在数轴上,点A表示的数为-2,将它先向右平移3个单位,再向左平移5个单位到达B点,则点B表示的数是________。
a 七年级数学第一章测试卷(时间:90分钟 总分:120分)一、选择题:(每题2分,共30分)1.下列说法正确的是( ) A.所有的整数都是正数 B.不是正数的数一定是负数C.0不是最小的有理数D.正有理数包括整数和分数2.12的相反数的绝对值是( ) A.-12 B.2 C.-2 D.12 3.有理数a 、b 在数轴上的位置如图1-1所示,那么下列式子中成立的是( )A.a>bB.a<bC.ab>0D.0a b> 4.在数轴上,原点及原点右边的点表示的数是( ) A.正数 B.负数 C.非正数 D.非负数5.如果一个有理数的绝对值是正数,那么这个数必定是( )A.是正数B.不是0C.是负数D.以上都不对6.下列各组数中,不是互为相反意义的量的是( )A.收入200元与支出20元B.上升10米和下降7米C.超过0.05mm 与不足0.03mD.增大2岁与减少2升7.下列说法正确的是( )A.-a 一定是负数;B.│a │一定是正数;C.│a │一定不是负数;D.-│a │一定是负数8.如果一个数的平方等于它的倒数,那么这个数一定是( )A.0B.1C.-1D.±19.如果两个有理数的和除以它们的积,所得的商为零,那么,这两个有理数( )A.互为相反数但不等于零;B.互为倒数;C.有一个等于零;D.都等于零10.若0<m<1,m 、m 2、1m的大小关系是( ) A.m<m 2<1m ; B.m 2<m<1m ; C.1m <m<m 2; D.1m <m 2<m 11.4604608取近似值,保留三个有效数字,结果是( )A.4.60×106B.4600000;C.4.61×106D.4.605×10612.下列各项判断正确的是( )A.a+b 一定大于a-b;B.若-ab<0,则a 、b 异号;C.若a 3=b 3,则a=b;D.若a 2=b 2,则a=b13.下列运算正确的是( )A.-22÷(-2)2=1;B. 31128327⎛⎫-=- ⎪⎝⎭ C.1352535-÷⨯=- D. 133( 3.25)6 3.2532.544⨯--⨯=-14.若a=-2×32,b=(-2×3)2,c=-(2×)2,则下列大小关系中正确的是( )A.a>b>0B.b>c>a;C.b>a>cD.c>a>b15.若│x │=2,│y │=3,则│x+y │的值为( )A.5B.-5C.5或1D.以上都不对二、填空题:(每空2分,共30分)16.某地气温不稳定,开始是6℃,一会儿升高4℃,再过一会儿又下降11℃, 这时气温是__.17.一个数的相反数的倒数是113-,这个数是________.18.数轴上到原点的距离是3个单位长度的点表示的数是______.19.-2的4次幂是______,144是____________的平方数.20.若│-a │=5,则a=________. 21.若ab>0,bc<0,则ac________0.22.绝对值小于5的所有的整数的和_______.23.用科学记数法表示13040000应记作_______________________,若保留3个有效数字, 则近似值为__________. 24.若│x-1│+(y+2)2=0,则x-y=___________; 25.(-5)×145⎛⎫- ⎪⎝⎭=_________. 26. 31277⎛⎫÷- ⎪⎝⎭=___________; 27. 1564358-÷⨯=___________. 28. 22128(2)2⎛⎫-⨯-+÷- ⎪⎝⎭=_______. 三、解答题:(共60分)29.列式计算(每题5分,共10分)(1)-4、-5、+7三个数的和比这三个数绝对值的和小多少?(2)从-1中减去573,,1284---的和,所得的差是多少?30.计算题(每题5分,共30分)(1)(-12)÷4×(-6)÷2; (2) 235(4)0.25(5)(4)8⎛⎫-⨯--⨯-⨯- ⎪⎝⎭;(3) 111311123124244⎛⎫⎛⎫⎛⎫⎛⎫--+----- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; (4) 222121(3)242433⎛⎫⎛⎫-÷⨯-+-⨯- ⎪ ⎪⎝⎭⎝⎭;(5) 2242(12)6(3)24(3)(5)53+⨯-÷--++-⨯-; (6)1+3+5+…+99-(2+4+6+…+98).31.若│a │=2,b=-3,c 是最大的负整数,求a+b-c 的值.(10分)32.检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A 地出发, 到收工时,行走记录为(单位:千米):+8、-9、+4、+7、-2、-10、+18、-3、+7、+5回答下列问题:(每题5分,共10分)(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油0.3升,问从A地出发到收工时,共耗油多少升?答案:一、1.C 2.D 3.A 4.D 5.B 6.D 7.C 8.B 9.A 10.B 11.A 12. C 13.D 14.C15.C二、16.评析:负数的意义,升高和降低是一对意义相反的量,借助数轴可以准确无误地得出正确结果-1℃,数无数不形象,形无数难入微, 数形结合是数学的基本思想,在新课标中有重要体现,是中考命题的重要指导思想,多以综合高档题出现,占分比例较大.17.评析:利用逆向思维可知本题应填3 4 .18.评析:绝对值的几何意义.在数轴上绝对值的代名词就是距离,绝对值是一个“一学就会一做就错”的难点概念,其原因是没有把握好绝对值的几何意义.19.1620.评析:可以设计两个问题理解本题.①什么数的绝对值等于5, 学生可顺利得出正确结论±5.②什么数的相反数等于±5,学生也可顺利得出正确结论-5和5,在解题的过程中学生自然会概括出│-a│=│a│,把一个问题转化成两个简单的问题,这种方法和思想是数学学习的核心思想,这一思想在历届中考中都有体现.21.<22.023.用科学记数法表示一个数,要把它写成科学记数的标准形式a×10n, 这里的a必须满足1≤a<10条件,n是整数,n的确定是正确解决问题的关键,在这里n是一个比位数小1的数,因为原数是一个8位数,所以可以确定n=7,所以13040000=1.304×107,对这个数按要求取近似值,显然不能改变其位数,只能对其中的a 取近似值,保留3个有效数字为1.30×107,而不能误认为 1.30,通过这类问题,学生可概括出较大的数取近似值的基本模式应是:先用科学记数法将其表示为a ×10n (1≤a<10,n 是整数), 然后按要求对a 取近似值,而n 的值不变. 24.3 25.21 26.15- 27.252- 28.4 三、29.本题根据题意可列式子:(1)(│-4│+│-5│+│7│)-(-4-5+7)=18.(2) 573251128424⎛⎫-----= ⎪⎝⎭. 30.(1)属同一级运算,计算这个题按题的自然顺序进行(-12)÷4×(-6)÷2=(-12)×14×(-6)×12=9. (2)是一个含有乘方的混合运算 235(4)0.25(5)(4)8⎛⎫-⨯--⨯-⨯- ⎪⎝⎭=25160.25(4)(5)(4)1080908-⨯-⨯-⨯-⨯-=--=-.这里把-4同0.25结合在一起,利用了凑整法可以简化计算.