第二十一讲应用问题的解题技巧
- 格式:doc
- 大小:75.00 KB
- 文档页数:8
排列组合应用问题—解题21法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有然后排首位共有最后排其它位置共有由分步计数原理得练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?34A A=144054二.相邻元素捆绑策略例2. 7人站成一排,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有种不同的排法练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为20三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种不同的方法,由分步计数原理,节目的不同顺序共有种练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为30四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有种方法,其余的三个位置甲乙丙共有1种坐法,则共有种方法。
第二十一讲 应用题趣题引路】2003年“信利杯”数学竞赛有一道有趣的应用型问题:某人租用一辆汽车由A 城前往B 城,沿途可能经过的城市以及通过两城市之间所需的时间(单位:h )如图21-1所示若汽车行驶的平均速度为80km/h ,而汽车每行驶1km 需要的平均费用为1.2元试指出此人从A 城出发到B 城的最短路线(要有推理过程),并求出所需费用最少为多少元?图21-1OHGFEDC B A57111514136171012189解:从A 城出发到达B 城的路线分成如下两类:(1)从A 城出发到达B 城,经过O 城.因为从A 城到O 城所需要最短时间为26h ,从O 城到B 城所需最短时间为22h.所以,此类路线所需最短时间为26+22=48(h ).(2)从A 城出发到达B 城,不经过O 城。
这时从A 城到达B 城,必定经过C ,D ,E 城或F ,G ,H 城,所需时间至少为49h.综上,从A 城到达B 城所需的最短时间为48h ,所走的路线为A →F →0→E →B.所需的费用最少为80×48×1.2=4608(元).在本讲中,将介绍各类应用题的解法与技巧。
知识拓展】当今数学已经渗人到整个社会的各个领域,因此,应用数学去观察、分析日常生活现象,去解决日常生活问题,成为各类数学竞赛的一个热点。
应用性问题能引导学生关心生活、关心社会,使学生充分体会到数学与自然和人类社会的密切联系,增强对数学的理解和应用数学的信心。
解答应用性问题,关键是要学会运用数学知识去观察、分析、概括所给的实际问题,揭示其数学本质,将其转化为数学模型.其求解程序如下:在初中范围内常见的数学模型有:数式模型、方程模型、不等式模型、函数模型、平面几何模型、图表模型等.一、用数式模型解决应用题数与式是最基本的数学语言,由于它能够有效、简捷、准确地揭示数学的本质,富有通用性和启发性,因而成为描述和表达数学问题的重要方法.例1:(2003年安徽中考题)某风景区对5个旅游景点的门票价格进行了调整,据统计,调价前后各景点的游客人数基本不变,有关数据如下表所示:景点 A B C D E原价(元)10 10 15 20 25现价(元) 5 5 15 25 30平均日人数(千人)1 123 2(1的?(2)另一方面,游客认为调整收费后风景区的平均日总收入相对于调价前,实际上增加了约9.4%.问游客是怎样计算的?(3)你认为风景区和游客哪一个的说法较能反映整体实际?解析:抓住“平均价格”“平均日总收入”等关键词.解:(1)风景区是这样计算的:调整前的平均价格:1010152025165++++=(元).调整后的平均价格:55152530165++++=(元).所以调整前后的平均价格不变,平均日人数不变,故平均日总收入持平.(2)游客是这样计算的:原平均日总收入:10×1+10×1+15×2+20×3+25×2=160(千元),现平均日总收入:5×1+5×1+15×2+25×3+30×2=175(千元),故平均日总收入增加了:1751609.4%160-≈. (3)游客的说法较能反映整体实际.二、用方程模型解应用题研究和解决生产实际和现实生活中有关问题常常要用到方程(组)的知识,它可以帮助人们从数量关系和相等关系的角度去认识和理解现实世界.例2:(2003年重庆中考题)某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,2min 内可以通过560名学生;当同时开启一道正门和一道侧门时,4min 内可以通过800名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%.安全检查规定:在紧急情况下全大楼的学生应在5min 内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门是否符合安全规定?请说明理由.解析:列方程(组)的关键是找到题中等量关系:两种测试中通过的学生数量.设未知数时一般问什么设什么.“符合安全规定”之义为最大通过量不小于学生总数.解:(1)设平均每分钟一道正门可以通过x 名学生,一道侧门可以通过y 名学生,由题意得: 2(2)5604()800x y x y +=⎧⎨+=⎩,, 解得:12080x y =⎧⎨=⎩,. (2)这栋楼最多有学生4×8×45=1440(名), 拥挤时5min4道门能通过:5×2(120+80)(1-20%)=1600(名), 因1600>1440,故建造的4道门符合安全规定.三、用不等式模型解应用题现实世界中的不等关系是普遍存在的,许多问题有时并不需要研究它们之间的相等关系,只需要确定某个量的变化范围,即可对所研究的问题有比较清楚的认识.例3:(2003年苏州中考题)我国东南沿海某地的风力资源丰富,一年内日平均的风速不小于3m/s 的时间共约160天,其中日平均风速不小于6m/s 的时间占60天.为了充分利用“风能”这种“绿色资源”,该地拟建一个小型风力发电场,决定选用A 、B 两种型号的风力发电机,根据产品说明,这两种风力发电机在各种风速下的日发电量(即一天的发电量)如下表:(1)若这个发电场购x 台A 型风力发电机,则预计这些A 型风力发电机一年的发电总量至少为 kW ·h ;(2)已知A 型风力发电机每台0.3万元,B 型风力发电机每台0.2万元,该发电场拟购风力发电机共10台,希望购机的费用不超过2.6万元,而建成的风力发电场每年的发电量不少于102000kW ·h ,请你提供符合条件的购机方案.解:(1)(100×36+60×150)x =12600x ;(2)设购A 型发电机x 台,则购B 型发电机(10-x )台, 解法一 根据题意得: 0.30.2(10) 2.6126007800(10)102000x x x x +-⎧⎨+-⎩≤,≥, 解得 5≤x ≤6.故可购A 型发电机5台,B 型发电机5台;或购A 型发电机6台,B 型发电机4台. 解法二 假设恰好将购机款用完, 则0.3x +0.2(10-x )≈2.6,解得x =6, 若x =6,则年发电量至少为:12600×6+7800(10-6)=106800>102000,符合要求. 