分数应用题解题方法大全
- 格式:doc
- 大小:1.60 MB
- 文档页数:42
分数应用题的解题方法1、引言在数学学习中,分数应用题是经常出现的题型之一。
解答这类题目需要掌握一定的解题方法和技巧。
本文将为大家介绍几种常见的解题方法,以帮助大家更好地解决分数应用题。
2、换算法在分数应用题中,经常需要将一个分数表达成另一种形式,这就需要用到换算法。
换算法的基本原理是乘以一个合适的分式,使得原分数的分母变化为所需的分母。
例如,将分数$\frac{2}{3}$转换成分母为6的分数,我们可以乘以$\frac{6}{2}$,得到$\frac{2}{3}\times\frac{6}{2}=\frac{12}{6}$,即$\frac{2}{3}=\frac{12}{6}$。
通过换算法,我们可以灵活地将分数转换为需要的形式,便于进行计算和分析。
3、化简法有时,分数应用题给出的分数较为复杂,需要进行化简才能得到准确的结果。
化简法是一种常见的解题方法。
化简法的关键在于找到分子和分母的最大公约数,并将分子分母同时除以最大公约数,从而将分数化简为最简形式。
例如,将分数$\frac{15}{25}$化简为最简形式,我们可以找到15和25的最大公约数为5,然后将分子分母同时除以5,得到$\frac{15}{25}=\frac{3}{5}$。
通过化简法,我们可以得到最简分数,便于进行计算和比较。
4、分数的加减法在分数应用题中,经常需要进行分数的加减运算。
分数的加减法需要找到相同的分母,然后按照相同的分母进行计算。
具体步骤如下:(1)找到两个分数的最小公倍数,作为相同的分母;(2)将分子按照相同的分母进行放大或缩小;(3)按照相同的分母进行分子的加减运算;(4)化简得到最简分数形式。
例如,计算$\frac{2}{3}+\frac{1}{4}$:(1)相同的分母为12,即$\frac{2}{3}\times\frac{4}{4}=\frac{8}{12}$,$\frac{1}{4}\times\frac{3}{3}=\frac{3}{12}$;(2)按照相同的分母进行计算,$\frac{8}{12}+\frac{3}{12}=\frac{11}{12}$;(3)化简得到最简分数形式,$\frac{11}{12}$。
六个技巧解决小学六年级数学难题——分数应用题——分数应用题分数应用题是小学数学应用题中的重点难点,由于抽象程度比较高,很多孩子都难以把握,致使失分率也比较高。
其实,分数应用题的解题是有规律可循的,家长在辅导孩子时,就要教孩子抓住规律,得出解题方法。
总的来说,帮助孩子攻克分数应用题,家长从以下六个解题技巧入手。
一、字斟句酌分数应用题很多时候容易产生“歧义”,所以家长要特别提醒孩子在审题时抓住关键句,找准比较的对象。
分数应用题中都有说明两个量之间关系的句子,这些句子是应用题的题眼、解题的突破点。
比如:汽车在公路上行驶,先把速度提高20%,再把速度降低20%,现在的速度是原来的百分之几?分析:设定原来的速度为100%,提高20%后为120%,当再次降低时,是在120%的基础上降低,此时的20%是120%×0.2=24%。
所以降低后是120%-24%=96%。
二、抓不变量有些分数应用题数量变化多,分析难度大,不易列式计算。
但是,仔细分析就会发现,变来变去,总有一个量是不变的,这就是我们所说的不变量。
对于这类分数应用题,家长辅导孩子解答时,要专注“不变量”,以静制动,使问题迎刃而解。
比如:有两桶水,第一桶水的重量是第二桶水的6倍,从第一桶取出12千克水加入第二桶,这时第一桶水的重量是第二桶的4倍,问第一桶原来有水多少千克?分析:两桶水的总重量总是不变的,但又未知,我们把它看作单位“1”的量。
则“取前”第一桶占两桶水总重量的1/(1+6)=1/7,“取后”第一桶占两桶水总重量的1/(1+4)=1/5。
第一桶取前取后差12千克占两桶总重量的1/5-1/7=2/35,故两桶水总重量为12÷2/35=210(千克),由此可求出原来第一桶水的重量为:210÷1/7=30(千克)三、找准单位“1”的量不管是简单分数应用题还是复杂的分数应用题,题中都有关键句,关键句中都有单位“1”的量,准确找出单位“1”的量是解答分数应用题的前提条件。
六年级数学上应用题分数技巧与方法一、分数应用题的解题方法1. 找单位“1”的量。
在审题时,首先要把问题中涉及的量与分率对应起来,看题目中有几个量,每个量所占的分率是多少,并确定出单位“1”的量。
2. 确定解题方法。
如果题目中单位“1”的量是未知的,就采用除法,进而转化为乘法运算;如果题目中单位“1”的量是已知的,就采用乘法运算。
3. 对应解题。
根据数量关系,把具体数量与分率对应起来,列出算式并计算。
二、分数应用题的解题步骤1. 读懂题意,确定解题方法。
在解答分数应用题时,首先要认真审题,弄清题目中涉及的量和分率,然后根据数量关系列出算式并计算。
2. 找准量与分率的对应关系。
在分数应用题中,量与分率对应是解题的关键。
要分清每个量所占的分率,进而确定出单位“1”的量。
3. 掌握基本数量关系式。
在分数应用题中,常用的数量关系式有:单位“1”的量×分率=部分量等。
4. 逐步解答。
在解答分数应用题时,要按照题目所给的条件,逐步解答。
一般可采用综合算式或分步计算的方法进行解答。
5. 检验答案。
在解答分数应用题时,要检验答案是否正确。
可以采用逆向思维或代入法进行检验。
三、分数应用题的练习方法1. 专项训练。
可以针对某一类型的分数应用题进行专项训练,如工程问题、行程问题等。
通过专项训练,可以加深对某一类型题目的理解和掌握。
2. 多做练习。
熟能生巧,多做练习是提高分数应用题解题能力的有效方法。
可以通过练习册、习题集等途径进行练习。
3. 归纳总结。
在练习过程中,要注意归纳总结解题方法,形成自己的解题思路和技巧。
同时,也可以借鉴他人的经验和技巧,不断提高自己的解题能力。
4. 注重思路。
在练习过程中,不要只关注答案是否正确,更要注重解题思路是否清晰、合理。
只有掌握了正确的解题思路,才能真正提高分数应用题的解题能力。
数学作业
分数应用题八种解题法
一.对应的解题方法
1.筑路队修一条公路。
第一周修了全长的3/10 ,第二周修了全长的3/8,两周修的比全长的一半多2.8千米。
这条公路全长多少千米?