(3)这一题只含同一级运算,计算中要统一成加法的计算, 然后把可以凑整的结合在一起进行简便计算,具体做法是: 111311123124244⎛⎫⎛⎫⎛⎫⎛⎫--+----- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=111311123124244---++ =1111331111230434422444⎛⎫⎛⎫-++--+=-+=- ⎪ ⎪⎝⎭⎝⎭ (4)本题是一个混合运算题,具体解法如下: 232121(3)242433⎛⎫⎛⎫-÷⨯-+-⨯- ⎪ ⎪⎝⎭⎝⎭ =4412744993⎛⎫-⨯⨯+-⨯- ⎪⎝⎭=1644033-++= (5) 2242(12)6(3)24(3)(5)53+⨯-÷--++-⨯-=421(12)9249(5) 536+⨯-⨯-++⨯-=4487 933(5)9165155 531515 --+⨯-=--=-(6)1+3+5+...99-(2+4+6+ (98)=1+(3-2)+(5-4)+…(99-98)=1+1+1+…1=50.此题有多种简便方法,请你探索.31.∵│a│=2,∴a=±2,c是最大的负整数,∴c=-1,当a=2时,a+b-c=2-3-(-1)= 0;当a=-2时a+b-c=-2-3-(-1)=-4.32.(1)∵8-9+4+7-2+10+18-3+7+5=8+4+7+18+7+5-9-10-2-3=25,∴在A处的东边25米处.(2)∵│8│+│-9│+│4│+│7│+│-2│+│-10│+│18│+│-3│+│7│+│5│=73千米,73×0.3=21.9升,∴从出发到收工共耗油21.9升.。
一、选择题1.下列四种说法:①减去一个数,等于加上这个数的相反数;②两个互为相反数的数和为0;③两数相减,差一定小于被减数;④如果两个数的绝对值相等,那么这两个数的和或差等于零.其中正确的说法有( )A .4个B .3个C .2个D .1个2.下列说法中,正确的是( )A .正数和负数统称有理数B .既没有绝对值最大的数,也没有绝对值最小的数C .绝对值相等的两数之和为零D .既没有最大的数,也没有最小的数3.一件商品原售价为2000元,销售时先提价10%;再降价10%,现在的售价与原售价相比( )A .提高20元B .减少20元C .提高10元D .售价一样 4.下列各组数中,不相等的一组是( ) A .-(+7),-|-7|B .-(+7),-|+7|C .+(-7),-(+7)D .+(+7),-|-7| 5.-1+2-3+4-5+6+…-2011+2012的值等于A .1B .-1C .2012D .10066.将(-3.4)3,(-3.4)4,(-3.4)5从小到大排列正确的是( )A .(-3.4)3<(-3.4)4<(-3.4)5B .(-3.4)5<(-3.4)4<(-3.4)3C .(-3.4)5<(-3.4)3<(-3.4)4D .(-3.4)3<(-3.4)5<(-3.4)47.下列结论错误的是( )A .若a ,b 异号,则a ·b <0,a b <0 B .若a ,b 同号,则a ·b >0,a b >0 C .a b -=a b -=-a b D .a b--=-a b 8.若|x|=7|y|=5x+y>0,,且,那么x-y 的值是 ( ) A .2或12B .2或-12C .-2或12D .-2或-12 9.下列说法中正确的是( )A .a -表示的数一定是负数B .a -表示的数一定是正数C .a -表示的数一定是正数或负数D .a -可以表示任何有理数10.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >0 11.某市11月4日至7日天气预报的最高气温与最低气温如表:日期 11月4日 11月5日11月6日 11月7日 最高气温(℃) 19 12 209 最低气温(℃) 4 3-4 5其中温差最大的一天是( )A .11月4日B .11月5日C .11月6日D .11月7日 12.据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为( )A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元二、填空题13.已知一个数的绝对值为5,另一个数的绝对值为3,且两数之积为负,则两数之差为____.14.填空:(1)____的平方等于9;(2)(-2)3=____;(3)-14+1=____;(4)23×212⎛⎫ ⎪⎝⎭=____. 15.用计算器求2.733,按键顺序是________;使用计算器计算时,按键顺序为,则计算结果为________.16.我们知道,海拔高度每上升100米,温度下降0.6℃,肥城市区海拔大约100米,某时刻肥城市区地面温度为16℃,泰山的海拔大约为1530米,那么此时泰山顶部的气温大约为______.℃17.A ,B ,C 三地的海拔高度分别是50-米,70-米,20米,则最高点比最低点高______米.18.若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则200720082009()()()a a b cd b++-=___________.19.若2(1)20a b -+-=,则2015()a b -= _______________.20.(1)用四舍五入法,对5.649取近似值,精确到0.1的结果是____;(2)用四舍五入法,把1 999.508取近似值(精确到个位),得到的近似数是____;(3)用四舍五入法,把36.547精确到百分位的近似数是____. 三、解答题21.计算:2334[28(2)]--⨯-÷-22.计算(1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭; (2)3221(2)(3)⎡⎤÷---⎣⎦;(3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭. 23.计算: (1)6÷(-3)×(-32) (2)-32×29-+(-1)2019-5÷(-54) 24.定义:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷等.类比有理数的乘方,我们把222÷÷记作32,读作“2的下3次方”,一般地,把n 个(0)a a ≠相除记作n a ,读作“a 的下n 次方”.理解:(1)直接写出计算结果:32=_______.(2)关于除方,下列说法正确的有_______(把正确的序号都填上);①21a =(0)a ≠;②对于任何正整数n ,11n =;③433=4;④负数的下奇数次方结果是负数,负数的下偶数次方结果是正数.应用:(3)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? 例如:241111222222()2222=÷÷÷=⨯⨯⨯=(幂的形式) 试一试:将下列除方运算直接写成幂的形式: 65=_______;91()2-=________;(4)计算:3341()(2)2(8)24-÷--+-⨯-.25.把4-,4.5,0,12-四个数在数轴上分别表示出来,再用“<”把它们连接起来.26.计算:(1)()()674-+--;(2)()3232--⨯.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据有理数的减法运算法则对各小题分析判断即可得解.【详解】①减去一个数等于加上这个数的相反数,故本小题正确;②互为两个相反数的两数相加得零,故本小题正确;③减数是负数时,差大于被减数,故本小题错误;④如果两个数的绝对值相等,这两个数可能相等,也可能互为相反数,故本小题正确; 综上所述,正确的有①②④共3个.