数值研究大功率激光器的大电流调制特性
- 格式:doc
- 大小:24.00 KB
- 文档页数:3
第3章激光器的输出特性前两章由发光的物理基础出发,对激光产生的工作原理进行了研究,对于在激光谐振腔中受激辐射大于自发辐射而导致光的受激辐射放大的过程和条件进行了很详细的讨论,为研究从激光谐振腔中传播,到其在腔外的光束强度与相位的大小与分布,也就是激光的输出特性打下了基础。
激光器作为光源与普通光源的主要区别之一是激光器有一个谐振腔,谐振腔倍增了激光增益介质的受激放大作用长度以形成光的高亮度,提高了光源发光的方向性。
实际上激光的第三个重要特点——高度的相干性也是由谐振腔决定的。
由于激光器谐振腔中分立的振荡模式的存在,大大提高了输出激光的单色性,改变了输出激光的光束结构及其传输特性。
因此本章从谐振腔的衍射理论开始研究激光输出的高斯光束传播特性,激光器的输出功率以及激光器输出的线宽极限。
3.1光学谐振腔的衍射理论2.1节中利用几何光学分析方法讨论了光线在谐振腔中的传播、谐振腔的稳定性问题以及谐振腔的分类。
而有关谐振腔振荡模式的存在、各种模式的花样也就是光束结构及其传输特性、衍射损耗等,只能用物理光学方法来解决。
光学谐振腔模式理论实际上是建立在标量理论的菲涅耳——基尔霍夫衍射积分以及模式再现概念的基础上的,本节用这种方法来讨论光学谐振腔。
3.1.1菲涅耳——基尔霍夫衍射公式惠更斯为了描述波的传播过程,提出了关于子波的概念,认为波面上每一点可看作次球面子波的波源,下一时刻新的波前形状由次级子波的包络面所决定。
菲涅耳引入干涉的概念,补充了惠更斯的原理,认为子波源所发的波应是相干的,空间光场是各子波干涉叠加的结果。
基尔霍夫进一步用格林函数方法求解波动方程,得到惠更斯一菲涅耳原理的数学形式,就是菲涅耳——基尔霍夫衍射公式(3-1),其意义如图(3-1)所示。
图(3-1)惠更斯一菲涅耳原理设波阵面∑上任一源点'P 的光场复振幅为'(')u P ,则空间任一观察点P 的光场复振幅()u P 由下列积分式计算()'(')(1cos )'4ik ik e u P u P ds ρθπρ-∑=⎰⎰+ (3-1)式中ρ为源点'P 与观察点P 之间的距离;θ为源点'P 处的波面法线n 与'PP 的夹角; 2k πλ=为光波矢的大小,λ为光波长;'ds 为源点'P 处的面元。
LD泵浦Nd:YVO4 /Cr4+:YAG被动调Q激光特性研究光信息科学与技术专业指导教师摘要:半导体激光(LD)泵浦的固体激光器具有全固化、体积小、泵浦效率高等特点,在激光通讯、遥感探测、工业加工、军事、医疗等领域有着广泛的应用前景,受到人们极大的关注。
使用连续激光二极管泵浦Nd:YVO4晶体,得到1064nm 的连续红外激光输出,在激光谐振腔中加入慢饱和吸收晶体Cr4+:YAG,得到了调Q脉冲激光输出,从实验上得到了泵浦功率、Cr4+:YAG小信号透过率以及输出镜透过率对输出脉冲特别是脉冲宽度的影响,并通过数值求解速率方程对实验结果进行了理论分析,实验结果与理论模拟基本相符。
关键词:LD 泵浦;Nd∶YVO4;Cr4+∶YAG;被动调Q;脉冲宽度Characteristic of a laser diode pumped passively Q switched Nd:YVO4laser with Cr4+:YAG saturable absorberStudent majoring in optics information science and technologyHeng SunTutor Xiuqin YangAbstract:Laser-diode (LD) Pumped solid-state laser has wide applications in the fields such as laser telecommunication ,remote-sensing detection ,industry and military as wellashealthduetoitsadvantagessuchasallsolidstate,high pump