二.‘‘假设法’’解题
2.一项工程,单独做,甲队需要20天,乙队需要30天。
合做若干天后,乙队调出,甲队接着干,共用18天干完。
干完时乙队调出了几天?
三.转换条件的解题方法
3.某电厂原有职工160人,其中女职工占11/20,后来调走了一批女职工,这时女职工占总人数的5/11。
现在这个电厂有多少女职工?
四.等量代换的解题方法
4.果园里栽了110棵苹果树和梨树。
苹果树的1/3比梨树的1/5多10棵。
果园里有多少棵梨树?
五.消去同一个量的解题方法
5.有一箱苹果和一箱梨,苹果的1/2和梨的1/3重34千克。
苹果的1/3和梨的1/3重25千克,苹果和梨各重多少千克?
六.用归一法解答
6.一件上衣比一条裤子贵84元,上衣价格的1/2 相当于裤子价格的4/5。
求上衣和裤子的价格。
七.列方程解分数应用题
7.甲、乙两书架共有图书1000册,若从两个书架上各取掉1/5后,再把甲书架的书取40册给乙书架,这时两书架上的书一样多。
甲、乙两书架各有图书多少册?
八.用比例知识解分数应用题
例8. 某糖厂上半月共生产白糖和红糖1100吨,红糖的3/5 和白糖的1/2 相等。
这个厂上半月生产的白糖、红糖各多少吨?。
分数除法应用题的解题技巧
1. 嘿呀,大家注意啦!找单位“1”可是关键哦!比如这道题:小明吃了一堆苹果的四分之一,这“一堆苹果”不就是单位“1”嘛!你可别找错了呀!
2. 哇塞,看到分数除法应用题,先想想等量关系式呀!就像“速度×时间=路程”这样的,一旦找到等量关系,解题就容易多啦!比如:小红每分钟走50 米,10 分钟走了多远?不就是有了等量关系嘛!
3. 哎呀呀,把除法转化成乘法有时候超好用的呀!例如:五分之一除以三分之二,不就可以变成五分之一乘二分之三嘛,这样是不是简单多了?
4. 嘿,要学会画图呀!把题目中的关系用图表示出来,那可就清晰明了。
比如:有 10 个苹果,分了一半给别人,画个图立马就清楚啦!
5. 哈哈,有些题目里隐藏的条件可要找出来哦!就像那道题,说小明比小红高 10 厘米,这里面不就藏着信息嘛,能帮助你解题呀!
6. 哇哦,一定要看清题目中的陷阱呀!有时候一个小细节就能决定对错呢。
比如题目说“提高了”和“提高到”那可完全不一样呀!
7. 哟呵,做完题检查一下很有必要呀!万一粗心算错了呢。
你想想,要是因为粗心丢分,那多可惜呀!
8. 嘿,有时候可以从问题入手倒着推呀!比如问你一共多少个,那你就想想根据哪些信息可以求出总数呀!
9. 哈哈,分数除法应用题其实并不难呀,只要掌握了这些技巧,还怕解不出来题吗?大家加油哦!
我的观点:掌握好这些解题技巧,分数除法应用题就能轻松拿下!。
分数除法的应用题解题技巧
1. 嘿,遇到分数除法的应用题不要慌!先找到关键信息呀!比如说,小明有 2/3 个苹果,要分给 4 个人,那每个人分到多少呀?这不就是求平均
数嘛,先搞清楚总数和份数,问题就迎刃而解啦!
2. 哇塞,要注意单位“1”哦!就像小红有一堆糖果,这堆糖果就是单位“1”。
如果告诉你她分出去了 1/4,那剩下多少不就好算了嘛!比如她有12 颗糖果,分出去多少颗是不是一下就知道啦?
3. 哎呀呀,分数除法里画图很重要呀!像小李要把一块蛋糕的 3/5 平均分
给 3 个朋友,你画个图,一目了然,是不是瞬间清楚怎么算了!
4. 嘿,别忘了等量关系式哦!就好像说小王跑了一段路的 2/3 是 10 千米,那这段路全长多少?找到那个等量关系呀,这种题就难不倒你啦!