故选B .【点睛】本题考查了相反数的定义,有理数的减法,是基础题,熟记运算法则是解题的关键. 2.D解析:D【分析】分别根据有理数的定义,绝对值的定义,有理数的大小比较逐一判断即可.【详解】整数和分数统称为有理数,故原说法错误,故选项A 不合题意;没有绝对值最大的数,绝对值最小的数是0,故原说法错误,故选项B 不合题意; 绝对值相等的两数之和等于零或大于0,故原说法错误,故选项C 不合题意;既没有最大的数,也没有最小的数,正确,故选项D 符合题意.故选:D .【点睛】本题考查有理数的定义、绝对值的定义,熟知有理数和绝对值的定义是解题的关键.3.B解析:B【分析】根据题意可列式现在的售价为()()2000110110⨯+%⨯-%,即可求解.【详解】解:根据题意可得现在的售价为()()20001101101980⨯+%⨯-%=(元),所以现在的售价与原售价相比减少20元,故选:B .【点睛】本题考查有理数运算的实际应用,根据题意列出算式是解题的关键.4.D解析:D【详解】A.-(+7)=-7,-|-7|=-7,故不符合题意;B.-(+7)=-7,-|+7|=-7,故不符合题意;C.+(-7)=-7,-(+7)=-7,故不符合题意;D.+(+7)=7,−(−7 )=−7,故符合题意,故选D.5.D解析:D【解析】解:原式=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2011+2012)=+1+1+1+…+1=1006.故选D .点睛:本题考查了有理数的混合运算,正确根据式子的特点进行正确分组是关键. 6.C解析:C【解析】(-3.4)3、 (-3.4)5的积为负数,且(-3.4)3的绝对值小于 (-3.4)5的绝对值,所以(-3.4)3>(-3.4)5 ;(-3.4)4的积为正数,根据正数大于负数,即可得(-3.4)5<(-3.4)3<(-3.4)4,故选C.7.D解析:D【解析】根据有理数的乘法和除法法则可得选项A 、B 正确;根据有理数的除法法则可得选项C 正确;根据有理数的除法法则可得选项D 原式=a b,选项D 错误,故选D. 8.A解析:A【分析】由绝对值性质可知x 和y 均有两种可能取值,再根据x+y>0排除不可能取值,代入求值即可.【详解】 由x 7=可得x=±7,由y 5=可得y=±5,由x+y>0可知:当x=7时,y=5;当x=7时,y=-5,则x y 75122-=±=或,故选A【点睛】绝对值具有非负性,因此去绝对值时要根据题干条件全面考虑.9.D解析:D【分析】直接根据有理数的概念逐项判断即可.【详解】解:A. a -表示的数不一定是负数,当a 为负数时,-a 就是正数,故该选项错误;B. a -表示的数不一定是正数,当a 为正数时,-a 就是负数,故该选项错误;C. a -表示的数不一定是正数或负数,当a 为0时,-a 也为0,故该选项错误;D. a -可以表示任何有理数,故该选项正确.故选:D .【点睛】此题主要考查有理数的概念,熟练掌握有理数的概念是解题关键.10.C解析:C【解析】从数轴可知m 小于0,n 大于0,从而很容易判断四个选项的正误.解:由已知可得n 大于m ,并从数轴知m 小于0,n 大于0,所以mn 小于0,则A ,B ,D 均错误.故选C .11.C解析:C【分析】运用减法算出每一天的温差,再进行比较即可.【详解】11月4日的温差为19415-=(℃);11月5日的温差为12(3)15--=(℃);11月6日的温差为20416-=(℃);11月7日的温差为19514-=(℃).所以温差最大的一天是11月6日.故选C.【点睛】考核知识点:有理数减法运用.根据题意列出减法算式是关键.12.C解析:C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题13.±8【分析】首先根据绝对值的性质得出两数进而分析得出答案【详解】设|a|=5|b|=3则a=±5b=±3∵ab<0∴当a=5时b=-3∴5-(-3)=8;当a=-5时b=3∴-5-3=-8故答案为:解析:±8【分析】首先根据绝对值的性质得出两数,进而分析得出答案.【详解】设|a|=5,|b|=3,则a=±5,b=±3,∵ab<0,∴当a=5时,b=-3,∴5-(-3)=8;当a=-5时,b=3,∴-5-3=-8.故答案为:±8.【点睛】本题主要考查了绝对值的性质以及有理数的混合运算,熟练掌握绝对值的性质是解题关键.14.3或-3-802【分析】根据乘方的法则计算即可【详解】解:(1)32=9(-3)2=9所以3或-3的平方等于9;(2)(-2)3=-2×2×2=-8;(3)-14+1=-1+1=0;(4)23×=8解析:3或-3 -8 0 2【分析】根据乘方的法则计算即可.【详解】解:(1)32=9,(-3)2=9,所以3或-3的平方等于9;(2)(-2)3=-2×2×2=-8;(3)-14+1=-1+1=0;(4)23×212⎛⎫ ⎪⎝⎭=8×14=2. 故答案为:3或-3;-8;0;2.【点睛】本题考查了有理数乘方运算,熟记法则和乘方的意义是解决此题的关键. 15.73xy3=-2【分析】首先确定使用的是xy 键先按底数再按yx 键接着按指数最后按等号即可【详解】解:(1)按照计算器的基本应用用计算机求2733按键顺序是273xy3=;(2)-8×5÷20=-40解析:73,x y ,3,= -2【分析】首先确定使用的是x y 键,先按底数,再按y x 键,接着按指数,最后按等号即可.【详解】解:(1)按照计算器的基本应用,用计算机求2.733,按键顺序是2.73、x y 、3、=; (2)-8×5÷20=-40÷20=-2.【点睛】此题主要考查了利用计算器进行数的乘方,关键是计算器求幂的时候指数的使用方法. 16.【分析】首先用泰山的海拔减去肥城市区海拔求出泰山的海拔比肥城市区海拔高多少米进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可【详解】解: 解析:7.42【分析】首先用泰山的海拔减去肥城市区海拔,求出泰山的海拔比肥城市区海拔高多少米,进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可.【详解】解:()1615301001000.6--÷⨯1614301000.6=-÷⨯168.58=-7.42=(℃);答:此时泰山顶部的气温大约为7.42℃.故答案为:7.42.【点睛】此题主要考查了有理数混合运算的实际应用,正确理解题意并列出算式是解题的关键. 17.90【分析】先根据有理数的大小比较法则得出最高点和最低点再列出运算式子计算有理数的减法即可得【详解】因为所以最高点的海拔高度为20米最低点的海拔高度米则(米)即最高点比最低点高90米故答案为:90【 解析:90【分析】先根据有理数的大小比较法则得出最高点和最低点,再列出运算式子,计算有理数的减法即可得.【详解】因为205070>->-,所以最高点的海拔高度为20米,最低点的海拔高度70-米,则20(70)207090--=+=(米),即最高点比最低点高90米,故答案为:90.【点睛】本题考查了有理数的大小比较法则、有理数减法的实际应用,依据题意,正确列出运算式子是解题关键.18.2【分析】利用相反数倒数的性质确定出a+bcd 的值代入原式计算即可求出值【详解】解:根据题意得:a+b=0cd=1则原式=0+1-(-1)=2故答案为:2【点睛】此题考查了有理数的混合运算熟练掌握运解析:2【分析】利用相反数,倒数的性质确定出a+b ,cd 的值,代入原式计算即可求出值.