故可购A 型发电机6台,B 型发电机4台.四、用函数知识解决的应用题函数类应用问题主要有以下两种类型:(1)从实际问题出发,引进数学符号,建立函数关系;(2)由提供的基本模型和初始条件去确定函数关系式.例4:(2003年扬州)杨嫂在再就业中心的扶持下,创办了“润杨”报刊零售点.对经营的某种晚报,杨嫂提供了如下信息:①买进每份0.20元,卖出每份0.30元;②一个月内(以30天计),有20天每天可以卖出200份,其余10天每天只能卖出120份; ③一个月内,每天从报社买进的报纸份数必须相同.当天卖不掉的报纸,以每份0.10元退回给报社; (1)填表:(2)y 与x 的函数关系式,并求月利润的最大值.解析:(1)填表:(2 其余10天可获利润:10[(0.3-0.2)×120-0.1(x -120)]=240-x (元); 故y =x +240,(120≤x ≤200),当x =200时,月利润y 的最大值为440元.点评:根据题意,正确列出函数关系式,是解决问题的关键,这里特别要注意自变量x 的取值范围. 另外,初三还会提及统计型应用题,几何型应用题. 好题妙解】佳题新题品味例1 (北京市东城区)某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总票数的23,若提前购票,则给予不同程度的优惠.在五月份内,团体票每张12元,共售出团体票数的35,零售票每张16元,共售出零售票数的一半;如果在六月份内,团体票按每张16元出售,并计划在六月份内售出全部余票,那么零售票应按每张多少元定价才能使这两个月的票款收入持平?解析:设总票数为a 张,六月份零售票应按每张x 元定价,则 五月份团体票售出数为:322535a a ⨯=, 票款收入为:2241255a a ⨯=(元);零售票售出数为:111236a a ⨯=, 票款收入为:181663a a ⨯=(元).六月份团体票所剩票数为:2245315a a ⨯=, 票款数收入为:464161515a a ⨯=(元); 零售票所剩票数为:111236a a ⨯=, 票款数收入为:1166a x ax ⋅=(元).由题意,得24864153156a a a ax +=+, 解得:x =19.2.例2 (广州市)2003年2月27日《广州日报》报道:2002年底广州市自然保护区覆盖率(即自然保护区面积占全市面积的百分比)为4.65%,尚未达到国家A 级标准.因此,市政府决定加快绿化建设,力争到2004年底自然保护区覆盖率达到8%以上.若要达到最低目标8%,则广州市自然保护区面积的年平均增长率应是多少?(结果保留三位有效数字)解析:设广州市的总面积为1,广州市自然保护区面积年平均增长率为x ,根据题意得: 1×4.65%×(1+x )2=1×8% ∴(1+x )2≈1.720. ∵ x >0,∴ 1+x >0. ∴ 1+x ≈1.312, ∴ x =0.312.点评:增长率公式:第一年A ;年均增长率x ,则第n 年:1(1)n n P A x -=+.例3 (哈尔滨市)建网就等于建一个学校,哈市慧明中学为加强现代信息技术课教学,拟投资建一个初级计算机机房和一个高级计算机机房,每个计算机机房只配置1台教师用机,若干台学生用机.其中初级机房教师用机每台8000元,学生用机每台3500元;高级机房教师用机每台11500元,学生用机每台7000元.已知两机房购买计算机的总钱数相等,且每个机房购买计算机的总钱数不少于20万元也不超过21万元,则该校拟建的初级机房、高级机房各应有多少台计算机?解折:本题中既有相等关系又有不等关系,用等式(不等式)表示全部题意是关键. 解:设该校拟建的初级机房有x 台计算机,高级机房有y 台计算机,则有: 0.80.35(1) 1.150.7(1)200.80.35(1)2120 1.150.7(1)21x y x y +-=+-⎧⎪+-⎨⎪+-⎩,≤≤,≤≤. 解得:26555587713527291414x y x y ⎧⎪=⎪⎪⎨⎪⎪⎪⎩,≤≤,≤≤.∵ x 为整数,∴ x =56,57,58. 同理,y =28,29. ∴5628x y =⎧⎨=⎩,;5829x y =⎧⎨=⎩,.中考真题欣赏例1 (安徽省)王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用了1700元,获纯利2400元;种西红柿每亩用了1800元,获纯利2600元,问王大伯一共获纯利多少元?解:设王大伯种了x 亩茄子,y 亩西红柿,根据题意,得: 251700180044000x y x y +=⎧⎨+=⎩,. 解得:1015x y =⎧⎨=⎩,.共获纯利:2400×10+2600×15=63000(元). 答:王大伯一共获纯利63000元.例2 (桂林市)某公司需在一月(31天)内完成新建办公楼的装修工程.如果由甲、乙两个工程队合做,12天可完成;如果由甲、乙两队单独做,甲队比乙队少用10天完成.(1)求甲、乙两工程队单独完成此项工程所需的天数.(2)如果请甲工程队施工,公司每日需付费用2000元;如果请乙工程队施工,公司每日需付费用1400元.在规定时间内:A .请甲队单独完成此项工程;B .请乙队单独完成此项工程;C .请甲、乙两队合作完成此项工程.以上方案哪一种花钱最少?解析:这是一道策略优选问题.工程问题中:工作量=工作效率×工时. 解:(1)设乙工程队单独完成此项工程需x 天,根据题意得:1111012x x +=-. 去分母,整理得x 2-34x +120=0 解得x 1=4,x 2=30.经检验知,x 1=4,x 2=30都是原方程的解,因为x =4不合题意,所以只取x =30. 所以,甲工程队单独完成此项工程需用20天,乙队需30天. (2)各种方案所需的费用分别为: A .请甲队需2000×20=40000元; B .请乙队需1400×30=42000元;C .请甲、乙两队合作需(2000+1400)×12=40800元. 所以单独请甲队完成此项工程花钱最少.竞赛样题展示例1 (全国联赛初赛题)一支科学考察队前往某条河流的上游去考察一个生态区,他们以每天17km 的速度出发,沿河岸向上游行进若干天后到达目的地,然后在生态区考察了若干天,完成任务后以每天25km 的速度返回,在出发后的第60天,考察队行进了24km 后回到出发点,试问:科学考察队在生态区考察了多少天?解折:挖掘题目中隐藏条件是关键!解:设考察队到生态区去用了x 天,返回用了y 天,考察用了z 天,则 x +y +z =60. 且17x -25y =-1,即 25y -17x =1.①这里x 、y 是正整数,现设法求出①的一组合题意的解,然后计算出z 的值.为此,先求出①的一组特殊解(x 0,y 0),(这里x 0,y 0可以是负整数).用辗转相除法. 25=1×17+8,17=2×8+1, 故1=17-2×8 =17-2×(25-17) =3×17-2×25.与①的左端比较可知,x 0=﹣3,y 0=﹣2. 下面再求出①的合题意的解.由不定方程的知识可知,①的一切整数解可表示为 x =﹣3+25t ,y =﹣2+17t , ∴ x +y =42t -5,t 为整数.按题意0<x+y<60,故仅当t=1时才合题意,这时x+y=42﹣5=37,∴z=60-(x+y)=23.答:考察队在生态区考察的天数是23天.点评:本题涉及到的未知量多,最终转化为二元一次不定方程来解,希读者仔细咀嚼所用方法.