5. 哇哦,约分和约分后的处理也很关键呀!比如计算 4/8 除以 2,约分后就简单很多啦,最后结果一下子就出来了,是不是很神奇?
6. 哈哈,把复杂的问题简单化呀!像小张有一堆书,其中 3/8 是故事书,
故事书有15 本,那这堆书一共有多少本?别想得太复杂,一步一步来就行!
7. 哎哟喂,有时候要转换一下思路哦!就好比小赵要把一块地的 4/5 种上
蔬菜,那没种蔬菜的占多少?换个角度想,是不是一下子就清楚啦?
8. 呀,仔细审题很重要的呀!如果题目说小芳把1/2 个蛋糕平均分成4 份,你可别看成整个蛋糕啦,那可就闹笑话啦!
9. 嘿嘿,掌握了这些技巧,分数除法应用题就不难啦!遇到问题多想想这些方法呀,肯定没问题的!
我的观点结论就是:只要你用心去掌握这些解题技巧,分数除法应用题绝对不再是难题!。
数学分数应用题解题方法
1. 哎呀,要解决数学分数应用题,首先得认真审题呀!就像要去一个陌生地方,得先搞清楚路线吧!比如这道题:小明有半块蛋糕,又得到了整个蛋糕的 1/4,那他现在一共有多少蛋糕呀?
2. 接下来,找到关键信息很重要呢!这就像在一堆玩具里找到你最喜欢的那个。
像“一本书300 页,已经看了2/5”,“2/5”就是个关键信息呀!
3. 然后呢,要确定单位“1”呀!这就好比你要知道自己是在跟谁比。
比如“某班男生占全班人数的3/5”,全班人数就是单位“1”呢!
4. 画个图也超有用的呀!它能把问题变得清晰可见。
比如说有堆苹果,给了别人 1/3,我们画个图,就能清楚地看到剩下多少啦!
5. 列式计算可不能马虎哟!就像在搭积木,要一块一块稳稳地搭起来。
例如“一个数的 1/3 是 10,这个数是多少”,这就得认真列式算啦!
6. 检查可别忘掉呀!这就和出门前照镜子一样重要。
看看你的答案合不合理,有没有漏算呀!
7. 在解决分数应用题时,要学会举一反三呀!不能只会做一道题,别的类似的就傻眼了。
像知道了怎么算苹果的,换成橘子的问题也得会呀!
8. 多和同学讨论讨论也很好啊!说不定他的想法就会给你启发呢。
“嘿,你这道题是怎么想的呀?”这样互相交流多有意思!
9. 只要多练习,分数应用题就难不倒我们啦!就像玩游戏,玩多了自然就厉害啦!
我的观点结论:数学分数应用题其实不难,只要用对方法,大家都能轻松搞定!。
六年级分数应用题解题技巧
一、必须要理解分数的意义
分数的意义:把单位“1”平均分成若干份,表示其中的一份或者几份的数,叫做分数。
比如这个例子,男生人数占全班人数的2/7,这里的2/7就表示:“把单位‘1’(全班人数)平均分成7份,男生占其中的2份。
”
在解题的时候还要分清楚数量与分数的区别,比如这个例子:
一根绳子的3/7正好是3/7米,求这根绳子的长度。
这个问题中,第一个3/7没有带单位,它是一个具有分数意义的分数,第二个3/7带有一个单位“米”,所以它表示的是一个具体数量“3/7米”。
这一点是非常重要的,必须要理解透。
二、确定单位“1”的方法:
1、单位“1”的位置
单位“1”通常在“占”“是”“比”“相当于”之后,分数前面的“的”“多”“少”字之前;
2、单位“1”不明确的处理办法:
找出含有分数的句子,根据实际情况理解出单位“1”,并把句子补充成含有单位“1”的完整形式,如“谁是谁的几分之几”,“谁比谁多(或者少)的占'谁'的几分之几”。
①某厂去年生产零件3600个,今年增加了2/5;
思路:今年比“谁”增长了2/5?今年比“去年”增长了2/5.
