高中数学必修四三角函数模型的简单应用_高中数学必修四知识讲解_基础
- 格式:doc
- 大小:468.50 KB
- 文档页数:5
【高中必修4数学三角函数知识点归纳】数学必修四知识点归纳高中数学必修4三角函数蕴含着深刻的数学思想,下面是小编给大家带来的高中必修4数学三角函数知识点归纳,希望对你有帮助。
高中必修4数学三角函数知识点高中数学学习方法抓好基础是关键数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。
只有概念清楚,方法全面,遇到题目时,就能很快的得到解题方法,或者面对一个新的习题,就能联想到我们平时做过的习题的方法,达到迅速解答。
弄清基本定理是正确、快速解答习题的前提条件,特别是在立体几何等章节的复习中,对基本定理熟悉和灵活掌握能使习题解答条理清楚、逻辑推理严密。
反之,会使解题速度慢,逻辑混乱、叙述不清。
严防题海战术做习题是为了巩固知识、提高应变能力、思维能力、计算能力。
学数学要做一定量的习题,但学数学并不等于做题,在各种考试题中,有相当的习题是靠简单的知识点的堆积,利用公理化知识体系的演绎而就能解决的,这些习题是要通过做一定量的习题达到对解题方法的展移而实现的,但,随着高考的改革,高考已把考查的重点放在创造型、能力型的考查上。
因此要精做习题,注意知识的理解和灵活应用,当你做完一道习题后不访自问:本题考查了什么知识点?什么方法?我们从中得到了解题的什么方法?这一类习题中有什么解题的通性?实现问题的完全解决我应用了怎样的解题策略?只有这样才会培养自己的悟性与创造性,开发其创造力。
也将在遇到即将来临的期末考试和未来的高考题目中那些综合性强的题目时可以有一个科学的方法解决它。
归纳数学大思维数学学习其主要的目的是为了培养我们的创造性,培养我们处理事情、解决问题的能力,因此,对处理数学问题时的大策略、大思维的掌握显得特别重要,在平时的学习时应注重归纳它。
在平时听课时,一个明知的学生,应该听老师对该题目的分析和归纳。
但还有不少学生,不注意教师的分析,往往沉静在老师讲解的每一步计算、每一步推证过程。
高中数学必修四三角函数知识点高中数学必修四三角函数知识点详解角是我们在几何学中经常接触到的重要概念,而三角函数则是与角密切相关的一类函数。
在高中数学必修四中,三角函数是一个重要的知识点,对于数学学习的深入和数学建模的实践具有重要的意义。
本文将结合具体例子,详细介绍高中数学必修四三角函数的相关知识。
一、正弦函数和余弦函数正弦函数和余弦函数是最基本、最常用的两个三角函数。
我们首先从几何解释的角度来理解它们。
对于一个角A,我们可以根据角A所在的单位圆上的点(x,y)的坐标值,得到角A的正弦值sinA和余弦值cosA。
而正弦函数sinx和余弦函数cosx则是将角x所对应的正弦值和余弦值关系式表示的函数。
举个例子来说明,假设有一角x=30°,那么根据单位圆上的坐标特点,点(x,y)的坐标值为(√3/2,1/2)。
因此,角x的正弦值sinx=1/2,余弦值cosx=√3/2。
我们可以用这样的方法,通过观察和计算,来确定正弦函数和余弦函数的函数图像和性质。
二、正切函数和余切函数正切函数和余切函数是另外两个重要的三角函数。
正切函数tanx和余切函数cotx则是将角x所对应的正切值和余切值关系式表示的函数。
我们以正切函数为例,来解释一下它的定义和性质。
对于一个角A,我们可以根据角A所在的单位圆上的点(x,y)的坐标值,得到角A的正切值tanA。
正切函数tanx就是将角x所对应的正切值关系式表示的函数。
正切函数tanx的一个重要特点是周期性。
考虑tanx的函数图像,我们可以观察到在每个周期内,tanx呈现出规律的周期性变化。
而周期为π的函数图像在整个定义域上都是无穷区间波动的。
三、其他三角函数除了上述介绍的正弦函数、余弦函数、正切函数和余切函数之外,还有其他一些与三角函数密切相关的函数,如割函数secx和余割函数cscx等。
割函数和余割函数定义如下:割函数secx是角x对应的余弦倒数的函数,余割函数cscx是角x对应的正弦倒数的函数。