efficiency,smallvolumeandlonglongevity,andhasbeen ing continuous laser diode pumped Nd: YVO4crystalgets 1064 nm infrared laser outputcontinuously.Then addingslow saturable absorbercrystals Cr4 + : YAG in the laser cavity to obtain the output of theQ-switched pulse laser. Study the influence of the pump power, output transmission and cavity length to the output pulse in particularthe influence of pulse width from experiments.Through the numerical solution of rate equation to carry on the theoretical analysis with the result of the experiment and thenumericalsolutionsoftheequationsagreewiththeexperimentalresults.Keywords:LDpumped;Nd: YVO4; Cr4+:YAG; passively Q switched;pulse width第一章前言自上世纪六十年代世界上首台激光器发明以来,各类激光器和激光技术得到了迅速的发展,其中固体激光器的发展尤为突出。
第六章激光放大特性光放大器概述1•获得高质量的大能量、高功率激光束(固体激光器)大能量、高功率与方向性、单色性、脉宽相互制约腔内光功率过大易损害腔内光学元件。
光放大器的类型口利用稀土掺杂的光纤放大器(EDFA、PDFA)口利用半导体制作的半导体光放大器(SOA)口利用光纤非线性效应制作的非线性光纤放大器(FRA、FBA)几种光放人器的比较§6.1激光放大器的特点与分类光放大概念一利用受激辐射实现光放大 光放大的前提条件一粒子数反转分布入射光信号波长要求?光信号波长(频率)需与跃迁能级间隔相对应激光行波放大器—无谐振腔激光器一处于粒子数反转状态的工作物质按工作方式分类:•行波放大器:只要求入射光频率在增益介质谱线范围内-再生放大器:入射光需在谐振腔本征频率附近,保证频率匹配I Q g>0/(/)P QPQ)p 。
行波放大器0) p(/)再生放大器(F-P 放大器)q「2g<0—g=o■4g>0吸收透明放大激光器一激光振荡器一再生(光)放大器V 偏离\怙Gl ;1*1、1*2 T , V 偏离%允许值越小,增益G T口增益G 足描述光放大器对信号放大能力的参数。
定义为:厂(g 、 |ai , Ps,out 一«出信号光功率 (j(dB)=10 log 10 ——PsM 一績入值号光功率□ G 与光放人器的泵浦功率、掺杂光纤的参数和输入光信号有很fi 杂的关系。
放大器増益行波放大器增益再生放大器增益 r ㈡I "2多光束干涉处理*仆0)Ht}G = ---------------------(>-+4(6.1.3)c (1-7^0 J—最大增益G(〃8)=101gG△V L 为主 厂2 =九=1/泌%△*)为主 r>l/2Av^输入光功率较小肘,G 是一常即输出光功率Phoi ;T 与输入光功率Ps 成正比例.G 。
光放大器的小信号増益。
35 r按入射光时间特性分类 连续激光放大器脉冲激光放大器超短脉冲激光放大器(入射信号脉宽%及工作物质弛豫时间T ) 弛豫:某种物理状态的建立或消亡过程—弛豫时间 纵向弛豫时间T|:辐射跃迁(有限寿命),导致反转粒子 数的变化需要一定的时间(「〜5) 横向弛豫时间丁2—宏观感应电极化的产生和消亡的时间 电磁场共振相互作用一同相,碰撞等其它作用一消相)025 i 20GoHZ3dB10®60■50 —40 — 30 —20输入信号功率(dBm )-10 0 10i 饱和区域放大器增益降至小信号增益一半时的输出功率。