②冰化成水,体积增加1/10;
思路:谁比谁体积增加1/10?水比冰体积增加1/10。
分数应用题解题方法一、解题技巧:一抓,二找,三确定,四对应。
1.一抓:抓住关键句----含有分率的句子(不带单位的分数)2.二找:找准单位1的量:单位1一般都是在“的”前面,或是在“比、是、占、相当于”的后面。
看分率是谁的几分之几,谁就是单位1的量。
3.三确定:确定单位1是已知还是未知,单位1已知用乘法计算,单位1未知用除法或方程计算。
4.四对应:找出相对于的数量与分率。
乘法:单位1×对应分率=对应数量除法:对应数量÷对应分率=单位1二、解题方法:借助线段图帮助我们来分析数量关系,画图时先画单位1的量。
第一类:乘法一条公路:男生:女生:第二类:除法一条公路:男生:女生:三、分数应用题主要讨论的是以下三者之间的关系。
1.分率:表示一个数是另一个数的几分之几。
2.标准量:我们把单位1的量称为标准量。
3.比较量:我们把同标准量比较的量称之为比较量,也叫分率对应的数量。
四、分数应用题的分类。
第一类:已知两个数量,比较它们之间的倍数关系,应该用除法计算。
A求分率即就是求一个数是另一个数的几分之几。
(五下)基本关系式:比较量÷标准量=分率(几分之几)学校的果园里有梨树15棵,桃树20棵。
梨树是桃树的几分之几?B求一个数比另一个数多几分之几。
(六上)基本关系式:相差量÷标准量=分率学校的果园里有梨树15棵,桃树20棵。
桃树比梨树多几分之几?C秋一个数比另一个数少几分之几。
(六上)基本关系式:相差量÷标准量=分率学校的果园里有梨树15棵,桃树20棵。
梨树比桃树少几分之几?第二类:单位1已知,用乘法计算。
A求一个数的几分之几是多少。
(五下)把已知数量看多单位1,就是求它的几分之几是多少,它反映的是部分与整体之间的关系。
基本关系式:单位1的量×对应分率=对应数量1.一条公路全长1200米,已经修了全长的13,修了多少米?2.一支钢笔单价是30元,圆珠笔的单价是钢笔的16。
分数应用题的方法和技巧
在解答分数应用题时,以下是一些常用的方法和技巧:
1. 确定未知数:首先明确问题中的未知数,并用一个变量来表示。
例如,如果问题涉及到某个人的年龄,可以用x来表示这个人的年龄。
2. 变量的分数表达式:根据问题描述,将变量表示为一个分数表达式。
例如,如果问题中提到某个人年龄的1/3等于15岁,则可以表示为x/3 = 15。
3. 解方程:将问题转化为一个方程,并求解这个方程来得到未知数的值。
在上述例子中,通过乘以3,可以得到x = 45。
4. 确认答案的合理性:将未知数的值代入原方程中,确认答案的合理性。
在上述例子中,将x = 45代入x/3 = 15,可以验证
等式成立。
5. 注意化简:在解题过程中,可能需要对分数进行化简。
例如,将2/4简化为1/2,便于计算。
6. 注意单位转换:问题中可能涉及到单位的转换。
在解题过程中,需要注意将单位转换为一致的形式,以便计算。
7. 图形辅助:对于某些问题,可以用图形进行辅助。
例如,在解决比例问题时,可以用图形表示比例关系,帮助理解和解决问题。
8. 相关知识点:对于一些特定的类型的分数应用题,掌握相关的数学知识点会有帮助。
例如,理解分数的基本运算法则、比例关系的性质等。
以上是一些常用的方法和技巧,希望对解答分数应用题有所帮助。
分数、百分数应用题的一般解题方法(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--分数、百分数应用题的一般解题方法一、解决分数乘法问题1、求一个数的几分之几是多少(单位“1”已知)单位“1”×分率=分率所对应的量2、求一个数比单位“1”多几分之几是多少(单位“1”已知)单位“1”×(1+分率)=分率所对应的量3、求一个数比单位“1”少几分之几是多少(单位“1”已知)单位“1”×(1-分率)=分率所对应的量二、解决分数除法问题1、已知一个数的几分之几是多少,求这个数(单位“1”未知)数量÷数量所对应的分率=单位“1”2、已知一个数比另一个数多几分之分,求这个数(单位“1”未知)数量÷(1+分率)=单位“1”3、已知一个数比另一个数少几分之分,求这个数(单位“1”未知)数量÷(1-分率)=单位“1”三、解决百分数问题1、求百分率的问题:一个数是另一个数的百分之几。
另一个数一个数×100%=百分率2、求一个数比另一个数多(少)百分之几。
相差数÷单位“1”=多(少)百分之几 对应量÷单位“1”-13、求一个数的百分之几是多少(单位“1”已知)单位“1”×百分率=分率所对应的量已知一个数的百分之几是多少,求这个数。
(单位“1”未知)数量÷数量所对应的百分率=单位“1”4、求比一个数多(少)百分之几的数是多少单位“1”×(1+百分率)=分率所对应的数量5、已知比一个数多(少)百分之几的数是多少,求这个数。
数量÷(1+对应分率)=单位“1”6、折扣问题原价×折扣=现价7、纳税问题收入×税率=应纳税额8、利息问题本金×利率×时间=利息利息×税率=利息税利息—利息税=税后利息本息=本金+税后利息。
分数应用题的解题方法(一定背过解题方法)一找二定三列式1、找准单位“1”的量。