三角函数一、随意角、弧度制及随意角的三角函数1.随意角(1)角的观点的推行①按旋转方向不一样分为正角、负角、零角.正角 : 按逆时针方向旋转形成的角随意角 负角: 按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角②按终边地点不一样分为象限角和轴线角.角 的极点与原点重合,角的始边与 x 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的会合为 k 360ok 360o 90o , k第二象限角的会合为 k 360o 90o k 360o 180o , k第三象限角的会合为 k 360o 180o k 360o 270o , k第四象限角的会合为k 360o 270ok 360o360o , k终边在 x 轴上的角的会合为 k 180o , k终边在 y 轴上的角的会合为 k 180o 90o , k终边在座标轴上的角的会合为k 90o ,k(2)终边与角 α同样的角可写成 α+ k ·360 °(k ∈ Z).终边与角 同样的角的会合为k 360o, k(3)弧度制① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做1 弧度的角.②弧度与角度的换算: 360°= 2π弧度; 180°= π弧度.③ 半径为 r 的圆的圆心角所对弧的长为 l ,则角的弧度数的绝对值是lr④ 若扇形的圆心角为 为弧度制 ,半径为 r ,弧长为 l ,周长为 C ,面积为 S ,则 lr,C2r l ,S1 lr 1 r2 . 222 .随意角的三角函数定义设 α是一个随意角,角 α的终边上随意一点P(x , y),它与原点的距离为 r rx 2 y 2 ,那么角 α的正弦、余弦、rrx(三角函数值在各象限的符号规律归纳为:一全正、二正弦、三正切分别是: sin α= y , cos α= x , tan α= y.正切、四余弦)3.特别角的三角函数值角度030456090120135150180270360函数角 a 的弧度0π /6π/4π /3π /22π /33π /45π/6π3π /22πsina01/2√ 2/2√ 3/21√ 3/2√ 2/21/20-10 cosa1√ 3/2√ 2/21/20-1/2-√ 2/2-√ 3/2-101 tana0√ 3/31√ 3-√ 3-1-√ 3/300二、同角三角函数的基本关系与引诱公式A.基础梳理1.同角三角函数的基本关系(1)平方关系: sin2α+ cos2α= 1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)sin α(2)商数关系:=tanα.(3)倒数关系:tan cot 1cos α2.引诱公式公式一: sin( α+ 2kπ)=sin α, cos(α+ 2kπ)=cos_α,tan(2k )tan此中 k∈Z .公式二: sin( π+α)=- sin_α, cos( π+α)=- cos_α, tan( π+α)= tan α.公式三: sin( π-α)= sin α, cos( π-α)=- cos_α,tan tan.公式四: sin( -α)=- sin_α, cos(-α)= cos_α,tan tan .ππ公式五: sin -α= cos_α, cos-α= sin α.22ππ公式六: sin 2+α= cos_α, cos2+α=- sin_α.π口诀:奇变偶不变,符号看象限.此中的奇、偶是指π引诱公式可归纳为 k· ±α的各三角函数值的化简公式.的奇数22倍和偶数倍,变与不变是指函数名称的变化.假如奇数倍,则函数名称要变( 正弦变余弦,余弦变正弦 ) ;假如偶数倍,则函数名称不变,符号看象限是指:把πα当作锐角时,依据 k· ±α在哪个象限判断原三角函数值的符号,最后作为结....2...果符号.B. 