(操作性实验)课程名称:激光原理与技术实验题目:半导体激光器特性及调制特性实验指导教师:班级:学号:学生姓名:一、实验目的和任务1.掌握半导体泵浦固体激光器的工作原理,测量泵浦LD经快轴压缩后的阈值电流和输出特性曲线。
2.用辅助激光器法,构造固体激光器谐振腔,并使其发光。
3.选用不同透过率腔镜,测试不同LD电流下的激光输出功率,结合LD的功率-电流关系,计算两种耦合输出下的激光斜效率和光光转换效率。
二、实验仪器及器件1、半导体激光器2、耦合系统3、Nd:YAG晶体4、输出镜5、功率计6、探测器三、实验内容及原理1、LD安装及系统准直将LD电源接通。
通过上转换片观察LD出射光近场和远场的光斑。
测量LD经快轴压缩后的阈值电流和输出特性曲线。
2、半导体泵浦固体激光器实验用大功率的808nmLD泵浦Nd:YAG晶体,通过不同输出镜并调节腔镜产生1064nm的红外光。
测试不同LD电流下的激光输出功率;根据实验数据和曲线,计算两种耦合输出下的激光斜效率和光光转换效率,并作简要分析。
1、半导体激光泵浦固体激光器工作原理:上世纪80年代起,生长半导体激光器(LD)技术得到了蓬勃发展,使得LD的功率和效率有了极大的提高,也极大地促进了DPSL技术的发展。
与闪光灯泵浦的固体激光器相比,DPSL 的效率大大提高,体积大大减小。
在使用中,由于泵浦源LD的光束发散角较大,为使其聚焦在增益介质上,必须对泵浦光束进行光束变换(耦合)。
泵浦耦合方式主要有端面泵浦和侧面泵浦两种,其中端面泵浦方式适用于中小功率固体激光器,具有体积小、结构简单、空间模式匹配好等优点。
侧面泵浦方式主要应用于大功率激光器。
本实验采用端面泵浦方式。
端面泵浦耦合通常有直接耦合和间接耦合两种方式。
直接耦合:将半导体激光器的发光面紧贴增益介质,使泵浦光束在尚未发散开之前便被增益介质吸收,泵浦源和增益介质之间无光学系统,这种耦合方式称为直接耦合方式。
直接耦合方式结构紧凑,但是在实际应用中较难实现,并且容易对LD造成损伤。
光纤激光器的介绍周菊平2009142105摘要:作为固体激光器的一员,光纤激光器以其结构简单紧凑、体积小,工作稳定可靠,易于集成等特点,一直被认为是固体激光器技术实用化的最佳选择。
高功率光纤激光除在科研、工业加工和医疗保健等领域有着广泛的应用外,在军事国防领域也有着巨大的应用价值。
海湾战争等高技术战争的实践表明,光电武器装备对战术武器性能起决定性作用。
近十年来,高功率光纤技术已成为激光技术领域的热点研究技术之一。
本文介绍了光纤激光器的背景及最新成果,双包层光纤激光器的原理与特点。
关键词:双包层光纤光纤激光器掺杂光纤早在1961年,美国光学公司(American Optical Corporation)的Snitzer等就提出了光纤激光器的构想,但由于受当时条件的限制,研究进展非常缓慢。
进入20世纪80年代中期,Townsend等发明了溶液掺杂技术(Solution doping technique)。
此后,Poole等用改进的化学气相沉积法(MCVD)研制成低损耗的掺铒光纤,一些实验室开始从掺铒光纤中得到了波长1.5um、高达30dB的光放大增益,引起了人们的高度重视。
到80年代中后期,基于半导体激光器泵浦的掺铒光纤激光器和低损耗的石英单模光纤制造技术,为光纤通信的迅猛发展奠定了强有力的技术基础。
正是由于掺铒光纤放大器为光纤通信所带来诱人前景的驱动,引发了80年代中后期稀土掺杂光纤激光器的研究热潮。
随后Hanna等纷纷报道掺铒、钕、镱、铥及铒/镱共掺等光纤激光器。
但当时采用的稀土掺杂光纤为单包层光纤,泵浦光必须直接耦合到直径仅仅几微米的单模纤芯中,这对泵浦源的激光模式提出了较高的要求,导致泵浦源昂贵且耦合效率低。
因此,传统的稀土掺杂光纤激光器只能作为一种低功率的光子器件。
1)与传统的半导体激光器不同,光纤激光器以掺杂稀土元素的光纤作为工作介质,采用反馈器件构成谐振腔,在泵浦光的激励下,光纤内掺杂介质产生受激发射,进而形成激光振荡输出激光。
关于锁模光纤激光器的研究前言激光器,顾名思义,即是能发射激光的装置。
