多水平结构方程模型
- 格式:ppt
- 大小:2.43 MB
- 文档页数:8
多水平结构方程模型多水平结构方程模型(Multilevel Structural Equation Modeling, MLM)是一种结合了多层次分析(Multilevel Analysis)和结构方程模型(Structural Equation Modeling)的分析方法。
它适用于研究中存在多个层次结构的数据,并可以同时探索个体层面和群体层面的影响因素和关系。
1.确定研究问题:明确研究中的多层次结构,并确定需要探索的因果关系。
2.数据准备:收集和整理符合多层次结构的数据,包括个体层和群体层的变量。
3.模型设定:根据研究问题和理论框架,构建多水平结构方程模型的研究假设。
4.模型估计:使用统计软件进行多水平结构方程模型的估计,包括参数估计和模型拟合指标检验。
5.结果解释:解释和讨论多水平结构方程模型的结果,包括不同层次的影响因素和关系,以及个体和群体之间的交互作用。
多水平结构方程模型的优势在于可以同时探索个体和群体层面的因素和关系,从而提供更全面的分析结果。
它可以帮助研究者理解个体和群体之间的相互作用,从而更好地解释和预测现象。
此外,多水平结构方程模型还可以引入随机效应和固定效应的概念,用于解释个体和群体之间的差异和变异。
然而,多水平结构方程模型也存在一些挑战和限制。
首先,数据的收集和整理需要考虑到多层次结构的特点,工作量较大。
其次,在模型估计和结果解释过程中,需要更复杂的统计技术和专业知识。
此外,多水平结构方程模型对样本的要求较高,需要较大的样本量来保证模型的稳定性和准确性。
综上所述,多水平结构方程模型是一种有力的统计方法,可以用于探索个体和群体之间的影响因素和关系。
它在实验研究、教育研究等领域具有广泛的应用价值,并为研究者提供了更全面的分析视角和研究工具。
然而,研究者在使用多水平结构方程模型时需要充分考虑数据特点和模型假设,以及选择适当的统计软件和技术进行分析和解释。
多层线性模型的解读:原理与应用多层线性模型的解读:原理与应用浙江师范大学心理研究所陈海德Chenhaide351@ 一、多层数据结构的普遍性多水平、多层次的数据结构普遍存在,如学生嵌套于班级,班级有嵌套与学校。
传统的线性模型,如方差分析和回归分析,只能涉及一层数据的问题进行分析,不能综合多层数据问题。
在实际研究中,更令人感兴趣的是学生一层的变量与班级一层的变量之间的交互作用,比如,学生之间的个体差异在不同班级之间可能是相同的、也可能是不同的。
学生数据层中,不同变量之间的关系可能因班级的不同而不同。
因此,学生层的差异可以解释为班级层的变量。
另一种类型的两层嵌套数据来自纵向研究数据,不同时间观测数据形成了数据结构的第一层,而被试之间的个体差异形成了第二层。
可以探索个体在发展趋势上的差异。
二、传统技术处理多层数据结构的局限如果把变量分解到个体水平,在个体水平上分析。
但是我们知道这些学生是来自同一班级的,不符合观察独立原则。
导致个体间随机误差相互独立的假设不能满足。
如果把个体变量集中到较高水平,在较高水平上进行分析。
这样丢弃了组内信息,而组内变异可能占了大部分。
三、原理☆水平1的模型与传统的回归模型类似,所不同的是回归方程的截距和斜率不再是一个常数,而是水平2变量水平不同,其回归方程的截距和斜率也不同的,是一个随机变量。
如,每个班级的回归方程的截距和斜率都直接依赖于班级教师教学方法。
☆多层线性模型分为“随机截距模型”和“随机截距和随机斜率模型”。
“随机截距模型”假定因变量的截距随着群体的不同而不同,但各群体的回归斜率是固定,因此不同层次因素之间缺乏互动。
“随机截距和随机斜率模型”假定截距和回归斜率都因群体而异,允许不同层次因素之间的互动。
参数估计方法有:迭代广义最小二乘法、限制性的广义最小二乘估计、马尔科夫链蒙特卡罗法。
这些方法代替了传统的最小二乘法估计,更为稳定和精确。
比如,当第二层的某单位只有少量的被试,或不同组样本量不同时,多层线性模型进行了加权估计、迭代计算。
●有的说每个观察变量最好有10个样本,有的说200到500之间比较好。
在SEM中,与一般的研究方法相同,样本量越大越好,但是在SEM 中,绝对指标卡方容易受到样本量的影响,样本越大,越容易达到显著水平。
●在结构方程建模中,在观察变量到潜在变量的路径系数中,必须规定一条为1做标准求的其他路径系数和潜变量的值.潜变量之间就不用规定为1了.●内衍变量和观察变量都要有一个误差量e。