( “的”字前面, “比”、“是”、“占” 字后面的量为单位“1”)2、确定单位“1"是已知还是未知?(单位“1"是已知的用乘法,未知的用除法)3、 单位“1”的量×分率=分率对应量分率对应量(已知数)÷对应分率=单位“1”的量4、比单位“1”多就用(1+﹍),比单位“1”少就用(1-﹍)。
分数应用题解题技巧·转化单位“1”方法一:将一个数的几分之几的几分之几转化为这个数的几分之几。
例:读了一本故事书,第一天读了全书的15 ,第二天读了余下的34。
第二天读了全书的几分之几?全书还剩几分之几?方法二:甲数是乙数的几分之几,转化为乙数是甲数的几分之几。
例:甲数是乙数的49。
求乙数是甲数的几分之几?方法三:甲数比乙数多(少)几分之几转化为乙数比甲数少(多)几分之几。
例:四年级人数比五年级人数少14。
五年级人数比四年级人数多几分之几?方法四:甲数的几分之几等于乙数的几分之几转化为甲数是乙数的几分之几(或乙数是甲数的几分之几)。
例:甲数的23 等于乙数的34。
甲数是乙数的几分之几?乙数是甲数的几分之几?方法五:假设在解题中的妙用:有些应用题数量关系比较复杂隐蔽,按一般的方法,难以找到数量间的关系及内在联系。
但是通过假定某个条件或现象成立,往往可以找到解答的途径。
例:有两筐苹果共重220千克,从甲筐取出15 ,从乙筐取出14共重50千克。
两筐苹果原来各有多少千克?方法六:找已知量对应的分率,用已知量除以它所对应的分率就可以得到单位“1”的量。
例:“一批煤用去了23 ,正好是24吨。
这批煤共有多少吨?”在这个问题中,“23”与 “24吨”表示的同一个数量,都是用去的煤的数量。
一个是具体的量,一个是分数量,这们把“23 ”叫做“24吨”所对应的分率,解题时用“24÷23”得到的就是单位“1”的量,在本题中也就是煤的总量。
分数应用题解的技巧解答分数应用题要做到“四个善于”(这里的方法其实也是一种思路)分数应用题变化多端,但我们只要仔细审题,掌握一定的解题技巧,便能迎刃而解.一、善于对应.在解答分数(百分数)应用题时,找不准数量之间的对应关系是造成错误的重要原因.因而,要正确解答分数应用题首先要善于找出数量之间的对应关系.如:某工厂有工人1350人,其中男工人占,男工人比女工人多多少人?根据题意,可找出下列对应关系:二、善于比较.有意识地进行题组比较,能使我们分清分数应用题的结构特征,清晰分数应用题的解题思路.如:(1)水果店运来苹果2000千克,比运来的梨多,梨有多少千克?(2)水果店运来苹果2000千克,运来的梨比苹果多,梨有多少千克?比较两道题,就会发现:一是单位“1”不同.(1)题中的单位“1”是梨的数量(未知);(2)题中的单位“1”是苹果的数量(已知).二是数量2000千克对应的分率不同.(1)题中2000千克对应的分率是;(2)题中2000千克对应的分率是“1”.三是类型不同.(1)题是“已知一个数的几分之几是多少,求这个数”,用方程或除法解答;(2)题是“求一个数的几分之几是多少”,用乘法解答.四是列式与计算结果不同.三、善于假设.遇到某些难以解答的分数应用题,我们不妨合理假设具体条件,使抽象的数量关系具体化.如:水结成冰时,体积增加.冰化成水时,体积减少几分之几?我们可先假设水有11立方米,求出水结成冰后的体积是12立方米,再求出冰化成水后体积减少几分之几:即.四、善于沟通.对相类似的知识进行联想沟通,能使我们解题时融会贯通,举一反三.如:(1)小明去买早点,包里的钱单买油条可买10根,单买包子可买5个.他买了2根油条后,还可买几个包子?(2)一块木料单做椅子可把10把,单做桌子可做5张.李师傅先用这块木料做了2把椅子,还可做几张桌子?如果我们把这一类题与工程问题进行沟通,就会很快找到解题思路.分数应用题是小学教学中的难点之一,它主要有三种类型:1.已知两个数,求一个数是另一个数的几分之几;2.已知一个数,求它的几分之几;3.已知一个数的几分之几是多少,求这个数。
分数的应用题六种解法分数是数学中常见的表示比例和部分的方式,它在生活中的应用也非常广泛。
今天,我将为大家介绍六种解决分数应用题的方法。
一、画图法画图法是一种直观的解题方法。
以某个具体的例子来说明。
假设小明有2/3的巧克力,小红有1/4的巧克力,他们想将巧克力平均分配。
我们可以画两个巧克力盒,并按比例将巧克力分配给小明和小红。
这样,他们就可以直观地理解分配的过程。
二、找最小公倍数解决一些关于分数的应用题时,我们需要找到最小公倍数。
例如,小明每天按照1/5的速度走路,小红按照1/3的速度走路,他们同时从同一个地方出发,问多少天后他们会在同一个地方相遇。
我们可以找到1/5和1/3的最小公倍数,即15。
因此,他们将在15天后相遇。
三、转化为整数运算有些分数应用题可以转化为整数运算来解决。
例如,小明用1/2小时完成作业,小红用1/3小时完成同样的作业,问他们两人一起完成这个作业需要多长时间。
我们可以将1/2和1/3转化为分母的最小公倍数,即6。
因此,他们一起完成这个作业需要1/6小时。
四、比较大小在比较大小的应用题中,我们需要将两个或多个分数进行比较。
例如,小明用2/5的时间做数学题,用1/4的时间做英语题,问他用了更多的时间做数学题还是英语题。
我们可以将2/5和1/4的分母取相同的最小公倍数,即20。
然后比较分子的大小,即2和5,得出结论小明用了更多的时间做数学题。
