啤酒泡沫与生产控制
- 格式:pdf
- 大小:88.30 KB
- 文档页数:3
泡沫对发酵的影响与控制摘要:泡沫对发酵过程产生多种不利因素,是影响发酵过程重要主要因素之一,本文主要就泡沫的性质,以及泡沫消除的方式进行论述。
并阐述了消泡技术发展的趋势,以及新型的化学消泡技术。
关键词:发酵、泡沫、消泡剂、活性剂一、泡沫产生的原因泡沫是气体在液体中的粗分散体,产生泡沫的首要条件是气体和液体发生接触。
而且只有气体与液体连续、充分地接触才会产生过量的泡沫。
,按产生原因可以大致分为两类:①外界引入,在通气过程中,伴随机械搅拌、空气被分成细小的气泡,从溶氧的角度讲,气泡越细越好,使空气中的氧和发酵液中的CO2能充分的进行交换,这些气泡升到发酵液面时无法及时消除而形成泡沫。
②由发酵液内部产生微生物在进行发酵活动时,往往产生一些气体,如CO2,这些代谢气体凝结形成气泡,冒出到发酵液面,成为发酵泡沫,菌体代谢越旺盛,这部分泡沫的产生量越多。
培养基配比与原料组成以及性质对泡沫也有很大的影响。
培养基营养丰富,黏度大,产生泡沫就多而持久二、泡沫的性质:泡沫是气体被分散在少量液体中的胶体体系。
泡沫间被一层液膜隔开而彼此不相连通。
发酵过程中所遇到的泡沫,其分散相是无菌空气和代谢气体,连续相是发酵液影响泡沫稳定性的因素1、泡径大小通常情况下大泡易于破灭,寿命较长的都是小泡,另一方面,气泡只有上升到液面才能够在破灭之后减少泡沫体积,所以气泡越小,上升速度越慢。
小气泡上升慢,给表面活性剂的吸附提供充足的时间,增加了稳定性。
、2、溶液所含助泡物的类型和浓度(1)降低表面张力降低表面张力会降低相邻气泡间的压差。
压差小,小泡并入大泡的速度就慢,泡沫的稳定性就好。
(2)增加泡沫弹性泡沫液具有可以伸缩的称为“吉布斯弹性”的性质,对于泡沫稳定性来说表面活性剂使液膜具有“吉布斯弹性”比降低表面张力更重要吉布斯曾对泡沫液弹性做如下定义:E=2AσE——膜弹性A——膜面积σ——表面张力(3)助泡剂浓度3,发酵液的粘度某些溶液,如蛋白质溶液,虽然表面张力不低,但因粘度很高,所产生的泡沫非常稳定。
发酵过程控制发酵过程泡沫的形成和控制发酵过程中产生泡沫是由于发酵微生物产生的二氧化碳在液体中产生的气泡。
对于一些发酵工艺来说,泡沫的形成是正常的现象,但当泡沫过高时,会导致操作困难、影响发酵效果甚至引发事故。
因此,控制发酵过程中泡沫的形成和控制是非常重要的。
首先,我们来讨论一些常见的发酵过程中形成泡沫的原因。
发酵过程中产生的泡沫主要有以下几个原因:1.发酵微生物产生的二氧化碳气泡:在发酵过程中,微生物会通过代谢作用产生二氧化碳,这些气体会在液体中形成气泡。
2.搅拌:发酵过程中的搅拌会增加气体与液体的接触面积,从而促进气泡的形成。
3.添加剂:有些发酵过程中需要添加剂,如泡沫剂、表面活性剂等,这些添加剂会导致气泡的形成。
针对泡沫过高的情况,我们需要进行泡沫的控制。
以下是一些常见的泡沫控制方法:1.控制发酵微生物的种类和数量:选择合适的发酵微生物,使其不产生过多的二氧化碳气泡。
2.控制发酵温度:温度的控制对于发酵过程很重要,过高或过低的温度都会导致泡沫过高。
因此,要合理控制发酵过程中的温度。
3.控制搅拌的速度和时间:适当控制搅拌的速度和时间,避免过度搅拌,以减少气泡的形成。
4.添加抗泡剂:在发酵过程中添加抗泡剂,可以减少气泡的形成。
抗泡剂可以抑制气泡的集聚和稳定。
5.使用泡沫控制装置:在发酵过程中使用泡沫控制装置,如泡沫传感器和控制器,可以自动检测和控制泡沫的高度。
总之,控制发酵过程中泡沫的形成和控制是一项重要的工作。
通过合理选择发酵微生物、调节温度、控制搅拌速度和时间、添加抗泡剂以及使用泡沫控制装置等手段,可以有效地控制和管理发酵过程中的泡沫,确保发酵过程的顺利进行。
发酵工艺的泡沫控制需要结合具体的实际情况,进行合理的调整和控制,以满足生产过程的要求。
啤酒的品质与质量控制啤酒是一种广受欢迎的饮品,其品质与质量控制对于保证消费者的满意度和市场竞争力至关重要。
本文将探讨啤酒的品质特征以及质量控制的重要性,并介绍一些常见的控制措施。
一、啤酒的品质特征啤酒的品质取决于多个因素,包括原料的选择、酿造工艺、发酵过程以及包装和存储条件等。