例2 (江苏省第17届初中竞赛题)华鑫超市对顾客实行优惠购物,规定如下:(1)若一次购物少于200元,则不予优惠;(2)若一次购物满200元,但不超过500元,按标价给予九折优惠;(3)若一次购物超过500元,其中500元部分给予九折优惠,超过500元部分给予八折优惠.小明两次去该超市购物,分别付款198元与554元.现在小亮决定一次去购买小明分两次购买的同样多的物品,他需付款多少?解析:应付198元购物款讨论:第一次付款198元,可能是所购物品的实价,未享受优惠;也可能是按九折优惠后所付的款,故应分两种情况加以讨论.情形1:当198元为购物不打折付的钱时,所购物品的原价为198元.又554=450+104,其中450元为购物500元打九折付的钱,104元为购物打八折付的钱,104÷0.8=130(元).因此,554元所购物品的原价为130+500=630(元),于是购买小明花198+630=828(元)所购的全部物品,小亮一次性购买应付500×0.9+(828﹣500)×0.8=712.4(元).情形2:当198元为购物打九折付的钱时,所购物品的原价为198÷0.9=220(元).仿情形1的讨论,购220+630=850(元)物品一次性付款应为500×0.9+(850﹣500)×0.8=730(元).综上所述,小亮一次去超市购买小明已购的同样多的物品,应付款712.40元或730元.例3(2002年全国数学竞赛题)某项工程,如果由甲、乙两队承包,225天完成,需付180000元;由乙、丙两队承包,334天完成,需付150000元;由甲、丙两队承包,627天完成,需付160000元.现在工程由一个队单独承包,在保证一周完成的前提下,哪个队承包费用最少?解折:关键问题是甲、乙、丙单独做各需的天数及独做时各方日付工资.分两个层次考虑:设甲、乙、丙单独承包各需x、y、z天完成,则1151211415117.20x yy zz x⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩,,解得4610.xyz=⎧⎪=⎨⎪=⎩,,再设甲、乙、丙单独工作一天,各需付u、v、w元,则12()180000515()150000420()160000.7u vv ww u⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩,,解得455002950010500.uvw=⎧⎪=⎨⎪=⎩,,于是,由甲队单独承包,费用是45500×4=182000(元).由乙队单独承包,费用是29500×6=177000(元).而丙队不能在一周内完成.所以由乙队承包费用最少.过关检测】A级1.(2003年河南)在防治“SARS”的战役中,为防止疫情扩散,某制药厂接到了生产240箱过氧乙酸消毒液的任务.在生产了60箱后,需要加快生产,每天比原来多生产15箱,结果6天就完成了任务.求加快速度后每天生产多少箱消毒液?2.(山东省竞赛题)某市为鼓励节约用水,对自来水的收费标准作如下规定:每月每户用水中不超过10t部分按0.45元/吨收费;超过10t而不超过20t部分按每吨0.8元收费;超过20t部分按每吨1.50元收费.某月甲户比乙户多缴水费7.10元,乙户比丙户多缴水费3.75元,问甲、乙、丙该月各缴水费多少?(自来水按整吨收费)3.(第12届江苏省竞赛题)甲、乙、丙三人共解出100道数学题,每人都解出了其中的60道题,将其中只有1人解出的题叫做难题,3人都解出的题叫做容易题.试问:难题多还是容易题多?多的比少的多几道题?4.某人从A地到B地乘坐出租车有两种方案,一种出租车收费标准是起步价10元,每千米1.2元;另一种出租车收费标准是起步价8元,每千米1.4元,问选择哪一种出租车比较合适?(提示:根据目前出租车管理条例,车型不同,起步价可以不同,但起步价的最大行驶里程是相同的,且此里程内只收起步价而不管其行驶里程是多少.)B级1.(1999年全国初中数学竞赛题)江堤边一洼地发生了管涌,江水不断地涌出,假定每分钟涌出的水量相等,如果用两台抽水机抽水,40min可抽完;如果用4台抽水机抽,16min可抽完.如果要在10min抽完水,那么至少需要抽水机台.2.(第14届希望杯)有一批影碟机(VCD)原售价:800元/台.甲商场用如下办法促销:购买17﹣24台,每台打八折;每次购买24台以上,每台打七五折.(1)请仿照甲商场的促销列表,列出到乙商场购买VCD的购买台数与每台价格的对照表;(2)现在有A、B、C三个单位,A单位要买10台VCD,B单位要买16台VCD,C单位要买20台VCD,问他们到哪家商场购买花费较少?3.(2003年河北创新与知识应用竞赛题)某钱币收藏爱好者想把3.50元纸币兑换成1分、2分、5分的硬币,他要求硬币总数为150枚,且每种硬币不少于20枚,5分的硬币要多于2分的硬币.请你据此设计兑换方案.4.某商场在一楼和二楼间安装一自动扶梯,以均匀的速度向上行驶,一男孩和一女孩同时从自动扶梯上走到二楼(扶梯本身也在行驶),如果男孩和女孩都做匀速运动且男孩每分钟走动的级数是女孩的两倍,已知男孩走了27级到达扶梯顶部,而女孩走了18级到达扶梯顶部(设男孩、女孩每次只踏一级).问:(1)扶梯露在外面的部分有多少级?(2)如果扶梯附近有一从二楼到一楼的楼梯,楼梯的级数和扶梯的级数相等,两孩子各自到扶梯顶部后按原速度再下楼梯,到楼梯底部再乘扶梯(不考虑扶梯与楼梯间距离),则男孩第一次追上女孩时走了多少级台阶?5.某化肥厂库存三种不同的混合肥,第一种含磷60%,钾40%;第二种含钾10%,氮90%;第三种含钾50%,磷20%,氮30%,现将三种肥混合成含氮45%的混合肥100kg(每种肥都必须取),试问在这三种不同混合肥的不同取量中,新混合肥含钾的取值范围.6.(2002年黄冈竞赛题)有麦田5块A 、B 、C 、D 、E ,它们的产量(单位:吨)、交通状况和每相邻两块麦田的距离如图21﹣2所示,要建一座永久性打麦场,这5块麦田生产的麦子都在此打场.问建在哪块麦田上(不允许建在除麦田以外的其他地方)才能使总运输量最小?图中圆圈内的数字为产量,直线段上的字母a 、b 、d 表示距离,且b <a <d .图 21﹣2⑦⑥⑤④③aa a abdABCD E。
应用问题解题技巧应用问题是中学数学的重要内容.它与现实生活有一定的联系,它通过量与量的关系以及图形之间的度量关系,形成数学问题.应用问题涉及较多的知识面,要求学生灵活应用所学知识,在具体问题中,从量的关系分析入手,设定未知数,发现等量关系列出方程,获得方程的解,并代入原问题进行验证.这一系列的解题程序,要求对问题要深入的理解和分析,并进行严密的推理,因此对发展创造性思维有重要意义.下面举出几个例题,略述一下解应用问题的技能和技巧.1.直接设未知元在全面透彻地理解问题的基础上,根据题中求什么就设什么是未知数,或要求几个量,可直接设出其中一个为未知数,这种设未知数的方法叫作直接设未知元法.例1某校初中一年级举行数学竞赛,参加的人数是未参加人数的3倍,如果该年级学生减少6人,未参加的学生增加6人,那么参加与未参加竞赛的人数之比是2∶1.求参加竞赛的与未参加竟赛的人数及初中一年级的人数.分析本例中要求三个量,即参赛人数、未参赛人数,以及初中一年级人数.由已知条件易知,可直接设未参赛人数为x,那么参赛人数便是3x.于是全年级共有(x+3x)人.由已知,全年级人数减少6人,即(x+3x)-6,①而未参加人数增加6人时,则参加人数是未参加人数的2倍,从而总人数为(x+6)+2(x+6).