五、分数的加减运算在分数的加减运算中,我们需要将分母相同的分数进行运算。
例如,小明走了3/5的路程,小红走了2/5的路程,问他们总共走了多少路程。
我们可以将3/5和2/5的分母取相同的最小公倍数,即5。
然后将分子相加,得到答案5/5,即1。
因此,他们总共走了1个路程。
六、分数的乘除运算在分数的乘除运算中,我们需要将分子进行运算,再将分母进行运算。
例如,小明用2/3小时做完一个作业,小红用3/4小时做同样的作业,问小红完成这个作业需要多长时间。
6年级分数应用题解题技巧一、找准单位“1”1. 技巧一般来说,“是”“比”“占”后面的量就是单位“1”。
例如:“男生人数是女生人数的公式”,这里女生人数就是单位“1”;“甲数比乙数多公式”,乙数是单位“1”。
2. 题目解析例:某工厂去年生产零件1200个,今年生产的零件数比去年多公式,今年生产零件多少个?解析:这里“比”字后面是去年生产的零件数,所以去年生产的零件数1200个就是单位“1”。
今年生产的零件数是在去年的基础上多公式,那么今年生产的零件数就是去年的公式倍。
计算:公式(个)二、画线段图辅助理解1. 技巧用一条线段表示单位“1”,根据题目中的数量关系,将其他量用线段表示出来。
例如,对于“甲是乙的公式”,先画表示乙的线段,再将其平均分成3份,取其中2份表示甲。
2. 题目解析例:水果店里苹果和梨一共有300千克,苹果的重量是梨的公式,苹果和梨各有多少千克?解析:先画表示梨重量的线段,把它看作单位“1”。
再根据苹果重量是梨的公式,画出表示苹果重量的线段。
从图中可以看出,苹果和梨的总重量对应的份数是公式份。
计算:梨的重量为公式(千克),苹果的重量为公式千克。
三、根据分数的意义解题1. 技巧理解分数表示的是把单位“1”平均分成若干份,表示这样一份或几份的数。
例如,公式表示把单位“1”平均分成5份,取其中的3份。
2. 题目解析例:把一根绳子剪成两段,第一段长公式米,第二段占全长的公式,哪段绳子长?解析:根据分数的意义,第二段占全长的公式,那么第一段就占全长的公式。
因为公式,所以第二段绳子长。
四、利用方程解题1. 技巧设单位“1”的量为公式,根据题目中的数量关系列出方程求解。
2. 题目解析例:一个数的公式比这个数的公式多10,这个数是多少?解析:设这个数为公式。
根据题意可列出方程:公式。
通分得到公式,即公式。
解得公式。
分数应用题解题技巧及口诀
1. 哎呀呀,遇到分数应用题先别慌!咱要找关键量呀!就像找宝藏一样,找到了关键量,问题就好解决啦!比如说,有一道题说小明吃了一堆苹果的$\frac{1}{3}$,那这“$\frac{1}{3}$”就是个关键呀,咱得围绕它来解题呀!明白不?
2. 嘿!遇到那种问整体是多少的,就得用除法啦!这就好比是要把一块大饼还原成整个的呀!比如题目说知道了部分是多少,又知道占整体的几分之几,那赶紧用部分除以所占比例,整体不就出来啦!能懂不?
3. 哇塞,有的时候可以画图呀!把分数的关系用图表示出来,一下子就清楚啦,就跟地图让人看懂路线一样呢!像有个题是说甲占乙的几分之几,那画个图,甲乙的关系不就明明白白啦!是不是很神奇呀?
4. 记住咯,看到增加或减少的分数,得小心啦!可不能马虎哟!这就像是走钢丝,得步步谨慎!比如说题目说某东西增加了$\frac{1}{4}$,那咱就得把原来的看作单位“1”,然后再计算呀!对不?
5. 哈哈,分数应用题里的单位“1”很重要呀!就像游戏里的老大一样!一
旦确定了单位“1”,就像找到了方向啦!比如人家问你某东西占谁的几分
之几,那赶紧找到那个“1”呀!这不难吧?
6. 哎呀呀,咱还得学会灵活转化呀!分数可以变来变去的呢,就像孙悟空七十二变一样!例如知道了甲是乙的几分之几,那乙是甲的几分之几不也就可以算出来啦!是不是很有意思呀?
我的观点结论:只要掌握了这些技巧和口诀,分数应用题就没那么可怕啦,咱都能轻松应对!。
分数应用题的解题技巧1. 嘿,大家知道吗,找单位“1”可是分数应用题的关键哦!比如说,“甲班人数是乙班的三分之二”,那这里的单位“1”不就是乙班嘛!这就像在一个大谜团中找到关键线索一样重要,能让我们快速理清思路,难道不是吗?2. 哇塞,遇到分数应用题时,咱得学会量率对应呀!就像有一堆苹果,知道了部分苹果占总数的几分之几,那就能找到对应的数量啊。
比如知道有三分之一的苹果是红色的,有 6 个红色苹果,这不就能求出苹果总数了嘛,神奇吧!3. 嘿呀,转换单位“1”也是很厉害的一招呢!举个例子,“甲比乙多二分之一”,如果把乙看成单位“1”,那么甲就是一又二分之一呀。
就好像给问题变了个魔法,一下子就找到解决办法啦,是不是很妙?4. 哎呀,要善于抓住不变量哦!像有一道题,男生走了几人后,男女生人数比例变了,但总人数不变呀。
这就如同在混乱中找到了那个一直稳稳的坚守者,能帮我们搞定难题呀,对不对?5. 嘿嘿,画线段图可太有用啦!比如“小明的钱比小红多三分之一”,就可以用线段图画出来,一下子就直观了。
这就像给问题拍了一张清晰的照片,让我们看得明明白白的,你说好不好?6. 哇哦,学会比例知识也能助我们一臂之力呢!像有个题说三个人的工作量之比是 2:3:4,那分配东西不就简单啦。