方法与重点一个口诀1、引诱公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:sin α(1)弦切互化法:主要利用公式tan α=化成正、余弦.cos α(2)和积变换法:利用 (sin θ±cos θ)2=1 ±2sin θcos θ的关系进行变形、转变.( sin cos、sin cos、sin cos三个式子知一可求二)(3)巧用 “1”的变换: 1= sin 2θ+ cos 2θ= sinπ=tan 42(4)齐次式化切法:已知 tank ,则 a sinbcos a tan b ak bm sinn cos m tan n mk n三、三角函数的图像与性质学习目标:1 会求三角函数的定义域、值域2 会求三角函数的周期 :定义法,公式法,图像法(如y sin x 与 y cosx 的周期是)。
三角函数模型的简单应用(第一课时)教材:人教A版·一般高中课程标准实验教科书·数学必修4教学目标:知识目标—学生能够从实际问题中发觉周期性转变的规律,把发觉的规律抽象为适当的三角模型,并解决相关的实际问题.能力目标—让学生体验一些具有周期性转变规律的实际问题的数学“建模”思想,从而培育学生的创新精神和实践能力。
情感目标—让学生切身感受数学建模的进程,体验数学在解决实际问题中的价值和作用.教学重点、难点:教学重点—用三角函数模型解决一些具有周期性转变规律的实际问题.教学难点—从实际问题中抽取大体的数学关系来成立数学模型,并调动相关学科知识来解决问题.教学方式:教学方式—启发式、讲练相结合式学习方式—小组自主探讨、合作交流式教学手腕—为使教法和学法更完美地融为一体,我借助多媒体辅助教学,提高课堂效率。
教学进程:教学评判:1.关注学生在探讨学习进程中的表现:包括学生的投入程度和思维水平的进展. 2.通过练习检测学生对知识的把握情形可能显现问题:可不能构造适当的三角函数模型,依照已知条件可不能求解解析式等.3.依照学生在课堂小结中的表现和课后作业情形,查缺补漏.三角函数模型的简单应用(第1课时)教案说明一、教学内容的分析《一般高中数学课程标准》明确提出了提高学生的知识和技术、重视学生的学习进程和方式,培育学生的情感、态度、价值观的三维目标。
为此,结合本节课的教学内容和本校学生的实际情形,教学进程中注重进程、方式,引导学生不断提出问题、研究问题,并解决问题。
重视互动交流,在教学活动中渗透情感态度与价值观。
“数学来源于生活,并运用于生活。
”三角函数作为描述现实世界中周期现象的一种数学模型,能够用来研究生活中的很多实际问题,本课通过2个例题和2个探讨题循序渐进地介绍三角函数模型在实际生活中的应用,目的在于增强三角函数图像与性质的学习,要求学生在例题中体会三角函数模型刻画周期现象的基础上,把握三角函数模型实际应用,并在教学进程中渗透数学化归和数形结合的思想。
三角函数模型的应用知识集结知识元三角函数在生活中的应用知识讲解1.三角函数模型的应用【知识点的知识】1.三角函数模型的简单应用:1)在生活中的应用;2);在建筑学中的应用;3)在航海中的应用;4)在物理学中的应用.2.解三角函数应用题的一般步骤:(1)阅读理解材料:将文字语言转化为符号语言;(2)建立变量关系:抽象成数学问题,建立变量关系;(3)讨论变量性质:根据函数性质讨论变量性质;(4)作出结论.【解题方法点拨】1、方法与技巧:(1)在生产生活中,常常有一些与角有关的最值问题,需要确定以角作为变量的三角函数来解决.(2)理清题意,分清题目中已知和所求,准确解读题目中的术语和有关名词.(3)要能根据题意,画出符合题意的图形.(4)对计算结果,可根据实际情况进行处理.2、注意:(1)建立三角函数关系式关键是选择适当的角作为变量.(2)解决应用问题要注重检验.(3)选择变量后,要根据题中的条件,确定角的范围.例题精讲三角函数在生活中的应用例1.如图所示,某游乐园内摩天轮的中心O点距地面的高度为50m,摩天轮做匀速运动.摩天轮上的一点P自最低点A点起,经过tmin后,点P的高度(单位:m),那么在摩天轮转动一圈的过程中,点P的高度在距地面70m以上的时间将持续___min.例2.一半径为6米的水轮如图,水轮圆心O距离水面3米,已知水轮每分钟转动4圈,水轮上点P 从水中浮现时开始到其第一次达到最高点的用时为___秒。