②由①,②自然可列出方程.解设未参加的学生有x人,则根据分析,①,②两式应该相等,所以有方程(x+6)+2(x+6)=(x+3x)-6,所以x+6+2x+12=4x-6,所以3x+18=4x-6,所以x=24(人).所以未参加竞赛的学生有24人,参加竞赛的小学生有3×24=72(人).全年级有学生4×24=96(人).说明本例若按所求量次序设参加人数为x人,则未参加人数为例2一工人在定期内要制造出一定数量的同样零件,若他每天多做做多少个零件?定期是多少天?分析若直接设这个工人要做x个零件,定期为y天,则他每天做另一方面,如果他每天少做5个,则要增加3天工期,因此,显然,将此两式联立,解出x,y即可.解设工人要做x个零件,定期为y天,则他每天做x/y个,依分析有方程组整理得②×2+①得将x=50y代入②得y=27,x=50y=1350,答工人要做1350个零件,定期为27天.例3一队旅客乘坐汽车,要求每辆汽车的旅客人数相等.起初每辆汽车乘了22人,结果剩下1人未上车;如果有一辆汽车空着开走,那么所有旅客正好能平均分乘到其他各车上.已知每辆汽车最多只能容纳32人,求起初有多少辆汽车?有多少名旅客?解设起初有汽车m辆,开走一辆空车后,平均每辆车所乘旅客为n人.由于m≥2,n≤32,依题意有22m+1=n(m-1).所以因为n为自然数,所以23/m-1为整数,因此m-1=1,或m-1=23,即m=2或m=24.当m=2时,n=45(不合题意,舍去);当m=24时,n=23(符合题意).所以旅客人数为:n(m-1)=23×(24-1)=529(人).答起初有汽车24辆,有乘客529人.注意解方程后所得结果必须代入原题检验根的合理性,并根据情况做具体讨论.2.间接设元如果对某些题目直接设元不易求解,便可将并不是直接要求的某个量设为未知数,从而使得问题变得容易解答,我们称这种设未知数的方法为间接设元法.例4若进货价降低8%,而售出价不变,那么利润可由目前的p%增加到(p+10)%,求p.分析本题若直接设未知元为x,则不易列方程,为此,可间接设元,设进货价为x,则下降后的进货价为0.92x.由于售出价不变,它可用以下方程式表示:x(1+p%)=0.92x[1+(10+p)%].解设原进货价为x,则下降8%后的进货价为0.92x.根据题意售货价不变,故有以下方程x(1+0.01p)=0.92x[1+0.01(p+10)],约去x得1+0.01p=0.92[1+0.01(p+10)],所以1+0.01p=0.92+0.0092p+0.092,所以(0.01-0.0092)p=0.92+0.092-1,即0.0008p=0.012,所以p=15.答原利润为15%.例5甲乙两人沿着圆形跑道匀速跑步,它们分别从直径AB两端同时相向起跑.第一次相遇时离A点100米,第二次相遇时离B点60米,求圆形跑道的总长.分析与解如图1-76,设圆形跑道总长为2S,又设甲乙的速度分别为V,V',再设第一次在C点相遇,则第二次相遇有以下两种情况:(1)甲乙第二次相遇在B点下方D处,此时有方程组化简得由③,④得解此方程得S=0(舍去),S=240.所以2S=480米.经检验是方程的解.(2)若甲乙第二次相遇在B的上方D'处,则有方程组解此方程组得S=0(舍去),S=360.所以2S=720米.经检验也是方程的解.这样,两人可能在D点处相遇,也可能在D'点处相遇,故圆形跑道总长为480米或720米.3.设辅助元有时为了解题方便,可设某些量为辅助量,参与列方程和运算,最后把这些辅助量约去,得出要求的值.例6从两个重量分别为m千克和n千克,且含铜百分数不同的合金上,切下重量相等的两块,把所切下的每一块和另一种剩余的合金加在一起熔炼后,两者含铜百分数相等,问切下的重量是多少千克?分析与解设切下的重量是x千克,并设重m千克的铜合金中含铜的百分数为q1,重n千克的铜合金中含铜的百分数为q2,则切下的两块中分别含铜xq1和xq2,而混合熔炼后所得两块合金中分别含铜[xq1+(n-x)q2]和[xq2+(m-x)q1].故依题意有方程解此方程得答切下的重量为mn/m+n(千克).例7甲乙两邮递员分别从A,B两地同时以匀速相向而行,甲比乙多走了18千米(km),相遇后甲走4.5小时到达B地,乙走8小时到A地,求A,B两地的距离.解设甲速为a千米/小时,乙速为b千米/小时,A,B两地的距离为2S,依题意有所以所以S-9/S+9=3/4,所以S=63(千米),2S=126(千米).答A,B两地相距126千米.练习二十一1.已知甲、乙、丙三人.甲单独做一件工作的时间是乙丙两人合作做这件工作所用时间的a倍,乙独做这件工作是甲丙两人合作做这件工作的b 倍.求丙单独做这件工作是甲乙两人合作做这件工作所需时间的几倍?2.有甲乙两容量均为20升(L)的容器,甲容器内装满纯酒精,而乙为空容器.自甲内倒出若干酒精于乙内,再将乙其余部分注满水,将此混合溶液注满甲容器,最后自甲容器回注入乙容器62/3升,则两容器内所含纯酒精量相等,问第一次自甲容器倒出多少酒精?3.某人骑自行车从A地先以每小时12千米的速度下坡后,再以每小时15千米的速度走平路到B地,共用了55分钟.回来时他以每小时8千米的速度通过平路后,以每小时4千米的速度上坡,从B地到A地共用了11/2小时,求地面上A,B两地相距多少千米?4.有一块长方形的场地,长比宽多4米,周围有一条宽2米的道路环绕着,已知道路的面积和这块土地的面积相等.求这块场地的周长是多少米?5.一个四位数是奇数,它的千位数字小于其他各位数字,十位数字等于千位数字和个位数字之和的2倍,求这个四位数。
应用题解题思路和方法
一、应用题解题思路和方法
应用题是指要求考生将所学知识运用到实际情况,并从中提出合理的解答的题。
因此,解答应用题,必须具备良好的逻辑思维能力和分析能力。
在解答应用题时,应该遵循“认真审题、分析问题、设立目标、抓住要害、科学计算、检查结果”的原则,具体步骤如下:
1、认真审题:首先,要读清楚题目,弄懂题意,弄明白所求的是什么,了解到题目中所包含的信息和已给出的数据,然后把题目分解,限定问题的范围,明确要求。
2、分析问题:通过认真审题,明确题目中所包含的信息和要求,把问题分解,分析题目中的要点,把各个要点分别抓出来,理清关系,明确变量之间的联系,形成一个完整的思路。
3、设立目标:设定解答本题的目标,即找到符合题目要求的答案。
4、抓住要害:要抓住本题的关键点,把所有的信息和数据收集起来,找出关系,解决本题。
5、科学计算:要根据已有条件,按照正确的求解步骤,按照正确的求解方法,计算出本题的结果。
6、检查结果:根据本题的特点,检查计算结果是否正确,以及计算过程是否正确,若不正确,可以重新检查计算步骤,进行重新计算。
解答应用题,认真审题、分析问题、设立目标、抓住要害、科学计算、检查结果是一个完整的解题流程。
正确的解题步骤,加之熟练的计算技巧,就可以解决应用题了。
应用题应答技巧应用题是数学中的一大类题目,主要考察学生运用数学知识解决实际问题的能力。
为了更好地解答应用题,可以采取以下策略和技巧:1. 仔细审题:这是解答应用题的第一步,也是非常关键的一步。
一定要仔细阅读题目,弄清楚题目的要求和给出的条件。
对于复杂的句子,可以多次阅读,确保理解准确。
2. 分析问题:在理解了题目的要求和条件后,需要分析问题的本质,找出解题的关键点。
这可能涉及到一些常识和基础数学知识。