这好比给问题安上了翅膀,让它不再难倒我们呀,是不是呀?7. 哈哈,用方程来解分数应用题也是不错的选择哟!比如说“一个数的三分之一比它的四分之一多5”,设这个数为 x,列方程就能轻松搞定啦。
就像有了一把万能钥匙,能开各种难题之锁呢,很酷吧!8. 哟呵,千万别小瞧假设法呀!假设一些情况,能让问题变得清晰起来。
比如“鸡兔同笼”的问题,假设全是鸡或全是兔,不就可以算了嘛。
这跟在黑暗中点燃一盏灯一样,能照亮我们解题的路呢,厉害吧!9. 咱得记住,多练习才能把这些技巧掌握得牢牢的呀!只有不断实践,才能在分数应用题的海洋中畅游无阻呀!大家加油哦!我的观点结论:分数应用题的解题技巧有很多,只要我们善于运用这些技巧,多思考多练习,就一定能把分数应用题拿下!。
分数应用题解题方法(学生复习、家长辅导用)【普及版】解答分数乘法应用题时,可以借助于线段图来分析数量关一、分数应用题主要讨论的是以下三者之间的关系。
1、分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。
2、标准量:解答分数应用题时,通常把题目中作为单位“1”的那个数,称为标准量。
(也叫单位“1”的数量)3、比较量:解答分数应用题时,通常把题目中同标准量比较的那个数,称为比较量。
(也叫分率对应的数量)二、分数应用题的分类。
(三类)1这类问题特点是已知一个看作单位“1”的数,求它的几分之几是多少,它反映的是整体与部分之间关系的应用题,基本的数量关系是:2这类问题特点是已知一个数的几分之几是多少的数量,求单位“1”的量。
基本的数量关系是:3、求一个数是另一个数的几分之几。
这类问题特点是已知两个数量,比较它们之间的倍数关系,解这类应用题用除法。
基本的数量关系是:三、分数应用题的基本训练。
1、正确审题训练。
正确审题是正确解题的前提。
这里所说的审题,首先是根据题中的分率句,能准确分清比较量和单位“1”的量(看分率是谁的几分之几,谁就是单位“1”的量)。
判断单位“1会把“比”字句转化成“是”字句;第三是能将省略式的分率句换说成比较详细的句子的能力。
2、画线段图的训练。
线段图有直观、形象等特点。
按题中的数量比例,恰当选用实线或虚线把已知条件和问题表示出来,数形结合,有利于确定解题思路。
3、量、率对应关系训练。
量、率对应关系的训练是解较复杂分数应用题的重要环节。
通过训练,能根据应用题的已知条件发挥联想,找出各种量、率间接对应关系,为正确解题铺平道路。
如:一批货物,第一次运走总数的15,第二次运走总数的14,还剩下143(1)把货物的总重量看做是:单位“1”(2)第一次运走的占总重量的:1 5(3)第二次运走的占总重量的:1 4(4)两次共运走的占总重量的:15+14(5)第一次比第二次少运走的占总重量的:14—15(6)第一次运走后剩下的占总重量的:1—1 5(7)第二次运走后剩下的占总重量的:1—15—14(8)剩下143吨(数量)占总重量的:1—15—14(分率)4、转化分率训练。
在解较复杂的分数应用题时,常需要将间接分率转化为直接运用于解题的分率。
(1)已修总长的58,则未修是总长的:1 —58=38;(2)今年比去年增产15,则今年产量是去年:1 +15= 115;(3)第一次运走总数的14,第二次运走剩下的15,则第二次运走的是总数的 (1 —14) ×15=320。
5、由分率句到数量关系式训练。
“由分率句列数量关系式”是确保正确列式解题的训练。
如:由“男生比女生少14”,可列数量关系式:(1)女生人数×(1 —14)= 男生人数;(2)女生人数×14= 男生比女生少的人数;(3)男生人数÷(1 —14)= 女生人数;(4)男生比女生少的人数÷14= 女生人数。
四、分析解答实际的应用题。
第一类1、求一个数的几分之几是多少。
例1:学校买来100千克白菜,吃了45,吃了多少千克?(反映整体与部分之间的关系)白菜的总重量×45= 吃了的重量100 ×45= 80 (千克)答:吃了80千克。
例2:一个排球定价60元,篮球的价格是排球的56。
篮球的价格是多少元?排球的价格×56= 篮球的价格60 ×56= 50 (元)答:篮球的价格是50元。
例3:小红体重42千克,小云体重40千克,小新体重相当于小红和小云体重总和的12。
小新体重是多少千克?(两个数量的和做为单位“1”的量)(小红体重 + 小云体重)×12= 小新体重(42 +40)×12= 41 (千克)答:小新体重41千克。
例4:有一摞纸,共120张。
第一次用了它的35,第二次用了它的16,两次一共用了多少张纸?(所求数量对应的分率是两个分率的和)纸的总张数×(35+16)= 两次共用的张数120×(35+16)=92(张)答:两次共用92张。
例5:国家一级保护动物野生丹顶鹤,2001年全世界约有2000只,我国占其中的14,其它国家约有多少只?(所求数量对应的分率没有直接告诉我们,要先求)野生丹顶鹤的总只数×(1 —14)= 其它国家的只数2000×(1 —14)= 1500(只)答:其它国家约有1500只。
例6:小亮储蓄箱中有18元,小华储蓄的钱是小亮的56,小新储蓄的钱是小华的23。
小新储蓄多少钱?(有两个单位“1”的量且都已知)小亮储蓄的钱×56×23= 小新储蓄的钱18 ×56×23= 10(元)答:小新储蓄10元。
2、求比一个数多几分之几多多少。