以下是影响啤酒品质的几个关键特征:1. 外观:好的啤酒应有清澈透明的外观,色泽鲜艳,且泡沫丰富持久。
2. 气味:啤酒的气味应该新鲜而清爽,不含有任何异味。
3. 口感:合格的啤酒应具有适宜的酒体、口感平衡和柔和的苦味。
4. 泡沫稳定性:持久的泡沫是啤酒品质的重要指标之一,能够增强饮用者的感官体验。
二、质量控制的重要性啤酒行业对于质量控制具有极高的要求,因为不仅仅是口感和外观,而且还关系到消费者的健康和安全问题。
质量控制在啤酒生产的每个环节都起着重要的作用:1. 原料检验:选用高质量的水、麦芽、啤酒花和酵母等原料是保证啤酒品质的基础。
进行原料检验,确保原料没有受到污染且符合标准。
2. 酿造过程控制:控制麦汁浸提的时间和温度、糖化酵素的活性以及酵母发酵的条件等,确保麦汁的质量和酵母的活性。
3. 发酵和熟化过程控制:控制发酵和熟化的温度、时间和条件等,确保啤酒味道的均衡和稳定。
4. 包装和储存条件:严格控制包装过程中的卫生条件,确保啤酒在储存期间不受污染并保持良好的口感。
三、常见的质量控制措施为了确保啤酒的品质和质量,啤酒生产企业通常采取以下常见的控制措施:1. 标准操作程序(SOP):制定详细的工艺流程和操作规范,明确每个环节的质量要求和步骤,确保操作的一致性和规范性。
2. 自动化控制系统:引入自动化的仪器设备和控制系统,实时监测和控制酿造过程中的关键参数,提高生产的精度和效率。
3. 抽检和测试:进行原料和成品的抽检和测试,包括物理指标、化学成分和微生物的检测,确保产品符合标准要求。
4. 培训和质量意识:对员工进行定期的培训和知识更新,提高他们的质量意识和工作技能,确保操作的准确性和规范性。
毕业设计 [论文]题目:学院:专业:姓名:学号:指导老师:完成时间:摘要随着工业自动化水平日益提高,众多工业企业均面临着传统生产线的改造和重新设计问题。
PLC(可编程序控制器)是以微处理器为核心的工业控制装置,它将传统的继电器控制系统与计算机技术结合在一起,近年来在工业自动控制、机电一体化、改造传统产业等方面得到普遍应用。
作为通用工业控制计算机,其实现了工业控制领域接线逻辑到存储逻辑的飞跃,在世界工业控制中发挥着越来越重要的作用。
鉴于此,设计者利用PLC的功能和特点设计出了一款啤酒灌装生产流水线控制系统。
文章刚开始介绍了PLC的相关知识,接着以啤酒灌装流水线为例,采用三菱公司的FX系列可编程序控制器,介绍了PLC 在啤酒灌装流水线中的应用,给出了详细的程序设计过程。
利用PLC控制啤酒灌装生产过程,传送带调速系统,可有效提高灌装生产效率,并显著增加控制系统的可靠性和柔性。
最后提出了用控制方面较为成熟的PID 算法来控制全自动灌装压盖机贮液缸内液位和压力的想法。
关键词:可编程控制器;灌装流水线;顺序功能图;梯形图;PID调节AbstractWith the increasing level of industrial automation, many industrial enterprises are faced with the transformation of traditional production line and re-design problem. PLC (programmable logic controller) is a microprocessor as the core of industrial control devices, it will relay the traditional control system combined with computer technology in recent years in industrial automation, mechanical and electrical integration, the transformation of traditional industries such as generally applied. As a general-purpose industrial control computer, the realization of