例3.'如图是半径为lm的水车截面图,在它的边缘(圆周)上有一定点P,按逆时针方向以角速度rad/s(每秒绕圆心转动rad)作圆周运动,已知点P的初始位置为P0,且∠xOP0=,设点P的纵坐标y是转动时间t(单位:s)的函数记为y=f(t).(1)求f(0),f()的值,并写出函数y=f(t)的解析式;(2)选用恰当的方法作出函数f(t),0≤t≤6的简图;(3)试比较f(),f(),f()的大小(直接给出大小关系,不用说明理由).'当堂练习单选题练习1.某港口的水深(米)是时间t(0≤t≤24)(单位:时)的函数,记作y=f(t)下面是该港口某季节每天水深的数据:经过长期观察,y=f(t)的曲线可近似地看作y=A sinωt+b的图象,一般情况下,船舶航行时,船底离海底的距离不小于5m是安全的(船舶停靠岸时,船底只需不碰海底即可).某船吃水深度(船底离水面距离)为6.5m,如果该船想在同一天内安全出港,问它至多能在港内停留的时间是(忽略进出港所用时间)()A.17 B.16 C.5 D.4练习2.一个大风车的半径为6m,12min旋转一周,它的最低点P0离地面2m,风车翼片的一个端点P 从P0开始按逆时针方向旋转,则点P离地面距离h(m)与时间m(nin)之间的函数关系式是()A.h(t)=-6sin t+6 B.h(t)=-6cos t+6C.h(t)=-6sin t+8 D.h(t)=-6cos t+8练习3.海水受日月的引力,在一定的时候发生潮涨潮落,船只一般涨潮时进港卸货,落潮时出港航行,某船吃水深度(船底与水面距离)为4米,安全间隙(船底与海底距离)为1.5米,该船在2:00开始卸货,吃水深度以0.3米/时的速度减少,该港口某季节每天几个时刻的水深如下表所示,若选择y=A sin(ωx+φ)+K(A>0,ω>0)拟合该港口水深与时间的函数关系,则该船必须停止卸货驶离港口的时间大概控制在(要考虑船只驶出港口需要一定时间)()A.5:00至5:30 B.5:30至6:00C.6:00至6:30 D.6:30至7:00练习4.在一个港口,相邻两次高潮发生的时间相距12h,低潮时水深为9m,高潮时水深为15m.每天潮涨潮落时,该港口水的深度y(m)关于时间t(h)的函数图象可以近似地看成函数y=A sin(ωt+φ)+k的图象,其中0≤t≤24,且t=3时涨潮到一次高潮,则该函数的解析式可以是()A.B. C.D.练习5.某港口水的深度y(m)是时间t(0≤t≤24,单位:h)的函数,记作y=f(t).下面是某日水深的数据:经长期观察,y=f(t)的曲线可以近似地看成函数y=A sinωt+b的图象.一般情况下,船舶航行时,船底离海底的距离为5m或5m以上时认为是安全的(船舶停靠时,船底只需不碰海底即可).某船吃水程度(船底离水面的距离)为6.5m,如果该船希望在同一天内安全进出港,请问,它最多能在港内停留()小时(忽略进出港所需的时间).A.6 B.12 C.16 D.18练习6.如图,为了研究钟表与三角函数的关系,建立如图所示的坐标系,设秒针尖位置p(x,y).若初始位置为P0(,),当秒针从P0(注此时t=0)正常开始走时,那么点P的纵坐标y与时间t的函数关系为()A.y=sin()B.C.y=sin(-)D.y=sin(-)练习7.已知函数f(x)=sin x+cos x-a在区间[0,2π]上恰有三个零点x1,x2,x3,则x1+x2+x3=()A.B.C.D.练习8.动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,其初始位置为A0(,),12秒旋转一周,则动点A的纵坐标y关于时间t(单位:秒)的函数解析式为()A.B.C.D.练习9.如图,一个摩天轮的半径为18m,12分钟旋转一周,它的最低点P0离地面2m,∠P0OP1=15°,摩天轮上的一个点P从P1开始按逆时针方向旋转,则点P离地面距离y(m)与时间x(分钟)之间的函数关系式是()A.B.C.D.