3. 建立数学模型:根据问题的描述,选择合适的数学工具和概念来建立数学模型。
这可能包括代数方程、不等式、函数、几何图形等。
这一步需要具备一定的数学基础和建模能力。
4. 计算求解:在建立了数学模型后,需要进行计算求解。
这可能需要使用一些数学软件或计算器。
同时,还需要注意计算的准确性和效率。
5. 验证答案:在得到答案后,需要回过头来验证答案是否符合题目的要求。
这可能需要对答案进行一些验证或计算。
6. 总结反思:在解答完应用题后,需要进行总结和反思。
这可以帮助你找出解题过程中的不足之处,提高解题能力和数学思维能力。
此外,为了更好地解答应用题,还需要注意以下几点:积累经验:多做应用题可以积累经验,提高解题能力。
可以通过练习、做题、参加数学竞赛等方式来积累经验。
掌握基础知识:应用题往往涉及多个数学知识点,需要掌握基础知识才能更好地解答应用题。
善于转化问题:有时应用题的问题描述比较复杂,需要将其转化为更简单、更容易解决的问题。
多角度思考问题:应用题的解答方法往往不唯一,可以从不同的角度来思考问题,找出最适合自己的方法。
初中数学应用性问题的解题技巧初中数学应用性问题的解题技巧今天小编给大家整理了一篇有关初中数学应用性问题解题技巧的相关内容,以供大家阅读参考,更多信息请关注学习方法网!应用性问题对很多初中学生来说是一个数学学习难点。
很多应用性问题背景设置的情境都是学生在生活中很少经历,造成学生对问题缺少最基本的感性认识,这样就会让学生在阅读和理解题干的时候造成干扰。
应用性问题在考查学生数学知识基础同时,更要检验学生的数学能力水平。
在初中数学知识范围内,应用性问题一般指方程(组)和不等式(组):一元一次方程、二元一次方程(组)、一元二次方程、一元一次不等式(组)。
在平常实际课堂教学过程,由于学生人生阅历的关系造成学生对外部世界的了解仅凭自己的感觉,大脑中生活内容的储存量相当有限,尤其对生产、生活、科技及社会经贸活动的知识知之甚少,缺少这些知识经验的第一体验,所以教师和学生在解决应用性问题基本知识概念同时,一定加强这些知识点与实际生活联系。
我们看下面这个实际例子:2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元。
(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?题干分析:(1)设该企业2013年处理的餐厨垃圾x吨,建筑垃圾y吨,根据等量关系式:餐厨垃圾处理费25元/吨×餐厨垃圾吨数+建筑垃圾处理费16元/吨×建筑垃圾吨数=总费用,列方程。
(2)设该企业2014年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,先求出x的范围,由于a的值随x的`增大而增大,所以当x=60时,a值最小,代入求解。
解应用题的方法和技巧
1. 哎呀,解应用题的时候,一定要仔细读题呀!就像走路要看清脚下的路一样。
比如说这道题:小明有 5 个苹果,小红比小明多 3 个,那小红有
几个苹果?这不是一下就能算出来嘛!
2. 要学会找关键信息哦!这可是解应用题的绝招呀!比如那道:一个数加上
3 等于 10,这个数是多少?找到关键的“加上 3 等于10”就好解啦!
3. 大胆去假设呀!别不敢,有时候一假设问题就迎刃而解啦。
像那道:一个盒子里不知道有几个球,摸出来一个是红球,再摸一个还是红球,那能假设盒子里全是红球试试看嘛!
4. 画个图也不错哟,直观又清晰!比如有道题说几个小朋友站成一排,通过画图就能清楚看出他们的位置关系呀!
5. 别忘了从问题倒推回去呀!这就像你要去一个地方,从目的地往回找路一样。
比如问你一共花了多少钱,就从买的东西价格去推呀!
6. 多运用生活常识嘛!应用题很多都和生活相关呀。
像算买东西找零钱这种,平时买东西的经验就派上用场啦!
7. 公式要记牢哇!就跟记好朋友的电话号码一样重要。
比如算面积、体积的公式,记住了做题不就容易啦!
8. 跟伙伴讨论讨论呀,说不定别人的想法就能点亮你的灵感呢!一道难题大家一起想,多有意思呀!
9. 别害怕做错呀,错了才能找到问题嘛!就像学走路会摔跤一样,爬起来继续就好啦!所以呀,解应用题就是这么有趣又有挑战性,大家加油去攻克它们吧!
我的观点结论:解应用题有很多有趣的方法和技巧,关键是要大胆尝试和细心思考,相信自己能行!。
第二十一讲:空间向量在立体几何中的应用【考点梳理】1.法向量的求解①法向量一定是非零向量;②一个平面的所有法向量都互相平行;③向量 n 是平面的法向量,向量 m 是与平面平行或在平面内,则有0⋅= m n .第一步:写出平面内两个不平行的向()()111222,,,,,== a x y z b x y z ;第二步:那么平面法向量(),,= n x y z ,满足1112220000⎧++=⋅=⎧⎪⇒⎨⎨++=⋅=⎩⎪⎩ xx yy zz n a xx yy zz n b .第三步:化解方程组令z y x ,,其中一个为1,求其它两个值.2.判定直线、平面间的位置关系①直线与直线的位置关系:不重合的两条直线a ,b 的方向向量分别为 a , b .若 a ∥ b ,即= a b λ,则∥a b ;若⊥ a b ,即0⋅= a b ,则⊥a b .②直线与平面的位置关系:直线l 的方向向量为 a ,平面α的法向量为 n ,且⊥l α.若 a ∥ n ,即= a n λ,则⊥l α;若⊥ a n ,即0⋅= a n ,则∥ a α.3.平面与平面的位置关系平面α的法向量为1 n ,平面β的法向量为2 n .若1 n ∥2 n ,即12= n n λ,则∥αβ;若1 n ⊥2 n ,即120⋅= n n ,则α⊥β.4.空间角公式.(1)异面直线所成角公式:设 a , b 分别为异面直线1l ,2l 上的方向向量,θ为异面直线所成角的大小,则cos cos ,⋅== a b a b a bθ.(2)线面角公式:设l 为平面α的斜线, a 为l 的方向向量, n 为平面α的法向量,θ为l 与α所成角的大小,则sin cos ,⋅== a n a n a nθ.(3)二面角公式:设1n ,2n 分别为平面α,β的法向量,二面角的大小为θ,则12,= n n θ或12,- n n π(需要根据具体情况判断相等或互补),其中1212cos ⋅= n n n n θ.5.点到平面的距离A 为平面α外一点(如图), n 为平面α的法向量,过A 作平面α的斜线AB 及垂线AH.||||⋅= AB n d n 【典型题型讲解】考点一:直线与平面所成的角【典例例题】例1.(2022·广东茂名·一模)如图,四棱锥P-ABCD 中,PA ⊥底面ABCD ,底面ABCD 为平行四边形,E 为CD 的中点,12AE CD =.(1)证明:PC AD ⊥;(2)若三角形AED 为等边三角形,PA =AD =6,F 为PB 上一点,且13PF PB =,求直线EF 与平面PAE 所成角的正弦值.【方法技巧与总结】设l 为平面α的斜线, a 为l 的方向向量, n 为平面α的法向量,θ为l 与α所成角的大小,则sin cos ,⋅== a n a n a nθ.【变式训练】1.(2022·广东惠州·一模)如图1所示,梯形ABCD 中,AB=BC=CD=2,AD=4,E 为AD 的中点,连结BE ,AC 交于F ,将△ABE 沿BE 折叠,使得平面ABE ⊥平面BCDE (如图2).(1)求证:AF ⊥CD ;(2)求平面AFC 与平面ADE 的夹角的余弦值.2.