【详解】解:根据题意得:a+b=0,cd=1,1a b=- 则原式=0+1-(-1)=2.故答案为:2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 19.-1【分析】直接利用偶次方的性质以及绝对值的性质得出ab 的值进而得出答案【详解】由题意得:a -1=0b ﹣2=0解得:a =1b =2故=(1﹣2)2015=-1故答案为-1【点睛】本题考查了非负数的性质解析:-1【分析】直接利用偶次方的性质以及绝对值的性质得出a ,b 的值,进而得出答案.【详解】由题意得:a -1=0,b ﹣2=0,解得:a =1,b =2,故2015()a b -=(1﹣2)2015=-1. 故答案为-1.【点睛】本题考查了非负数的性质,正确得出a ,b 的值是解题的关键.20.(1)56(2)2000(3)3655【分析】(1)精确到哪一位即对下一位的数字进行四舍五入据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可【详解】解解析:(1)5.6 (2)2000 (3)36.55【分析】(1)精确到哪一位,即对下一位的数字进行四舍五入,据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可.【详解】解:(1)5.649≈5.6.(2)1999.58≈2000(3)36.547≈36.55故答案为:5.6;2000;36.55【点睛】本题考查了近似数:经过四舍五入得到的数为近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位的说法.三、解答题21.21-.【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得.【详解】解:原式[]9428(8)=--⨯-÷-, []942(1)=--⨯--, 943=--⨯,912=--,21=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键. 22.(1)22;(2)2117-;(3)54-. 【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算括号内的运算,最后除法运算即可得到结果; (3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;【详解】(1)112(24)243⎛⎫-⨯-+- ⎪⎝⎭ 112(24)(24)(24)243⎛⎫⎛⎫=-⨯-+-⨯+-⨯- ⎪ ⎪⎝⎭⎝⎭12616=-+=22;(2)3221(2)(3)⎡⎤÷---⎣⎦()2189=÷--()2117=÷-2117=-; (3)2202035|5|(1)( 3.14)02π⎛⎫---⨯-+-⨯ ⎪⎝⎭ 255104=-⨯+ 54=-. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23.(1)3;(2)1.【分析】(1)根据有理数的乘除混合运算法则计算即可;(2)根据有理数的混合运算法则计算即可.【详解】解:(1)原式=6×1-3⎛⎫ ⎪⎝⎭ ×(-32)=3; (2)原式=-9×29+(-1)-5×4-5⎛⎫ ⎪⎝⎭=-2-1+4=1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 24.(1)12;(2)①②④;(3)41()5,7(2)-;(4)26-. 【分析】(1)根据a n 表示“a 的下n 次方”的意义进行计算即可;(2)根据a n 表示“a 的下n 次方”的意义计算判断即可;(3)根据a n 表示“a 的下n 次方”的意义,表示出56,91()2-=7(2)-,进而得出答案; (4)按照有理数的运算法则进行计算即可.【详解】(1)23=2÷2÷2=2×12×12=12, 故答案为:12; (2)当a≠0时,a 2=a÷a =1,因此①正确;对于任何正整数n ,1n =1÷1÷1÷…÷1=1,因此②正确;因为34=3÷3÷3÷3=19,而43=4÷4÷4=14,因此③不正确; 根据有理数除法的法则可得,④正确;故答案为:①②④; (3)56=5÷5÷5÷5÷5÷5=5×15×15×15×15×15=(15)4, 同理可得,91()2-==(−2)7, 故答案为:(15)4,(−2)7; (4)3341()(2)2(8)24-÷--+-⨯- =16×(-18)-8+(-8)×2 =-2-8-16=−26.【点睛】 本题考查有理数的混合运算,理解“a n ,表示a 的下n 次方”的意义是正确计算的前提. 25.数轴表示见解析,140 4.52-<-<<. 【分析】先根据数轴的定义将这四个数表示出来即可,再根据数轴上的表示的数,左边的总小于右边的用“<”将它们连接起来即可得.【详解】将这四个数在数轴上分别表示出来如下所示:则140 4.52-<-<<. 【点睛】本题考查了数轴,熟练掌握数轴的定义是解题关键.26.(1)17-;(2)14【分析】(1)根据有理数的加减法即可求出值;(2)原式先计算乘方,再计算乘法运算,最后算加减运算即可求出值;【详解】解:(1)原式134=- 17=-(2)原式()86=--14=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.。
1.下列说法正确的是( )A.近似数1.50和1.5是相同的B.3520精确到百位等于3600 C.6.610精确到千分位D.2.708×104精确到千分位C 解析:C【分析】相似数和原值是不相同的;3520精确到百位是3500;2.708×104精确到十位.【详解】A、近似数1.50和1.5是不同的,A错B、3520精确到百位是3500,B错D、2.708×104精确到十位.【点睛】本题考察相似数的定义和科学计数法.2.定义一种新运算2x yx yx+*=,如:2212122+⨯*==.则()(42)1**-=()A.1 B.2 C.0 D.-2C 解析:C【分析】先根据新定义计算出4*2=2,然后再根据新定义计算2*(-1)即可.【详解】4*2=4224+⨯=2, 2*(-1)=()2212+⨯-=0.故(4*2)*(-1)=0.故答案为C.【点睛】定义新运算是近几年的热门题型,首先要根据新运算正确列出算式,本题考查了有理数混合运算,根据新运算定义正确列出算式并熟练掌握有理数的运算法则是解答本题的关键. 3.计算4(8)(4)(1)+-÷---的结果是()A.2 B.3 C.7 D.4 3 C解析:C【分析】先计算除法、将减法转化为加法,再计算加法可得答案.【详解】解:原式421=++7=,故选:C.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则. 4.下列算式中,计算结果是负数的是( )A .3(2)⨯-B .|1|-C .(2)7-+D .2(1)- A 解析:A【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】解:3(2)6,故选项A 符合题意,|1|1-=,故选项B 不符合题意,(2)75-+=,故选项C 不符合题意,2(1)1-=,故选项D 不符合题意,故选:A .【点睛】题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 5.