自动控制理论 翁思义第二章 自动控制系统的数学模型
- 格式:ppt
- 大小:2.35 MB
- 文档页数:80
第二章自动控制系统的数学模型控制系统微分方程的建立非线性微分方程的线性化拉普拉斯变换传递函数动态结构图系统的脉冲响应函数典型反馈系统的几种传递函数关于系统数学模型的几个基本概念系统相互联系又相互作用着的对象之间的有机组合。
静态系统(static systems)/稳态系统当前输出仅由当前的输入所决定的系统。
(静态方程或方程组)动态系统(dynamic systems) 当前输出不仅由当前输入决定,而且还受到过去输入的影响的系统(系统内部有储能或/和耗能元件,所以输出对输入表现出一定的运动惯性)。
本课程研究的主要对象。
(微分方程或微分方程组)数学模型(mathematical models) 描述系统输入、输出变量以及内部各变量之间关系的数学表达式。
描述系统运动规律的数学表达式。
分析和设计任何一个控制系统,首要任务是建立系统的数学模型。
一旦系统的数学模型被推导出来,就可以采用各种分析方法和计算机工具对系统进行分析和综合。
•建模modeling建立系统数学模型的过程,即用数学模型来表示系统的输入与输出之间的因果关系的过程。
也是寻求系统数学模型的过程。
•建立数学模型的方法分为解析(analytical)法和实验(experimental)法解析法:依据系统及元件各变量之间所遵循的物理、化学定律列写出变量间的数学表达式,并实验验证。
实验法:对系统或元件输入一定形式的信号(阶跃信号,单位脉冲信号,正弦信号等),根据系统或元件的输出响应,经过数据处理而辨识(identify)出系统的数学模型。
线性定常系统(linear time-invariant systems)系统参数是集中、定常(时不变)、描述系统的动力学模型是线性的(方程中各变量之间是代数相加关系,包含变量的每一项的系数均与其它变量无关),这种系统就是线性定常系统。
对线性定常系统的分析可以采用叠加原理。
非线性系统(nonlinear systems)时变系统(time-variant systems)线性定常动态系统是经典控制理论研究的主要对象。
自动控制原理与应用第2章自动控制系统的数学模型自动控制是现代工业和科学技术的重要组成部分,它在各种自动化系统中起着关键作用。
通过对自动控制系统的数学建模,我们可以对系统的行为进行分析和预测,并设计合适的控制策略来实现系统的稳定性和性能要求。
本章主要介绍自动控制系统的数学模型及其应用。
自动控制系统的数学模型主要包括线性时不变系统和非线性时变系统两类。
1.线性时不变系统线性时不变系统是指系统的输出与输入之间存在线性关系,并且系统的性质不随时间的推移而变化。
线性时不变系统的数学模型可以用常微分方程或差分方程来表示,其中常微分方程适用于连续系统,差分方程适用于离散系统。
常见的线性时不变系统包括电路、机械系统等。
2.非线性时变系统非线性时变系统是指系统的输出与输入之间存在非线性关系,并且系统的性质随时间的推移而变化。
非线性时变系统的数学模型可以用偏微分方程、泛函方程等形式来表示。
非线性时变系统由于具有更复杂的动力学特性,通常需要借助数值方法来求解。
二、数学模型的建立方法建立自动控制系统的数学模型有多种方法,常用的方法包括物理模型法、数据模型法和状态空间法。
1.物理模型法物理模型法主要通过物理规律来建立系统的数学模型。
它基于系统的物理特性及其输入输出关系,通过建立微分方程或差分方程来描述系统的动态行为。
物理模型法适用于那些具有明确的物理意义和物理规律的系统。
例如,对机械系统可以利用牛顿定律建立系统的动力学方程。
2.数据模型法数据模型法是通过分析实验数据来建立系统的数学模型。
它基于系统的输入输出数据,借助统计方法和系统辨识技术来进行模型识别和参数估计。
数据模型法适用于那些难以建立明确物理模型的系统。
例如,对于生物系统或经验性系统,可以通过数据模型法来建立系统的数学模型。
3.状态空间法状态空间法是一种以状态变量和输出变量为基础的建模方法。
它将系统的动态行为表示为一组一阶微分方程或差分方程的形式。
状态空间法对于较复杂的系统具有较好的描述能力,能够反映系统的内部结构和动态特性。