(2022·广东广州·一模)如图,在五面体ABCDE 中,AD ⊥平面ABC ,//AD BE ,2AD BE =,AB BC =.(1)求证:平面CDE ⊥平面ACD ;(2)若AB =2AC =,五面体ABCDE ,求直线CE 与平面ABED 所成角的正弦值.3.(2022·广东汕头·一模)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =,ABC 是底面的内接正三角形,且6DO =,P 是线段DO 上一点.(1)是否存在点P ,使得PA ⊥平面PBC ,若存在,求出PO 的值;若不存在,请说明理由;(2)当PO 为何值时,直线EP 与面PBC 所成的角的正弦值最大.考点二:二面角【典例例题】例1.(2021·广东佛山·一模)某商品的包装纸如图1,其中菱形ABCD 的边长为3,且60ABC ∠=︒,AE AF ==BE DF ==,将包装纸各三角形沿菱形的边进行翻折后,点E ,F ,M ,N 汇聚为一点P ,恰好形成如图2的四棱锥形的包裹.(1)证明PA ⊥底面ABCD ;(2)设点T 为BC 上的点,且二面角B PA T --的正弦值为14,试求PC 与平面PAT 所成角的正弦值.【方法技巧与总结】设12, n n 是二面角--l αβ的两个半平面的法向量,其方向一个指向二面角内侧,另一个指向二面角的外侧,则二面角--l αβ的余弦值为1212n n |n ||n |⋅⋅ .【变式训练】1.(2022·广东·一模)如图,ABCD 为圆柱OO '的轴截面,EF 是圆柱上异于AD ,BC 的母线.(1)证明:BE ⊥平面DEF ;(2)若2AB BC ==,当三棱锥B DEF -的体积最大时,求二面角B DF E --的余弦值.2.(2022·广东湛江·一模)如图,在三棱柱111ABC A B C -中,平面ABC ⊥平面11ACC A ,90ABC ∠= ,AB BC =,四边形11ACC A 是菱形,160A AC ∠=,O 是AC 的中点.(1)证明:BC ⊥平面11B OA ;(2)求二面角11A OB C --的余弦值.3.(2022·广东深圳·一模)如图,在四棱锥E -ABCD 中,//AB CD ,12AD CD BC AB ===,E 在以AB 为直径的半圆上(不包括端点),平面ABE ⊥平面ABCD ,M ,N 分别为DE ,BC 的中点.(1)求证://MN 平面ABE ;(2)当四棱锥E -ABCD 体积最大时,求二面角N -AE -B 的余弦值.4.(2022·广东广东·一模)如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,四边形ABCD 是等腰梯形,//AB DC ,2BC CD AD ===,4AB =,M ,N 分别是AB ,AD 的中点.(1)证明:平面PMN ⊥平面PAD ;(2)若二面角C AB P --的大小为60°,求四棱锥P ABCD -的体积.5.(2022·广东韶关·一模)如图,在四棱锥M ABCD -中,底面ABCD 是直角梯形,AB ∥,90C D A D C ∠= ,MBC 是以BC 为斜边的等腰直角三角形,E 为AB 中点,222AB AD D C M E ====.(1)求证:BC ME ⊥;(2)点P 为棱AM 上一点,若12AP AM =,求二面角P BD A --的余弦值.6.如图,四棱锥P ABCD -的底面ABCD 是平行四边形,且PA ⊥底面ABCD ,2,4,60AB PA BC ABC ===∠=︒,点E 是线段BC (包括端点)上的动点.(1)探究点E 位于何处时,平面PAE ⊥平面PED ;(2)设二面角P ED A --的平面角的大小为α,直线AD 与平面PED 所成角为β,求证:π2αβ+=考点三:点到平面距离【典例例题】例1.(2022·广东中山·高三期末)已知圆锥AO 的底面半径为2,母线长为,点C 为圆锥底面圆周上的一点,O 为圆心,D 是AB 的中点,且2BOC π∠=.(1)求三棱锥D OCB -的表面积;(2)求A 到平面OCD 的距离.例2.在正方体1111ABCD A B C D -中,E 为11A D 的中点,过1AB E 的平面截此正方体,得如图所示的多面体,F 为棱1CC 上的动点.(1)点H 在棱BC 上,当14CH CB =时,//FH 平面1AEB ,试确定动点F 在棱1CC 上的位置,并说明理由;(2)若2AB =,求点D 到平面AEF 的最大距离.【方法技巧与总结】如图所示,平面α的法向量为n ,点Q 是平面α内一点,点P 是平面α外的任意一点,则点P 到平面α的距离d ,就等于向量 PQ 在法向量n 方向上的投影的绝对值,即|||cos ,|==<> d PQ PQ n 或||=||||⋅⋅ PQ n d PQ n 【变式训练】1.(2022·广东梅州·二模)如图①,在直角梯形ABCD 中,AB AD ⊥,AB DC ∥,2AB =,4AD CD ==,E 、F 分别是AD ,BC 的中点,将四边形ABFE 沿EF 折起,如图②,连结AD ,BC ,AC .(1)求证:EF AD ⊥;(2)当翻折至AC =时,设Q 是EF 的中点,P 是线段AC 上的动点,求线段PQ 长的最小值.2.如图,在三棱柱111ABC A B C -中,ABC 为等边三角形,四边形11BCC B 是边长为2的正方形,D 为AB 中点,且1A D =.(1)求证:CD ⊥平面11ABB A ;(2)若点P 在线段1BC 上,且直线AP 与平面1ACD ,求点P 到平面1ACD 的距离.3.如图,矩形ABCD 和梯形ABEF ,,//AF AB EF AB ⊥,平面ABEF ⊥平面ABCD ,且2,1AB AF AD EF ====,过DC 的平面交平面ABEF 于MN .(1)求证:DN 与CM 相交;(2)当M 为BE 中点时,求点E 到平面DCMN 的距离:4.某市在滨海文化中心有滨海科技馆,其建筑有鲜明的后工业风格,如图所示,截取其中一部分抽象出长方体和圆台组合,如图所示,长方体1111ABCD A B C D -中,14,2AB AD AA ===,圆台下底圆心O 为AB 的中点,直径为2,圆与直线AB 交于,E F ,圆台上底的圆心1O 在11A B 上,直径为1.(1)求1A C 与平面1A ED 所成角的正弦值;(2)圆台上底圆周上是否存在一点P 使得1FP AC ⊥,若存在,求点P 到直线11A B 的距离,若不存在则说明理由.【巩固练习】一、单选题1.在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A BCD -中,AB ⊥平面BCD ,BC CD ⊥,且AB BC CD ==,M 为AD 的中点,则异面直线BM 与CD 夹角的余弦值为()A .3B .3C .2D .22.如图,正方体1111ABCD A B C D -的棱长为a ,E 是棱1DD 的动点,则下列说法正确的()个.①若E 为1DD 的中点,则直线1//B E 平面1A BD②三棱锥11C B CE -的体积为定值313a③E 为1DD 的中点时,直线1B E 与平面11CDD C④过点1B ,C ,E 的截面的面积的范围是22⎤⎥⎣⎦A .1B .2C .3D .4二、多选题2.