1954年制成了第一台微波量子放大器,获得了高度相干的微波束。
1958年A.L.肖洛和C.H.汤斯把微波量子放大器原理推广应用到光频范围,1960年T.H.梅曼等人制成了第一台红宝石激光器。
1961年A.贾文等人制成了氦氖激光器。
1962年R.N.霍耳等人创制了砷化镓半导体激光器。
以后,激光器的种类就越来越多。
按工作介质分,激光器可分为气体激光器、固体激光器、半导体激光器和染料激光器4大类。
近来还发展了自由电子激光器,大功率激光器通常都是脉冲式输出。
2004 年,Idly 提出了一种自相似脉冲光纤激光器,同时为这种光纤激光器建立了一种数值模型。
模型中采用非线性薛定谔方程(NLSE)描述脉冲在正色散光纤中的传输,引入了一个与脉冲强度相关的透过率函数将NPE 锁模机理等效成快速可饱和吸收体(SA)的作用0 模拟发现这种激光器输出的脉冲具有抛物线的形状和线性啁啾,能量可高达10nJ。
随着自相似脉冲在实验上的实现,自相似锁模光纤激光器迅速成为超短光脉冲领域的研究热点。
用Idly 模型对自相似锁模光纤激光器的研究不断取得新的进展。
在此我将对激光和激光器的原理和基于原理而做出的进一步的相关研究(如被动锁模光纤激光器)做一个大致的探讨。
主题激光器的原理非线性偏振旋转被动锁模环形腔激光器的结构如图1所示, 激光器由偏振灵敏型光纤隔离器、波分复用器、偏振控制器、输出藕合器、掺yb3+光纤组成。
其工作原理为从偏振灵敏型光纤隔离器输出的线偏振光,经过偏振控制器PCI(1/4 λ波片)后变为椭圆偏振光, 此椭圆偏振光可看成两个频率相同、但偏振方向互相垂直的线偏振光的合成, 它们在掺yb3+增益光纤中藕合传输时, 经过光纤中自相位调制和交叉相位调制的非线性作用, 产生的相移分别为其中n1x 、n1y分别为yb3+光纤沿X、Y方向的线性折射率, n2、l分别为该光纤的非线性折射率系数和长度。
大功率半导体激光器光纤耦合技术调研报告1.前言近年来,高功率光纤激光器因其优良的性能日益受到人们的重视和青睐,被广泛地应用于工业加工、空间光通信、医疗和军事等各个方面,其迅速发展在很大程度上得益于大功率高亮度半导体激光器技术的进步,大功率半导体激光光纤耦合技术一直是高功率光纤激光器技术的一项关键核心技术。
相反地,半导体激光器泵浦的高功率光纤激光器(DPFL)的发展也带动了大功率半导体激光器技术,尤其是大功率半导体激光光纤耦合技术的进步。
由于单管半导体激光器(LD)的输出功率受限于数瓦量级,远不能满足高功率光纤激光器泵浦源的要求,要获得更大输出功率须采用具有多个发光单元的激光二极管阵列(LD Array)。
按照结构形式的不同,激光二极管阵列分为线阵列(LD Bar)和面阵列(LD Stack),分别如图1(a)和(b)所示,其中LD Bar的输出功率一般在数十瓦至百瓦量级,而LD Stack的输出功率一般在数百瓦乃至上千瓦。
无论是单管LD还是LD Array,由其固有结构特点决定了半导体激光器具有光束发散角较大,输出光束光斑不对称,亮度不高等问题,给作为高功率光纤激光器泵浦源的实际应用带来很大困难和不便。
一个较好的解决方法是将半导体激光耦合进光纤输出,这样既可以利用光纤的柔性传输,增加使用的灵活性,又可以从根本上改善半导体激光器的输出光束质量。
Fig.1 (a)LD Bar 和(b)LD Stack大功率半导体激光器阵列光纤耦合技术作为一项高新技术,具有很高的技术含量,涉及半导体材料、纤维光学技术、微光学技术、微精细加工技术和耦合封装技术等关键单元技术。
目前为止,大功率半导体激光器阵列光纤耦合技术主要采用两条技术路线:光纤束耦合法和微光学系统耦合法。
下面将主要以LD Bar 光纤耦合技术为例,就该两种方法进行详细阐述。
2.大功率半导体激光器阵列光纤耦合技术2.1光纤束耦合法光纤束耦合法(又称光纤阵列耦合法)是早期使用的一种光纤耦合技术,具有结构简单明了、耦合效率高、各发光元的间隙不影响整体光束质量和成本低等优点。
数值研究大功率激光器的大电流调制特性
【摘要】本文对大功率激光器的大信号调制特性进行了分析。
由于激光的弛豫振荡行为,会产生瞬态响应。