例1:人的心脏跳动的次数随着年龄而变化。
青少年每分钟约跳75次,婴儿每分钟心跳的次数比青少年多45。
婴儿每分钟心跳比青少年每分钟心跳次数×45=婴儿每分钟心跳比青少年多跳次数75 ×45= 60(次)答:婴儿每分钟心跳比青少年多跳60次。
3、求比一个数多几分之几是多少。
例1:人的心脏跳动的次数随着年龄而变化。
青少年每分钟约跳75次,婴儿每分钟心跳的次数比青少年多45。
婴儿每分钟心跳多青少年每分钟心跳次数×(1 + 45)=婴儿每分钟心跳的次数75 ×(1 + 45)=135(次)答:婴儿每分钟心跳135次。
例2:学校有20个足球,篮球比足球多14,篮球有多少个?足球的个数×(1+ 14)=篮球的个数20×(1+ 14)=25(个)答:篮球有25个。
4、求比一个数少几分之几少多少。
例1:学校有20个足球,篮球比足球少15,篮球比足球少多少个?(所求数量和已知分率直接对应。
)足球的个数×15= 篮球比足球少的个数20×15= 4(个)答:篮球比足球少4个。
5、求比一个数少几分之几是多少。
例1:学校有20个足球,篮球比足球少15,篮球有多少个?足球的个数×(1 —15)=篮球的个数20×(1 —15)=16(个)答:篮球有16个。
例2:一种服装原价105元,现在降价27,现在售价多少元?服装的原价×(1 —27)= 现在售价105×(1 —27)=75(元)答:现在售价是75元。
第二类1、已知一个数的几分之几是多少,求这个数。
例1:一个儿童体内所含水分有28千克,占体重的45。
这个儿童体内水分的重量÷45=体重28 ÷45= 35(千克)答:这个儿童体重35千克。
例2:裤子价格是75元,是上衣的23。
上衣多少元?裤子的单价÷23=上衣的单价75÷23= (元)答:一件上衣11212元。
例3:水果店运一批水果。
第一次运了50千克,第二次运了70千克,两次正好运了这批水果的14。
这批水果有多少千克?(第一次运的重量+第二次运的重量)÷14= 这批水果的重量(50+70)÷14=480(千克)答:这批水果480千克。
例4:一辆汽车从甲地开往乙地,第一小时行了全程的14,第二小时行了全程的518,两小时行了114千米。
两地之间的公路长多少千米?两小时行的路程÷(14+518)=两地之间的公路长度114÷(14+518)=216(千米)答:两地之间的公路长216千米。
例5:一桶水,用去它的34,正好是15千克。
这桶水重几千克?用去的重量÷34=这桶水的总重量15÷34=20(千克)答:这桶水重20千克。
例6:小红家买来一袋大米,吃了58,还剩15千克。
买来大米多少千克?剩下的重量÷(1— 58 )= 买来大米的重量15÷(1— 58 )= 40(千克)答: 买来大米40千克。
例7:光明小学航模小组有8人,航模小组是生物小组的45 ,生物小组的人数是美术小组的13。
美术小组有多少人?航模小组的人数÷45 ÷13 = 生物小组的人数8÷45 ÷13 = 30(人) 答:生物小组有30人。
例8:商店运来一些水果,运来苹果20筐,梨的筐数是苹果的34 ,梨的筐数又是橘子的35 。
运来橘子多少筐?苹果筐数×34 ÷35= 橘子的筐数20×34÷35= 25(筐)答:橘子有25 筐。
2、已知一个数比另一个数多几分之几多多少,求这个数。
例1:某工程队修筑一条公路。
第一周修了这段公路的14,第二周修筑了这段公路的27,第二周比第一周多修了2千米。
这段公路全长多少千米?第二周比第一周多修的千米数÷(27—14)= 公路的全长2÷(27—14)=56(千米)答:这段公路全长56千米。
例1:学校有20个足球,足球比篮球多14,篮球有多少个?足球的个数÷(1+ 14)=篮球的个数20÷(1+ 14)=16(个)答:篮球有16个。
例1:某工程队修筑一条公路。
第一天修了38米,第二天了42米。
第一天比第二天少修的是这条公路全长的128。
这条公路全长多少米?第一天比第二天少修的米数÷128= 公路的全长(42 — 38)÷128=112(米)答:这段公路全长112米。
例1:学校有20个足球,足球比篮球少15,篮球有多少个?足球的个数÷(1—15)=篮球的个数20÷(1—15)=25(个)答:篮球有25个。
例1:学校食堂九月份用煤气640立方分米,十月份计划用煤气是九月份的910,而十月份实际用煤气比原计划节约112。
十月份比原计划节约用煤气多少立方分米?(明确题中的三个数量,把那两个数量看做单位“1”,所求数量对应的分率。
)九月份用煤气的体积×910×112= 十月份比原计划节约用煤气的体积640×910×112=144(立方分米)答:十月份比原计划节约用煤气144立方分米。
第三类求一个数是另一个数的几分之几。
例1:学校的果园里有梨树15棵,苹果树20棵。
梨树的棵数是苹果树的几分之几?(找准标准量。
)梨树的棵数÷苹果树的棵数 =梨树的棵数是苹果树的几分之几15÷20 = 34答:梨树的棵数是苹果树的34。
例2:学校的果园里有梨树15棵,苹果树20棵。
苹果树的棵数是梨树的几倍?(找准标准量。
)苹果树的棵数÷梨树的棵数 =梨树的棵数是苹果树的几倍20÷15= ()答:苹果树的棵数是梨树的()倍。
例1:学校的果园里有梨树15棵,苹果树20棵。