在空间直角坐标系Oxyz 中,已知点(1,1,1)P ,(1,0,1)A ,(0,1,0)B ,则下列说法正确的是()A .点P 关于yOz 平面对称的点的坐标为(1,1,1)-B .若平面α的法向量(2,2,2)n =- ,则直线//AB 平面αC .若PA ,PB 分别为平面α,β的法向量,则平面α⊥平面βD .点P 到直线AB 3.直三棱柱111ABC A B C -,中,AB AC ⊥,11AB AC AA ===,点D 是线段1BC 上的动点(不含端点),则()A .//AC 平面1A BDB .CD 与1AC 不垂直C .ADC ∠的取值范围为,42ππ⎛⎤ ⎥⎝⎦D .AD DC +三、填空题4.如图,在棱长为2的正方体1111ABCD A B C D -中,点E 为棱CD 的中点,点F 为底面ABCD 内一点,给出下列三个论断:①1A F BE ⊥;②13=A F ;③2ADF ABF S S =△△.以其中的一个论断作为条件,另一个论断作为结论,写出一个正确的命题:___________.5.如图,在正方体1111ABCD A B C D -中,,E F 分别为棱11A B ,BC 的中点,则EF 与平面11A BC 所成角的正弦值为___________.四、解答题6.如图,在三棱柱111ABC A B C -中,11222A C AA AB AC BC ====,160BAA ∠=︒.(1)证明:平面ABC ⊥平面11AA B B .(2)设P 是棱1CC 的中点,求AC 与平面11PA B 所成角的正弦值.7.如图,ABCD 是边长为6的正方形,已知2AE EF ==,且////ME NF AD 并与对角线DB 交于G ,H ,现以ME ,NF 为折痕将正方形折起,且BC ,AD 重合,记D ,C 重合后为P ,记A ,B 重合后为Q .(1)求证:平面PGQ ⊥平面HGQ ;(2)求平面GPN 与平面GQH 所成二面角的正弦值.8.如图所示,在直四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,AB CD ∥,2AB CD =,60BAD ∠=︒,四边形11CDD C 是正方形.(1)指出棱1CC 与平面1ADB 的交点E 的位置(无需证明),并在图中将平面1ADB 截该四棱柱所得的截面补充完整;(2)求二面角11B AD A --的余弦值.9.如图,圆锥PO ,ABC 是⊙O 的内接三角形,平面PAC ⊥平面PBC .BC =60ABC ∠=︒.(1)证明:PA PC ⊥;(2)设点Q 满足OQ OP λ= ,其中()0,1λ∈,且二面角O QB C --的大小为60︒,求λ的值.10.如图,在三棱柱111ABC A B C -中,1AA ⊥底面111A B C ,1A C 的中点为O ',四面体111O A B C '-的体积为13,四边形11BCC B 的面积为(1)求O '到平面11BCC B 的距离;(2)设1AB 与1A B 交于点O ,ABC 是以ACB ∠为直角的等腰直角三角形且111AA A B =.求直线1'B O 与平面1A BC 所成角的正弦值.。
小学数学典型应用题二十一(税率利率问题)税率利率问题【含义】在我国把钱存入银行是有一定利息的,利息的多少,与本金、利率、存期这三个因素有关。
税率,是对征税对象的征收比例或征收额度。
中国现行的税率主要有比例税率、超额累进税率、超率累进税率、定额税率。
【数量关系】年(月)利率=利息÷本金÷存款年(月)数×100%利息=本金×存款年(月)数×年(月)利率本息和=本金+利息=本金×[1+年(月)利率×存款年(月)数]超额累进税额=第一级金额×第一级税率+第二级金额×第二级税率+第三级金额×第三级税率……【解题思路和方法】简单题目直接利用公式,复杂题目变通后再利用公式。
例1:多多妈11月2日存入银行2000元,定期二年,如果年利率按2.5%(10月9日起,对储蓄存款利息所得暂免征收个人所得税),到期时应得利息多少元?解:本题考查的知识点是利息=本金×年利率×期数,所以到期时应得利息2000×2.5%×2=100(元)。
例2:李阿姨把5万元存入银行,存期两年,年利率是3.25%,到期后她能获得的本息共多少元?解:已知本金、年利率和时间,根据本息和=本金×(1+利率×时间),可求出本息和,即50000×(1+3.25%×2)=53250(元)。
例3:根据国家规定,稿费收入超过2800元部分需缴纳个人所得税,其中不超过1200元的部分按10%税率缴纳,超出1200元的部分按照15%税率纳税,某作家税后获得稿酬4560元,那么他缴纳了多少元个人所得税。
?解:1、根据题意可知,该作家税后稿酬4560元,则所缴纳的个人所得税一定包含不超过1200元的和超出1200元的两部分。
2、其中,不超过1200元的部分,需要缴纳个人所得税1200×10%=120(元),实得1200-120=1080(元)。
应用题的解题步骤与方法一、解答应用题的一般步骤1、审题,也就是理解题意。
要反复读题,弄清已知条件和所求问题。
2、分析数量之间的关系,也就是分析题目中已知量,未知量及所求问题之间的相互关系。
有时可以通过画简单的线段关系图,使数量关系更加简单明了。
3、确定运算顺序,即先算什么、再算什么、最后算什么,并列出算式,算出结果。
4、验算并写出答案。
二、列方程解应用题的一般步骤1、弄清题意,明确已知量和未知量,用字母X表示未知量。
2、找出题目中已知量和未知量之间的等量关系。
3、根据等量关系,列出方程,并解方程。
4、检验并写出答案。
三、列方程解答应用题跟算术方法解答应用题的联系与区别。
联系:列方程解答应用题,需要应用算术里学习的四则运算的相互关系,以及常见的数量关系,因此算术解法是基础,而列方程解应用题是它的发展。
区别:1、两种解答应用题的方法表达方式不同。
列方程是用代数式表示数量关系,关系式中包括未知数X;算术解法则是用算术式子表示数量关系,计算过程不含未知数。
2、解题思路不同。
列方程解应用题是把未知量设为X,与其它已知量一起参加列式,而算术解法只能从已知与已知,已知与未知之间多层次分析思考,需要逆向思维。
3、解题步骤的不同(见解应用题的步骤)四、解答应用题的基本思路1、综合法思路。
从已知条件出发,根据数量关系先选择两个已知条件,提出可以解答的问题,然后把所求出的数量作为新的已知条件,与其它已知条件搭配,再提出可以解答的问题,这样逐步推导,直到求出题目中所要求的结果为止。
2、分析法思路。
从所求问题入手,根据数量关系,找出解答最后结果所需要的条件,把其中一个(或2个)未知条件作为新问题,再寻找解决这个新问题所需要的条件,这样逐步逆推,直到所找条件在应用题中都是已知的为止。
其实在运用分析法的逆推过程中,就是把复杂的应用题分解成几个简单的应用题。
3、综合法解题思路和分析法解题思路是相反的,但在思考过程中,分析和综合的运用并不是孤立的,而是互相联系的,综合中有分析,交叉运用。
第二十一讲应用问题的解题技巧
应用问题是中学数学的重要内容.它与现实生活有一定的联系,它通过量与量的关系以及图形之间的度量关系,形成数学问题.应用问题涉及较多的知识面,要求学生灵活应用所学知识,在具体问题中,从量的关系分析入手,设定未知数,发现等量关系列出方程,获得方程的解,并代入原问题进行验证.这一系列的解题程序,要求对问题要深入的理解和分析,并进行严密的推理,因此对发展创造性思维有重要意义.下面举出几个例题,略述一下解应用问题的技能和技巧.