解答题练习1.'海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表:(1)若用函数f(t)=A sin(ωt+φ)+h(A>0,ω>0,|φ|<)来近似描述这个港口的水深和时间之间的对应关系,根据表中数据确定函数表达式;(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定要有2.25米的安全间隙(船底与洋底的距离),该船何时能进入港口?'练习2.'如图是一个缆车示意图,该缆车的半径为4.8m,圆上最低点与地面的距离为0.8m,缆车每60s 转动一圈,图中OA与地面垂直,以OA为始边,逆时针转动θ角到OB,设B点与地面的距离为hm。
高中数学必修4《三角函数模型的简单应用》教案【教学内容】三角函数模型的简单应用【教学目标】1. 了解正弦函数、余弦函数、正切函数的定义和图象;2. 掌握解决几何问题时应用三角函数模型的方法;3. 培养学生从实际问题中抽象出三角函数模型的能力;4. 培养学生的逻辑思维能力和解决问题的能力。
【教学重点】1. 正弦函数、余弦函数、正切函数的定义和图象;2. 解决几何问题时应用三角函数模型的方法。
【教学难点】学生解决实际问题时抽象出三角函数模型的能力。
【教学方法】1. 讲授法:通过讲解三角函数模型的定义和性质,让学生理解三角函数模型的概念和基本思想;2. 举例法:通过讲解几个综合实例,让学生理解应用三角函数模型解决问题的基本方法;3. 练习法:通过练习题,让学生巩固所学知识。
【教学过程】一、引入让学生观察、思考以下两个图象,引出三角函数模型的概念及相关性质。
例1 例2二、讲解1. 什么是三角函数模型三角函数模型是指用正弦函数、余弦函数、正切函数等描述几何问题及物理问题的模型。
正弦函数、余弦函数、正切函数是一种列函数,用于描述三角形的内角与长度之间的关系。
2. 正弦函数、余弦函数、正切函数的图象(1)正弦函数的图象正弦函数是一个以原点 O 为中心,以 y 轴为对称轴,振幅为 1,周期为2π 的奇函数。
(2)余弦函数的图象余弦函数是一个以原点 O 为中心,以 y 轴为对称轴,振幅为 1,周期为2π 的偶函数。
(3)正切函数的图象正切函数的图象是一个无量纲的周期函数,周期为π,无定义域上的最大值和最小值,其图象相对于 y 轴是奇函数。
三、练习例1 解:构造如下图形,已知 $BC=6$ cm,$m\angleB=30^\circ$,求 $AC$ 和 $AB$ 的长度。
(1)分析题意,选用何种三角函数模型。
设 $\angle ABC=\theta$,则有 $\angle BAC=150^\circ -\theta$,观察正弦函数的定义式,选用正弦函数。
三角函数模型的简单应用
【学习目标】
1.熟练掌握三角函数的性质,会用三角代换解决代数、几何、函数等综合问题;
2.利用三角形建立数学模型,解决实际问题,体会三角函数是描述周期变化现象的重要函数模型.
【要点梳理】
要点一:三角函数模型的建立程序
要点二:解答三角函数应用题的一般步骤
解答三角函数应用题的基本步骤可分为四步:审题、建模、解模、结论.
(1)审题
三角函数应用题的语言形式多为文字语言和图形语言,阅读材料时要读懂题目所反映的实际问题的背景,领悟其中的数学本质,在此基础上分析出已知什么,求什么,从中提炼出相应的数学问题.
(2)建模
根据搜集到的数据,找出变化规律,运用已掌握的三角知识、物理知识及其他相关知识建立关系式,在此基础上将实际问题转化为一个三角函数问题,实现问题的数学化,即建立三角函数模型.其中要充分利用数形结合的思想以及图形语言和符号语言并用的思维方式.
(3)解模
利用所学的三角函数知识,结合题目的要求,对得到的三角函数模型予以解答,求出结果.
(4)结论
将所得结论转译成实际问题的答案,应用题不同于单纯的数学问题,既要符合科学,又要符合实际背景,因此,有时还要对于解出的结果进行检验、评判.