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是( )A .点CB .点DC .点AD .点B B解析:B【分析】由题意可知转一周后,A 、B 、C 、D 分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A ,2所对应的点是B ,3对应的点是C ,4对应的点是D ,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D ,故答案选B.【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.6.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( ) A .1,2B .1,3C .4,2D .4,3A 解析:A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30, 30+4×3=42,故选A .点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.7.计算2136⎛⎫--- ⎪⎝⎭的结果为( ) A .-12 B .12 C .56 D .56A 解析:A【分析】根据有理数加减法法则计算即可得答案.【详解】2136⎛⎫--- ⎪⎝⎭=2136-+ =12-. 故选:A .【点睛】本题考查有理数的加减,有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,一个数同零相加,仍得这个数,有理数减法法则:减去一个数,等于加上这个数的相反数.8.如果a ,b ,c 为非零有理数且a + b + c = 0,那么a b c abc a b c abc+++的所有可能的值为(A .0B .1或- 1C .2或- 2D .0或- 2A解析:A【分析】根据题意确定出a ,b ,c 中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:∵a 、b 、c 为非零有理数,且a+b+c=0∴a 、b 、c 只能为两正一负或一正两负.①当a 、b 、c 为两正一负时,设a 、b 为正,c 为负,原式=1+1+(-1)+(-1)=0,②当a、b、c为一正两负时,设a为正,b、c为负原式1+(-1)+(-1)+1=0,综上,a b c abca b c abc+++的值为0,故答案为:0.【点睛】此题考查了绝对值,有理数的混合运算,熟练掌握运算法则是解本题的关键.9.下列四个式子,正确的是()①33.834⎛⎫->-+⎪⎝⎭;②3345⎛⎫⎛⎫-->--⎪ ⎪⎝⎭⎝⎭;③ 2.5 2.5->-;④125523⎛⎫-->+⎪⎝⎭.A.③④B.①C.①②D.②③D解析:D【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案.【详解】①∵33 3.754⎛⎫-+=-⎪⎝⎭,33.83 3.754>=,∴33.834⎛⎫-<-+⎪⎝⎭,故①错误;②∵33154420⎛⎫--==⎪⎝⎭,21335502⎛⎫--==⎪⎝⎭,1512 2020>,∴3345⎛⎫⎛⎫-->--⎪ ⎪⎝⎭⎝⎭,故②正确;③∵ 2.5 2.5-=,2.5 2.5>-,∴ 2.5 2.5->-,故③正确;④∵111523623⎛⎫--==⎪⎝⎭,217533346+==,3334 66<,∴125523⎛⎫-->+⎪⎝⎭,故④错误.综上,正确的有:②③.故选:D .【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.10.若1<x <2,则|2||1|||21x x x x x x ---+--的值是( ) A .﹣3B .﹣1C .2D .1D解析:D【分析】在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.【详解】 解:12x <<,20x ∴-<,10x ->,0x >,∴原式1111=-++=,故选:D .【点睛】 本题主要考查了绝对值,代数式的化简求值问题.解此题的关键是在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.11.按键顺序是的算式是( ) A .(0.8+3.2)÷45= B .0.8+3.2÷45= C .(0.8+3.2)÷45= D .0.8+3.2÷45=B 解析:B【分析】根据计算器的使用方法,结合各项进行判断即可.【详解】解:按下列按键顺序输入:则它表达的算式是0.8+3.2÷45=, 故选:B .【点睛】 此题主要考查了计算器的应用,根据有理数的输入方法正确输入数据是解题关键. 12.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃B解析:B【解析】【分析】根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解.【详解】解:设温度为x ℃,根据题意可知1538x x x x ≥⎧⎪≤⎪⎨≥⎪⎪≤⎩ 解得35x ≤≤.故选:B .【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.13.下面说法中正确的是 ( )A .两数之和为正,则两数均为正B .两数之和为负,则两数均为负C .两数之和为0,则这两数互为相反数D .两数之和一定大于每一个加数C解析:C【详解】A. 两数之和为正,则两数均为正,错误,如-2+3=1;B. 两数之和为负,则两数均为负,错误,如-3+1=-2;C. 两数之和为0,则这两数互为相反数,正确;D. 两数之和一定大于每一个加数,错误,如-1+0=-1,故选C.【点睛】根据有理数加法法则:绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0.可得出结果.14.据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为( )A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元C 解析:C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.下列计算结果正确的是()A.-3-7=-3+7=4B.4.5-6.8=6.8-4.5=2.3C.-2-13⎛⎫-⎪⎝⎭=-2+13=-213D.-3-12⎛⎫-⎪⎝⎭=-3+12=-212D解析:D【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误.【详解】A选项:3710--=-,故错误;B选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C选项:1122()21333---=-+=-,故错误;D选项运算正确.故选:D.【点睛】本题考查有理数的加减运算,按照对应法则仔细计算即可.1.已知四个互不相等的整数a,b,c,d满足abcd=77,则a+b+c+d=___________.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±4解析:4±【解析】77=7×11=1×1×7×11= -1×1×(-7)×11= -1×1×7×(-11),由题意知,a、b、c、d的取值为-1,1,-7,11或-1,1,7,-11,从而a+b+c+d=±4,故答案为±4.2.