1.直接设未知元
在全面透彻地理解问题的基础上,根据题中求什么就设什么是未知数,或要求几个量,可直接设出其中一个为未知数,这种设未知数的方法叫作直接设未知元法.
例1某校初中一年级举行数学竞赛,参加的人数是未参加人数的3倍,如果该年级学生减少6人,未参加的学生增加6人,那么参加与未参加竞赛的人数之比是2∶1.求参加竞赛的与未参加竟赛的人数及初中一年级的人数.
分析本例中要求三个量,即参赛人数、未参赛人数,以及初中一年级人数.由已知条件易知,可直接设未参赛人数为x,那么参赛人数便是3x.于是全年级共有(x+3x)人.
由已知,全年级人数减少6人,即(x+3x)-6,①而未参加人数增加6人时,则参加人数是未参加人数的2倍,从而总人数为
(x+6)+2(x+6).②
由①,②自然可列出方程.
解设未参加的学生有x人,则根据分析,①,②两式应该相等,所以有方程
(x+6)+2(x+6)=(x+3x)-6,
所以
x+6+2x+12=4x-6,
所以3x+18=4x-6,
所以x=24(人).
所以未参加竞赛的学生有24人,参加竞赛的小学生有
3×24=72(人).
全年级有学生
4×24=96(人).
说明本例若按所求量次序设参加人数为x人,则未参加人数为
例2一工人在定期内要制造出一定数量的同样零件,若他每天多做
做多少个零件?定期是多少天?
分析若直接设这个工人要做x个零件,定期为y 天,则他每天做
另一方面,如果他每天少做5个,则要增加3天工期,因此,
显然,将此两式联立,解出x,y即可.
解设工人要做x个零件,定期为y天,则他每天做x/y个,依分析有方程组
整理得
②×2+①得
将x=50y代入②得
y=27,x=50y=1350,
答工人要做1350个零件,定期为27天.
例3一队旅客乘坐汽车,要求每辆汽车的旅客人数相等.起初每辆汽车乘了22人,结果剩下1人未上车;如果有一辆汽车空着开走,那么所有旅客正好能平均分乘到其他各车上.已知每辆汽车最多只能容纳32人,求起初有多少辆汽车?有多少名旅客?
解设起初有汽车m辆,开走一辆空车后,平均每辆车所乘旅客为n人.由于m≥2,n≤32,依题意有
22m+1=n(m-1).
所以
因为n为自然数,所以23/m-1为整数,因此
m-1=1,或m-1=23,
即m=2或m=24.
当m=2时,n=45(不合题意,舍去);当m=24时,n=23(符合题意).
所以旅客人数为:
n(m-1)=23×(24-1)=529(人).
答起初有汽车24辆,有乘客529人.
注意解方程后所得结果必须代入原题检验根的
合理性,并根据情况做具体讨论.
2.间接设元
如果对某些题目直接设元不易求解,便可将并不是直接要求的某个量设为未知数,从而使得问题变得容易解答,我们称这种设未知数的方法为间接设元法.例4若进货价降低8%,而售出价不变,那么利润可由目前的p%增加到(p+10)%,求p.
分析本题若直接设未知元为x,则不易列方程,为此,可间接设元,设进货价为x,则下降后的进货价为0.92x.由于售出价不变,它可用以下方程式表示:x(1+p%)=0.92x[1+(10+p)%].
解设原进货价为x,则下降8%后的进货价为
0.92x.根据题意售货价不变,故有以下方程
x(1+0.01p)=0.92x[1+0.01(p+10)],
约去x得
1+0.01p=0.92[1+0.01(p+10)],
所以
1+0.01p=0.92+0.0092p+0.092,
所以
(0.01-0.0092)p=0.92+0.092-1,
即0.0008p=0.012,
所以p=15.
答原利润为15%.
例5甲乙两人沿着圆形跑道匀速跑步,它们分别从直径AB两端同时相向起跑.第一次相遇时离A点100米,第二次相遇时离B点60米,求圆形跑道的总长.分析与解如图1-76,设圆形跑道总长为2S,又设甲乙的速度分别为V,V',再设第一次在C点相遇,
则第二次相遇有以下两种情况:
(1)甲乙第二次相遇在B点下方D处,此时有方程组
化简得
由③,④得
解此方程得
S=0(舍去),S=240.
所以2S=480米.经检验是方程的解.
(2)若甲乙第二次相遇在B的上方D'处,则有方程组
解此方程组得
S=0(舍去),S=360.
所以2S=720米.经检验也是方程的解.
这样,两人可能在D点处相遇,也可能在D'点处相遇,故圆形跑道总长为480米或720米.
3.设辅助元
有时为了解题方便,可设某些量为辅助量,参与列方程和运算,最后把这些辅助量约去,得出要求的值.
例6从两个重量分别为m千克和n千克,且含铜百分数不同的合金上,切下重量相等的两块,把所切下的每一块和另一种剩余的合金加在一起熔炼后,两者含铜百分数相等,问切下的重量是多少千克?
分析与解设切下的重量是x千克,并设重m千克的铜合金中含铜的百分数为q
1
,重n千克的铜合金中含
铜的百分数为q
2,则切下的两块中分别含铜xq
1
和xq
2
,
而混合熔炼后所得两块合金中分别含铜[xq1+(n-x)q
2
]
和[xq
2
+(m-x)q1].故依题意有方程
解此方程得
答切下的重量为mn/m+n(千克).
例7甲乙两邮递员分别从A,B两地同时以匀速相向而行,甲比乙多走了18千米(km),相遇后甲走4.5小时到达B地,乙走8小时到A地,求A,B两地的距离.解设甲速为a千米/小时,乙速为b千米/小时,A,B两地的距离为2S,依题意有
所以
所以S-9/S+9=3/4,
所以S=63(千米),2S=126(千米).
答A,B两地相距126千米.
练习二十一
1.已知甲、乙、丙三人.甲单独做一件工作的时间是乙丙两人合作做这件工作所用时间的a倍,乙独做这件工作是甲丙两人合作做这件工作的b倍.求丙单独做这件工作是甲乙两人合作做这件工作所需时间的几倍?
2.有甲乙两容量均为20升(L)的容器,甲容器内装满纯酒精,而乙为空容器.自甲内倒出若干酒精于乙内,再将乙其余部分注满水,将此混合溶液注满甲容器,最后自甲容器回注入乙容器62/3升,则两容器内所含纯酒精量相等,问第一次自甲容器倒出多少酒精?
3.某人骑自行车从A地先以每小时12千米的速度下坡后,再以每小时15千米的速度走平路到B地,共用
了55分钟.回来时他以每小时8千米的速度通过平路
后,以每小时4千米的速度上坡,从B地到A地共用了
11/2小时,求地面上A,B两地相距多少千米?
4.有一块长方形的场地,长比宽多4米,周围有一条宽2米的道路环绕着,已知道路的面积和这块土地
的面积相等.求这块场地的周长是多少米?
5.一个四位数是奇数,它的千位数字小于其他各位数字,十位数字等于千位数字和个位数字之和的2倍,求这个四位数.。