industrial control wiring logical leap in logic to storage, industrial control in the world is playing an increasingly important role. In view of this, the designers of the use of PLC functions and features designed a beverage filling production line control system.The article introduced the PLC beginning of the relevant knowledge, and then to drink bottling line as an example, the use of Mitsubishi FX series programmable logic controller, PLC, introduced in the beverage bottling line in the application, given a detailed program design process. PLC control of the use of beverage filling production process, which can effectively improve the production efficiency of filling, and significantly increase the reliability of control systems and flexible. and take out the idea of control the level and pressure in fully automated filling Gland with a more mature PID algorithm in thefield of control finally.Key words: filling lines; Ladder Diagram ;PID regulation1绪论1.1 啤酒包装工业的发展现状众所周知,从1979年至今,我国的啤酒工业经历了二次增长高潮。
啤酒的生产与质量控制作业指导书第1章引言 (5)1.1 啤酒行业概述 (5)1.2 啤酒生产流程简介 (5)1.3 质量控制的重要性 (5)第2章原料与辅料 (5)2.1 原料选择与处理 (5)2.1.1 啤酒原料主要包括大麦、啤酒花、酵母和水。
在选择原料时,必须保证其品质优良,符合国家相关标准。
(5)2.1.2 大麦:选用优质、成熟、颗粒饱满的大麦,要求蛋白质含量适中,浸出率较高。
大麦经过浸麦、发芽、烘干等工艺处理后,制成麦芽。
(6)2.1.3 啤酒花:选择新鲜、色泽鲜艳、香气浓郁的啤酒花。
啤酒花含有苦味和香气成分,对啤酒的口感和风味具有重要影响。
(6)2.1.4 酵母:选用活性高、繁殖力强、发酵功能稳定的啤酒酵母。
酵母在发酵过程中,将麦汁中的糖分解为酒精和二氧化碳。
(6)2.1.5 水:啤酒生产中,水质对啤酒的品质具有重要影响。
选用符合饮用水标准的水源,要求无色、透明、无异味、水质硬度适中。
(6)2.2 辅料的作用与选用 (6)2.2.1 辅料在啤酒生产中具有改善口感、增加营养价值、提高稳定性等作用。
(6)2.2.2 常用辅料包括:大米、玉米、小麦、糖浆、香料等。
根据不同品种的啤酒特点,选用合适的辅料。
(6)2.2.3 辅料的选用原则:辅料应与主体原料相协调,不影响啤酒的口感、香气和稳定性;同时要考虑辅料的价格、来源和供应稳定性。
(6)2.3 原料与辅料的储存与管理 (6)2.3.1 储存环境要求:原料与辅料应存放在干燥、通风、避光、防潮、防虫、防鼠的环境中,避免与有毒、有异味物质接触。
(6)2.3.2 储存期限:原料与辅料应根据品种、性质和包装方式确定合理的储存期限,保证其品质。
(6)2.3.3 储存管理:建立完善的原料与辅料储存管理制度,实行分类、分区、分批存放;定期检查,保证原料与辅料的质量稳定。