绝对值小于2018的所有整数之和为________.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2解析:0【分析】根据绝对小于2018,可得许多互为相反数的数,根据互为相反数的和等于,可得答案.【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2017=0,故答案为0.【点睛】本题考查了有理数的加法,先根据绝对值小于2018写出各数,再根据有理数的加法,得出答案.3.截至格林尼治标准时间2020年6月7日10时,全球累计报告新冠肺炎确诊病例达7000000例;其中累计死亡病例超过40万例,数据7000000科学记数法表示为_____.7×106【分析】根据科学记数法形式:a×10n其中1≤a<10n为正整数即可求解【详解】解:7000000科学记数法表示为:7×106故答案为:7×106【点睛】本题考查科学记数法解决本题的关键是解析:7×106【分析】根据科学记数法形式:a×10n,其中1≤a<10,n为正整数,即可求解.【详解】解:7000000科学记数法表示为:7×106.故答案为:7×106.【点睛】本题考查科学记数法,解决本题的关键是把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.[科学记数法形式:a×10n,其中1≤a<10,n为正整数.4.填空:166-18-1800【分析】由有理数的乘法和除法运算法则进行计算即可得到答案【详解】解:根据题意则;;;;故答案为:1;1;6;6;18;18;0;0【点睛】本题考查了有理数的乘法和除法的运算法则解析:1 6 6 -18 -18 0 0【分析】由有理数的乘法和除法运算法则进行计算,即可得到答案.【详解】解:根据题意,则331÷=,1313⨯=; (12)(2)6-÷-=,1(12)()62-⨯-=; 1(9)182-÷=-,(9)218-⨯=-; 0( 2.3)0÷-=,100()023⨯-=; 故答案为:1;1;6;6;-18;-18;0;0.【点睛】本题考查了有理数的乘法和除法的运算法则,解题的关键是熟练掌握有理数乘法和除法的运算法则进行解题.5.在括号中填写题中每步的计算依据,并将空白处补充完整:(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125______=-(4×2.5)×(8×125)______=____×____=____.乘法交换律乘法结合律-101000-10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可【详解】(-4)×8×(-25)×(-125)=-4×8×25×125=-4×25×8×解析:乘法交换律 乘法结合律 -10 1000 -10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可.【详解】(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125(乘法交换律)=-(4×2.5)×(8×125)(乘法结合律)=-10×1000=-10000.故答案为:乘法交换律,乘法结合律,-10,1000,-10000.【点睛】本题主要考查了有理数的乘法运算和乘法运算律,正确掌握运算法则和乘法运算律是解题的关键.6.下列说法正确的是________.(填序号)①若||a b =,则一定有a b =±;②若a ,b 互为相反数,则1b a=-;③几个有理数相乘,若负因数有偶数个,那么他们的积为正数;④两数相加,其和小于每一个加数,那么这两个加数必是两个负数;⑤0除以任何数都为0.④【分析】利用绝对值的代数意义有理数的加法倒数的定义及有理数的乘法法则判断即可【详解】①若则故或当b<0时无解故①错误;②时ab 互为相反数但是对于等式不成立故②不正确;③几个有理数相乘如果负因数有偶解析:④【分析】利用绝对值的代数意义,有理数的加法,倒数的定义及有理数的乘法法则判断即可.【详解】①若||a b =,则0b ,故a b =或=-a b ,当b<0时,无解,故①错误;②0a b 时,a ,b 互为相反数,但是对于等式1b a=-不成立,故②不正确; ③几个有理数相乘,如果负因数有偶数个,但其中有因数0,那么它们的积为0,故③不正确;④两个正数相加,此时和大于每一个加数;一正数一负数相加,此时和大于负数;一个数和0相加,等于这个数;只有两个负数相加,其和小于每一个加数,故④正确; ⑤0除以0没有意义,故⑤不正确.综上,正确的有④.故答案为:④.【点睛】本题考查了绝对值、相反数、有理数的加法、有理数的除法等基础知识点,这都是必须掌握的基础知识点.7.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2020厘米的线段AB ,则线段AB 盖住的整点个数是______.2020或2021【分析】分线段AB 的端点与整点重合和不重合两种情况考虑重合时盖住的整点是线段的长度+1不重合时盖住的整点是线段的长度由此即可得出结论【详解】若线段的端点恰好与整点重合则1厘米长的线解析:2020或2021【分析】分线段AB 的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【详解】若线段AB 的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB 的端点不与整点重合,则1厘米长的线段盖住1个整点,因为202012021+=,所以2020厘米长的线段AB 盖住2020或2021个整点.故答案为:2020或2021.【点睛】本题考查了数轴,解题的关键是找出长度为n (n 为正整数)的线段盖住n 或n +1个整点.本题属于基础题,难度不大,解决该题型题目时,分端点是否与整点重合两种情况来考虑是关键.8.我们知道,海拔高度每上升100米,温度下降0.6℃,肥城市区海拔大约100米,某时刻肥城市区地面温度为16℃,泰山的海拔大约为1530米,那么此时泰山顶部的气温大约为______.℃【分析】首先用泰山的海拔减去肥城市区海拔求出泰山的海拔比肥城市区海拔高多少米进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可【详解】解:解析:7.42【分析】首先用泰山的海拔减去肥城市区海拔,求出泰山的海拔比肥城市区海拔高多少米,进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可.【详解】解:()1615301001000.6--÷⨯1614301000.6=-÷⨯168.58=-7.42=(℃);答:此时泰山顶部的气温大约为7.42℃.故答案为:7.42.【点睛】此题主要考查了有理数混合运算的实际应用,正确理解题意并列出算式是解题的关键. 9.若三个互不相等的有理数,既可以表示为3,a b +,b 的形式,也可以表示为0,3a b,a 的形式,则4a b -的值________.15【分析】根据分母不等于0可得b≠0进而推得a+b=0再求出=-3解得b=-3a=3然后代入进行计算即可【详解】解:∵三个互不相等的有理数既可以表示为3的形式也可以表示为的形式∴∴=∴∴==∴==解析:15【分析】根据分母不等于0,可得b≠0,进而推得a+b=0,再求出3a b=-3,解得b=-3.a=3,然后代入4a b -进行计算即可.