要点诠释:
实际问题的背景往往比较复杂,而且需要综合应用多门学科的知识才能完成,因此,在应用数学知识解决实际问题时,应当注意从复杂的背景中抽取基本的数学关系,还要调动相关学科知识来帮助解决问题.
【典型例题】
类型一:三角函数周期性的应用
例 1.国际大都市上海继东方明珠电视塔、金茂大厦之后,黄浦江畔的又一座景观性、标志性、文化游乐性建筑是座落于虹口区北外滩汇山码头的“上海梦幻世界摩天轮城”,占地3.46公顷总投资超过20亿元人民币,内有世界最大的摩天轮.其中摩天轮中心O距离地面200米高,直径170米.摩天轮上将安装36个太空舱,可同时容纳1100多人一览上海风光.(如图),摩天轮沿逆时针方向做匀速转动,每8分钟转一圈,
t 分钟时的位置).已知在时刻t分钟时点P 若摩天轮的轮周上的点P的起始位置在最低点处(即时刻0
f t.
距离地面的高度()
(Ⅰ)求20分钟时,点P距离地面的高度;
(Ⅱ)求()f t 的函数解析式.
【思路点拨】由周期8T =,可求出距地面的高度,然后求出三角函数中的参数A,h,利用三角函数的周期公式求出ω,通过初始位置求出φ,求出f(t).
【答案】(1)285(2)()85cos
200,(0)4
f t t t π
=-+≥
【试题解析】设过摩天轮的中心O 与地面垂直的直线为l ,l 垂直于地面于点H ,PQ l ⊥于点Q , (1)∵旋转的周期8T =,∴20分钟后点P 在最高点,距地面高度是285米. (2)t 分钟时4
HOP t π
∠=,∴()20085cos 85cos
200,(0).4
f t HOP t t π
=-∠=-+≥
∴()85cos
200,(0).4
f t t t π
=-+≥
【总结升华】实际问题的解决要求我们在阅读材料时读懂题目所反映的实际问题的背景,领悟其中的数学本质,将问题数学化,自行假设与设计一些已知条件,提出解决方案,从而最终解决问题. 举一反三:
【高清课堂:三角函数模型的简单应用394861 例1】
【变式1】如图,质点p 在半径为2的圆周上逆时针运动,其初始位置为0p 角速度为1,那么点
p 到x 轴距离d 关于时间t 的函数图像大致为( )
【答案】C
类型二:三角函数模型在气象学中的应用 地面
例2.如图所示,某地一天从6时到14时的温度变化曲线近似满足函数sin()y A t b ωϕ=++. (1)求这段时间的最大温差;
(2)写出这段曲线的函数解析式.
【答案】(1)20℃(2)310sin 208
4y x ππ⎛⎫
=+
+
⎪⎝⎭
,x ∈[6,14] 【试题解析】 (1)由图象知这段时间的最大温差是30-10=20℃. (2)观察图象可知题图中从6时到14时的图象是函数sin()y A t b ωϕ=++的半个周期的图象,
∴
121462πω⋅=-,解得8
πω=. 由图象知1
(3010)102
A =⨯-=,
1(3010)202b =⨯+=,∴10sin 208y x πϕ⎛⎫
=++ ⎪⎝⎭
.
将(6,10)代入上式,解得34
π
ϕ=. ∴310sin 208
4y x ππ⎛⎫
=+
+
⎪⎝⎭
,x ∈[6,14]. 【总结升华】 借助图象上标注的各点的坐标,利用五个基本点:(0,0),,12π⎛⎫
⎪⎝⎭,(π,0),3,12π⎛⎫
- ⎪⎝⎭
,(2π,0)求解函数式中的未知量,这种方法种为“五点法”.本题运用“五点法”作图的逆向思维分析此题是解题的
关键.
举一反三:
【变式1】 估计某一天的白昼时间的小时数D(t)可由下式计算:2()sin (79)122365k y D t t π⎡⎤==
-+⎢⎥⎣⎦
,其中t 表示某天的序号、t =0表示1月1日,以此类推,常数k 与某地所处的纬度有关.