(6)2.3.4 防霉、防虫措施:对易受霉菌、虫害影响的原料与辅料,采取有效的防霉、防虫措施,保证原料与辅料安全。
基于PLC的啤酒发酵自动控制系统设计1. 引言1.1 背景介绍啤酒是一种古老的饮品,深受人们的喜爱。
随着啤酒产量的增加和品质要求的提高,传统的手工操作已经不能满足生产的需求。
自动控制技术的应用成为解决这一问题的有效途径。
基于可编程逻辑控制器(PLC)的自动控制系统由于其灵活性、稳定性、可靠性和易维护性等优势,成为工业控制领域的主流技术之一。
啤酒发酵过程是生产过程中最为关键的环节之一,发酵的温度、压力、pH值等参数对啤酒质量具有重要影响。
设计一个基于PLC的啤酒发酵自动控制系统对于提高生产效率、保证产品质量具有重要意义。
本文旨在探讨基于PLC的啤酒发酵自动控制系统设计方案,以提高啤酒生产的自动化水平,保证啤酒品质的稳定性和一致性。
通过引入PLC技术,可以实现对发酵过程的精确控制,提高生产效率,减少人工成本,并实现对生产过程的实时监控和追踪。
1.2 研究意义啤酒是一种历史悠久的饮品,受到广泛的消费者喜爱。
在啤酒的生产过程中,发酵是一个至关重要的环节,直接影响着啤酒的口感和质量。
而传统的发酵过程往往需要依靠人工操作,存在操作不稳定、效率低下、产品质量无法保证等问题。
因此,设计一种基于PLC的啤酒发酵自动控制系统具有重要的研究意义。
首先,基于PLC的自动控制系统能够实现对发酵过程的精准控制,保障啤酒的质量稳定和一致性。
PLC技术具有高精度、高可靠性的特点,能够实时监测和调节发酵参数,确保发酵过程的稳定性和可控性。
其次,基于PLC的啤酒发酵自动控制系统可以提高生产效率,减少人力成本。
传统的人工操作需要大量的人力投入,而自动控制系统能够实现全程自动化生产,节省人力资源,提高生产效率。
总之,基于PLC的啤酒发酵自动控制系统的研究对于提高啤酒生产的质量和效率具有重要的意义,有着广阔的应用前景和市场需求。
1.3 研究目的本研究旨在设计一种基于PLC的啤酒发酵自动控制系统,以提高啤酒生产过程的自动化水平,提高生产效率,保证啤酒质量稳定性和一致性。
啤酒的发酵过程与时间控制啤酒是一种古老而受欢迎的饮品,其制作过程中的关键步骤之一是发酵。
发酵是指利用酵母菌将糖转化为酒精和二氧化碳的过程。
在酿造啤酒时,控制合适的发酵时间非常重要,这样才能获得理想的口感和香气。
本文将介绍啤酒的发酵过程以及时间控制的重要性。
一、发酵过程1.原料准备:啤酒的主要原料包括麦芽、水、啤酒花和酵母。
麦芽是啤酒的主要发酵物质,含有淀粉和糖类。
水是制作啤酒的溶剂,通过溶解麦芽中的成分,使之成为发酵的底物。
啤酒花赋予啤酒独特的苦味和香气。
酵母则负责将糖转化为酒精和二氧化碳。
2.糖化过程:在糖化过程中,麦芽中的淀粉会被麦芽酶分解为糖类。
通过调整麦芽和水的比例以及控制温度,可以控制糖化的效果和时间。
3.糖化液煮沸:糖化液煮沸后,会杀死其中的酵母,使之停止活动。
此时,糖化液中的麦芽和水溶液称为“麦汁”。
4.麦汁冷却:将麦汁冷却至适宜的温度,以便接种酵母。
温度过高或过低都会影响酵母的发酵效果。
5.发酵过程:将酵母接种入麦汁中,开始发酵过程。
在发酵过程中,酵母会分解麦汁中的糖类,并产生酒精和二氧化碳。
同时,还会产生各种味道和香气。
6.陈化和二次发酵:发酵过程通常持续一周至数周,具体时间取决于啤酒类型和制作工艺。
部分啤酒还会经历二次发酵,以进一步改善其风味和质量。
二、时间控制的重要性时间控制是保证啤酒品质稳定性的关键因素之一。
不同类型的啤酒对发酵时间有着不同的要求。
发酵时间过短可能导致酵母未能彻底分解糖类,啤酒口感较重,香气不够。
而发酵时间过长则会导致酒体较稠,口感平淡。
因此,对于不同类型的啤酒,需要根据实际情况和经验来掌握合适的发酵时间。
此外,环境温度也会对发酵时间产生重要影响。
较高的温度会加快酵母的活动速度,使发酵过程变短。
相反,较低的温度会减慢酵母的活动速度,使发酵过程变长。
因此,在控制发酵时间时,需注意控制环境温度,提供适宜的条件。
三、结语发酵是啤酒制作中至关重要的步骤之一,合理的发酵过程和时间控制可以影响啤酒的品质和口感。