【详解】解:∵三个互不相等的有理数,既可以表示为3、a b +、b 的形式,也可以表示为0、3a b、a 的形式 ∴0b ≠,∴a b +=0, ∴3a 3b=-, ∴b =3-,a =3, ∴4a b -=123+=15.故答案为15.【点睛】本题考查了代数式求值及其有理数的相关概念,根据题意推得b≠0、 a+b=0、3a b =-3是解答本题的关键.10.A ,B ,C 三地的海拔高度分别是50-米,70-米,20米,则最高点比最低点高______米.90【分析】先根据有理数的大小比较法则得出最高点和最低点再列出运算式子计算有理数的减法即可得【详解】因为所以最高点的海拔高度为20米最低点的海拔高度米则(米)即最高点比最低点高90米故答案为:90【解析:90【分析】先根据有理数的大小比较法则得出最高点和最低点,再列出运算式子,计算有理数的减法即可得.【详解】因为205070>->-,所以最高点的海拔高度为20米,最低点的海拔高度70-米,则20(70)207090--=+=(米),即最高点比最低点高90米,故答案为:90.【点睛】本题考查了有理数的大小比较法则、有理数减法的实际应用,依据题意,正确列出运算式子是解题关键.11.(1)用四舍五入法,对5.649取近似值,精确到0.1的结果是____;(2)用四舍五入法,把1 999.508取近似值(精确到个位),得到的近似数是____;(3)用四舍五入法,把36.547精确到百分位的近似数是____.(1)56(2)2000(3)3655【分析】(1)精确到哪一位即对下一位的数字进行四舍五入据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可【详解】解解析:(1)5.6 (2)2000 (3)36.55【分析】(1)精确到哪一位,即对下一位的数字进行四舍五入,据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可.【详解】解:(1)5.649≈5.6.(2)1999.58≈2000(3)36.547≈36.55故答案为:5.6;2000;36.55【点睛】本题考查了近似数:经过四舍五入得到的数为近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位的说法.1.计算:(1)()()()923126--⨯-+÷-(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭. 解析:(1)1;(2)-1.【分析】(1)先算乘除,再算加减即可求解;(2)先算乘方,后算除法,最后算加减即可求解.【详解】(1)()()()923126--⨯-+÷-=962--=1;(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭ =11891632-+-÷ =1893216-+-⨯ =892-+-=-1.【点睛】 此题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.2.在数轴上,一只蚂蚁从原点O 出发,它先向左爬了2个单位长度到达点A ,再向右爬了3个单位长度到达点B ,最后向左爬了9个单位长度到达点C .(1)写出A ,B ,C 三点表示的数;(2)根据点C 在数轴上的位置回答,蚂蚁实际上是从原点出发,向什么方向爬了几个单位长度?解析:(1)A ,B ,C 三点表示的数分别是-2,1,-8;(2)向左爬了8个单位.【分析】(1)向左用减法,向右用加法,列式求解即可写出答案;(2)根据C 点表示的数,向右为正,向左为负,继而得出答案.【详解】解:(1)A 点表示的数是0-2=-2,B 点表示的数是-2+3=1,C 点表示的数是1-9=-8;(2)∵O 点表示的数是0;C 点表示的数是-8,∴蚂蚁实际上是从原点出发,向左爬了8个单位.【点睛】本题考查了数轴的知识及有理数的加减法的应用,属于基础题,比较简单,理解向左用减法,向右用加法,是关键.3.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值; (2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).解析:(1)14a =-,12b =-,6c =,8d =;(2)点C 的运动速度为每秒2个单位;(3)4t =或20;(4)23-,223-,10-. 【分析】(1)根据平方数和绝对值的非负性计算即可;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,即可得解; (3)根据题意分别表示出AC ,BD ,在进行分类讨论计算即可;(4)根据点A ,C 相遇的时间不同进行分类讨论并计算即可;【详解】 (1)∵()()22141268+++=----a b c d ,∴()()221412+6+80+++--=a b c d , ∴14a =-,12b =-,6c =,8d =;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==, 解得:2x =,∴点C 的运动速度为每秒2个单位;(3)t 秒时,点A 数为144t -+,点B 数为-12,点C 数为62t +,点D 数为8t +,∴()62144202AC t t t =+--+=-,()81220BD t t =+--=+,∵2BD AC =, ∴①2020t -≥时,()2022202t t +=-,解得:4t =; ②20-2t <0时,即t >10,()202220t t +=-,解得:20t =; ∴4t =或20.(4)C 点运动到A 点所需时间为()614102s --=,所以A ,C 相遇时间10t ≤,由(2)得103t =时,A ,C 相遇点为102144-33-+⨯=,A 到C 再从C 返回到A ,用时()()()6146147.548s ----+=; ①第一次从点C 出发时,若与C 相遇,根据题意得()852t t ⨯-=,203t =<10,此时相遇数为20226233-⨯=-;②第二次与C 点相遇,得()()87.52614t t ⨯-+=--,解得8t =<10,此时相遇点为68210-⨯=-; ∴A ,C 相遇时对应的数为:23-,223-,10-. 【点睛】本题主要考查了数轴的动点问题,准确分析计算是解题的关键.4.计算:(1)22123()0.8(5)35⎡⎤-⨯--÷-⎢⎥⎣⎦(2)5233(2)4()(12)1234⨯-+-+--⨯- 解析:(1)13;(2)10. 【分析】(1)依据有理数的混合运算的运算顺序和法则依次运算即可;(2)分别计算乘法、绝对值和后面用乘法分配律计算,再将结果相加、减.【详解】解:(1)原式=12790.8()95⎡⎤-⨯-÷-⎢⎥⎣⎦ =95()()527-⨯-=13; (2)原式=52364[(12)(12)(12)]1234-++⨯--⨯--⨯- =64(589)-++-++ =6412-++=10.【点睛】本题考查有理数的混合运算.解决此题的关键是正确把握运算顺序和每一步的运算法则.注意运算律的运用.。
安阳实验中学七年级(上)数学第一章评价试卷
班级 学号 姓名
亲爱的同学:
七年级的我们开始了崭新的数学学习之旅,学习内容、学习习惯、学习方式都在发生一场“革命”,对此,你肯定有了真实的感受.我们这张试卷与其说是考试,不如说是舞台,在此,你可以尽情地发挥,祝你成功!