(1)如在波士顿,k =6,试画出函数D(t)在0≤t ≤365时的图象. (2)在波士顿哪一天白昼时间最长?哪一天白昼时间最短? (3)估计在波士顿一年中有多少天的白昼时间超过10.5小时? 【答案】(1)略 (2) 6月20日 12月20日 (3) 243天
【试题解析】 (1)k =6
时,2()3sin (79)12365D t t π⎡⎤
=-+⎢
⎥⎣⎦
.先用五点法画出2()3s i n (79)365f t t π
⎡⎤
=
-⎢⎥⎣⎦
的简图如图,由2(79)0365t π-=和2(79)2365t ππ-=,得t =79和t =444,列出下表:
若t =0,3(0)3sin (79) 2.9365f π⎡⎤
=-≈-⎢
⎥⎣⎦
. ∵()f x 的周期为365,
∴(365) 2.9f ≈-.将()y f t =,t ∈[0,365]的图象向上平移12个单位长度,得到
()y D t =,0≤t ≤365的图象,如图所示.
(2)白昼时间最长的一天,即D(t)取得最大值的一天,此时t =170,对应的是6月20日(闰年除外),类似地,t
=353时D(t)取最小值,即12月20日白昼最短.
(3)D(t)>10.5,即23sin (79)1210.5365t π⎡⎤-+>⎢
⎥⎣⎦,21sin (79)3652t π⎡⎤
->-⎢⎥⎣⎦
,t ∈[0,365].
∴292>t >49,292-49=243.约有243天的白昼时间超过10.5小时.
类型三:三角函数模型在物理学中的应用
例 3.一个单摆,如图所示,小球偏离铅垂线方向的角为αrad,
α与时间t 满足关系式
1()sin 222t t πα⎛⎫=+ ⎪⎝⎭
.
(1)当4
t π
=
时,α的值是多少?并指出小球的具体位置; (2)单摆摆动的频率是多少?
(3)小球偏离铅垂线方向的最大摆角是多少? 【思路点拨】(1)根据已知条件中的函数解析式,把4t π=代入,即可求出摆角.(2)由1
f T
=可求出频率.(3)求最大摆角,先求出sin 22t π⎛
⎫
+ ⎪⎝
⎭
的最大值为1,然后求角. 【答案】(1)0(2)1
π
(3)
12
rad 【试题解析】 (1)当4t π=
时,11
sin 2sin 042422πππαπ⎛⎫⎛⎫=⨯+== ⎪ ⎪⎝⎭⎝
⎭,这时小球恰好在平衡位置; (2)因为单摆摆动的周期22T ππ==,所以频率11
f T π
==; (3)令t =0,得sin 22t π⎛⎫
+
⎪⎝
⎭
的最大值为1.故()t α有最大值
1
2
rad,即小球偏离铅垂线方向的最大摆角是12
rad.
举一反三: 【变式1】一根为lcm 的线,一端固定,另一端悬挂一个小球,组成一个单摆,小球摆动时,离开平衡位置的
位移s(单位:cm)与时间t(单位:s)的函数关系是3sin ,[0,)6s t π⎫
=+∈+∞⎪⎪⎭
, (1)求小球摆动的周期和频率;
(2)已知g =980cm/s 2
,要使小球摆动的周期恰好是1秒,线的长度l 应当是多少?
【答案】(1)2
【试题解析】(1)
22g T f l πωω=
∴== (2)2
1
24.84g T l cm π==≈若,即.
例4.交流电的电压E(单位:伏)与时间t(单位:秒)的关系可用1006E t ππ⎛⎫
=+ ⎪⎝
⎭
来表示,求: (1)开始时的电压;
(2)电压值重复出现一次的时间间隔;
(3)电压的最大值和第一次获得这个最大值的时间.
【答案】(1)1300
【试题解析】
(1)当t =0时,6
E π
==伏),即开始时的电压为
(2)21
10050
T ππ=
=(秒),即电压重复出现一次的时间间隔为0.02秒;
(3)电压的最大值为,当1006
2
t π
π
π+=
,
即1
300
t =秒时第一次取得这个最大值.。