在不同宽度的光限制层的条件下,对量子阱激光器的传输带宽进行了对比。
光限制层越宽,载流子的传输效应越明显,导致传输带宽减小。
大信号调制下,随着调制深度的增加激光峰值不断变尖锐。
随着偏置信号的增大,光子密度也不断增大。
【关键词】量子阱激光器;大信号调制;调制深度;带宽
1.引言
光通信系统中,用激光做为光源,对小信号半导体激光器调制特性的研究,已经有比较成熟的理论做基础。
小信号理论主要关注的是通信带宽和通信质量。
在小信号理论的研究基础上,已有很多对小功率激光器的大信号调制特性的较深入的研究[1]。
半导体激光器在调制过程中表现出动态特性,主要包括弛豫振荡行为、自发辐射、非线性效应、纵向空间烧孔效应等。
大信号调制下,会产生啁啾效应,从而能使光谱展宽,导致光信号质量变差。
对小功率激光器的研究,它一般是指在1mW到50mW之间。
这里我们对功率在100mW以上,波长为980nm的InGaAs/AlGaAs量子阱F-P腔激光器在大信号调制下的不同参数特征进行了研究和分析。
2.理论分析
根据设计,用MOCVD生长外延片,可以制造出脊形条宽80um的大功率激光器,具有良好的P-I曲线特性,如图1所示。
在注入电流为1A的条件下,输出光功率可以达到431mW[2]。
注入电流达到阈值电流后,输出光功率会随注入电流增大而呈线性增加。
输出光功率与注入电流的关系可表示为:
其中Ith是阈值电流,hv是光子能量,是内量子效率,e是电子电量,是镜面反射损耗,是内部损耗,R1和R2是镜面反射率。
为了限制载流子和良好的光波导传输,上下波导层与势垒层组成了激光器的有源区。
本文对量子阱大功率激光器相应的调制响应特性进行了研究。
3.大功率LD的大信号调制特性分析
3.1 调制响应及速率
载流子和光子密度速率的方程是
上式中,N是载流子密度,S是光子密度,I是注入电流,g是增益,M是量子阱个数,V是单个量子阱体积,q是电子电荷,是单个量子阱的限制因子,是群速度,是光子寿命,是载流子的复合寿命,是注入电流效率。
表1是在温度为300K时的参数,表中的L为腔长,d为激活层厚度,w为激活区的宽度。
表1 方程中所用参数的取值
运用四阶龙格库塔方法对速率方程数值求解,可以得到载流子浓度和光子浓度。
调制脉冲信号的频率选为f=2GHz。
激光器加上直流电脉冲之后产生的激射光脉冲相对于电脉冲的延迟。
直流调制下光子密度有瞬态振荡。
量子阱激光器在大脉冲信号调制下的响应速率如图1所示,如图1的(a)和(b),当光限制层宽度为76nm时,调制速率要大于相同功率下SCH宽度是300nm的情况。
由此可知,光限制层的宽度影响激光器的调制速率,光限制层越宽时,在相同功率的时候调制速率就越小。
3.2 参数分析
这里对不同参数的大信号调制特性进行了比较。
图2表示了偏置电流为Ib=250mA,调制脉冲信号的频率为f=2GHz时,不同的调制深度m对时域光子密度的影响。
从图3的(a)、(b)、(c)比较可知,当调制深度m从0.8到1.9变化的时候光子浓度最大值不断增大,而且峰值越来越尖锐。
所以调制深度越大,光通信质量会更差。
图3表示在调制深度为0.85,调制脉冲的频率为f=2GHz时,随着偏置电流的增大,光子密度的波形幅度会不断增大。
4.小结
本文研究了980nm波长的量子阱F-P腔大功率激光器的大信号调制响应,对不同参数进行了比较与分析。
本文对量子阱激光器在不同宽度光限制层时的传输带宽进行了对比。
光限制层越宽,载流子的传输效应就越明显,导致传输带宽减小。
分别对不同调制深度和不同偏置电流下的光子密度进行了分析。
大信号调制下,随着调制深度m的增加,激光峰值不断变窄和变尖锐。
当偏置电流增大时,光子密度也不断增大。
参考文献
[1]L.M.Zhang and John E.Carroll Large-Signal Dynamic Model of the DFB Laser.IEEE JOURNAL OF QUANTUM ELECTRONICS,1992,3(28):604-610.
[2]邹德恕,廉鹏,徐晨.量子阱半导体激光器P-I特性曲线扭折的研究[J].光电子·激光,2002,6(13):547-549.。