说明:
1.考查知识范围:浙教版数学七年级(上)第一章;
2.考试时间为50分钟,基础知识满分为100分,拓展提高20分为选做题。
一.精心选一选:(本题有10小题,每小题3分,共30分) 1、下列各对量中,不具有相反意义的是( )
A 、胜2局与负2局
B 、增产400kg 与减产3000kg
C 、向东走100m 与向北走100m
D 、转盘逆时针转6圈与顺时针转6圈 2、在同一数轴上表示数 2
1
-
,0.2,0,—2,+2,其中在原点左边的点有( ) (A ) 1个; (B ) 2个; (C ) 3个; (D )4个. 3、下列各对数中,互为相反数的是( )
A 、-1.01和1.1
B 、 和
C 、-0.125和
D 、-0.125和8 4、下列说法不正确...
的是( ) A .0既不是正数,也不是负数 B .0的绝对值是0 C .一个有理数不是整数就是分数 D .1是绝对值最小的数 5、下列大小关系中错误的是( )
52->、A 6.70<、B 6
50->、C 63-<-、D
6、一个数的相反数是最大的负整数,则这个数是( )
A .1
B .±1
C .0
D .-1 7、大于 —4.8而小于2.5的整数共有( )
A 、7个
B 、6个
C 、5个
D 、4个
8、 把数轴上表示数2的点移动3个单位后得到点A ,则点A 所表示的数为( ) A .5 B .1 C .5或1 D .5或-1
9、学校、家、书店依次座落在一条东西走向的大街上,学校在家的西边20米,书店在家东边100米,张明同学从家里出发,向东走了50米,接着又向西走了70米,此时张明的位置在( )
A. 在家
B. 在学校
C. 在书店
D. 不在上述地方
10、如图,按白、黑点排列的规律,当刚出现第20个白点时,黑点的总数有( ) A .210个 B .380个 C . 190个 D .19个
…… 二.细心填一填:(本题有10小题,每小题3分,共30分)
11、如果在银行存入550元记作+550元,那么从银行取出210元记作___________元。
12、请写出一个负分数: 。
13、数轴的三要素是 , , 。
14、大于-2.2的最小整数是 。
15、绝对值小于4的整数有 。
(写出所有答案) 16、给出5个数:4-,6,5-,0,3.4-,其中最小的数是 。
17、在有理数:1 ,-
35 ,+3.2 ,0 ,1
3
•,-6.5 , -4 ,-6中,绝对值等于它的相反数的数有 个。
18、某体育用品公司通过公开招标,接到一批生产比赛用的篮球业务,而比赛用的篮球质量有严格规定,其中误差±5g 符合要求,现质检员从中抽取6个篮球进行检查,检查结果如下表:单位:(g )。
其中有 个篮球符合质量要求,质量最接近标准的是 号球(填编号)。
19、若一个点从数轴的原点出发,先向右移动5个单位,再向左移动8个单位到达点P ,则点P 表示的数是 。
20、按一定的规律排列的一列数依次为:
12,13,-110,151,261,35
1
-……,按此规
律排列下去,这列数中的第12个数是________。
三.耐心做一做:(本题有4大题,共40分) 21、计算:(每小题4分,共8分) (1)713--- (2) 4
545---⨯
22、(本题12分)把下列各数分别填在表示它所在的数的括号内: 6-,
41, 0, 73-, 2013, 2.5-, 3
2
1, 2, 8.3 (1)整数:{} (2)正整数:{} (3)分数:{} (4)负分数:{
}
(5)非负数:{}
(6)有理数:{
}
23、(本题9分)在数轴上表示下列各数,再比较它们的大小,并用“<”号连接。
3
2
, 4-, 0, 3, –2.5, 213
答:用“<”号连接为: 。
24、(本题11分)某一天小林老师驾车从A 地出发,在东西走向的公路上行驶,规定向东为正,向西为负。
一天中的行驶记录如下(单位:千米):+15,-25,+20,-40。
记这四次行驶的目的地分别是B 地、C 地、D 地、E 地。
(1)请以A 地为原点,向东方向为正方向,1个单位表示5千米画一条数轴,并在数轴上标出B 、C 、D 、E 四地的位置;
(2)请写出E 地的位置(说出E 地在A 地的什么方向,距离A 地多少千米)。
(3)已知这种汽车行驶100千米消耗的油量为8.9升,问这辆汽车这天共消耗了多少升汽油?(利用绝对值有关的知识计算)
四.拓展提高:(每题4分,共20分) 1、若│a │= -a ,则数a 一定是( )
A 、正数
B 、负数
C 、非正数
D 、非负数 2、式子5-1-x 能取得的最大值是 ,这时x = 。
3、一跳蚤在一直线上从O 点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第100次落下时,落点处离O 点的距离是 个单位。
4、假日公司的西湖一日游价格如下: A 种:成人每位160元,儿童每位40元 B 种:5人以上团体,每位100元
若现有三对夫妇各带1个小孩,共9人,参加西湖一日游,则最少需要 元。
5、观察下面一列数,按规律在横线上填写适当的数12,2
1-,512,7
20-,103,____,_____。