●指标变量包括观察变量和误差变量●如何让绘图区变宽:可以在view里面的interface properties中点击landscape在进入模型检验之前,首先检验是否出现违反估计:●负的误差方差存在●标准化系数超过或太接近1(通常以0.95)验证性因素分析信度:建构信度等于标准化因素负荷量和的平方/(标准化因素负荷量和的平方+(1—标准化因素负荷量的平方)的和)收敛效度:平均方差抽取量:是指可以直显示被潜在构念所解释的变异量有多少是来自测量误差的,平均方差变异量越大,来自于测量误差越少,即因子对于观察数据的变异解释越大,一般是平均方差抽取量要大于0。
5,是一种收敛效度的指标。
等于标准化因素负荷量的平方之和/题目数目验证性因素分析基本模型适配度检验摘要表:●是否没有负的误差变异量e1 e2 e3●因素负荷量(潜在变量与观察变量之间的标准化系数)是否介于0。
5到0。
95之间●Variances 是否没有很大的标准误(路径系数的标准误)整体模型适配度检验摘要表:绝对适配度指数●卡方值,p大于0。
05,说明数据本身的协方差矩阵和模型的协方差矩阵是匹配的.●RMR值小于0.05,●RMSEA小于0。
08(小于0。
05优良,若是小于0.08良好)●GFI大于0。
90,适配优度●AGFI 大于0。
90 (调整后的适配度)增值适配度指数●NFI大于0.90●RFI 大于0.90●IFI大于0。
90●TLI(也称为NNFI) 大于0.90●CFI大于0.90简约适配度指数:●PGFI 大于0.50●PNFI大于0。
假设检验:结构方程模型分析5.6 假设检验:结构方程模型分析。
Karl Joreskog 和Dag Sordorm 在20 世纪70 年代提出结构方程模型(structure equation modeling,SEM)是应用线性方程表示观测变量与潜变量之间的关系以及潜变量之间关系的一种统计分析方法,试图通过实验数据验证理论模型假设中潜变量之间的关系,结构方程模型通过结合路径分析及因素分析的方法对观测变量与潜变量之间的关系进行验证,最终得出自变量与因变量之间的总体效应、直接效应及间接效应。
结构方程模型主要用于检验理论模型与样本数据之间的匹配度。
结构方程模型的应用软件很多,且各有特点,这些软件包括Lisrel(Linear Structural Relations)、AMOS(Analysis of MomentStructures)、EQS(E-quations)和Mplus 等。
本研究中采用的是AMOS 软件对数据进行分析。
结构方程模型通常包括测量模型和结构模型两种模型,其中测量模型描述的是潜在变量经由观测指标如何经过测量或概念化形成的,潜在变量和观测变量之间的关系共同构成了测量模型概念的内涵;而结构模型主要描述的是潜在变量之间的相关关系及模型中无法解释的变异量。
本研究采用的是结构模型,实际上包括了测量关系和结构关系两种关系。
在结构方程模型中,结构模型主要用于处理潜变量之间的相关关系,方程中包含三种随机变量:观测变量、潜变量及误差变量。
通过对外生变量、内生变量及中介变量进行区分厘清变量之间的结构关系。
结构方程模型可以通过矩阵方程式和路径图两种方式反映各变量之间的测量关系及结构关系,采用矩阵方程式的形式来反映模型关系如下所示:5.6.1 模型识别。
模型识别主要是通过模型拟合过程中的参数数目及可获得的数据资料反映模型是否具有可操作性以及是否能够得到合理的结果。
模型识别包括恰好识别、过渡识别和识别不足三种情况,可用模型自由度(DF)来鉴别模型识别情况,当DF<0,模型为识别不足;DF=0,模型为恰好识别;DF>0 模型为过渡识别。
结构方程模型分析过程应用案例第一节模型设定结构方程模型分析过程可以分为模型构建、模型运算、模型修正以及模型解释四个步骤。
下面以一个研究实例作为说明,使用Amos7软件1进行计算,阐述在实际应用中结构方程模型的构建、运算、修正与模型解释过程。
一、模型构建的思路本案例在著名的美国顾客满意度指数模型(ASCI)的基础上,提出了一个新的模型,并以此构建潜变量并建立模型结构。
根据构建的理论模型,通过设计问卷对某超市顾客购物服务满意度调查得到实际数据,然后利用对缺失值进行处理后的数据2进行分析,并对文中提出的模型进行拟合、修正和解释。
二、潜变量和可测变量的设定本文在继承ASCI模型核心概念的基础上,对模型作了一些改进,在模型中增加超市形象。
它包括顾客对超市总体形象及与其他超市相比的知名度。
它与顾客期望,感知价格和顾客满意有关,设计的模型见表1。
1本案例是在Amos7中完成的。
2见spss数据文件“处理后的数据.sav”。
模型中共包含七个因素(潜变量):超市形象、质量期望、质量感知、感知价值、顾客满意、顾客抱怨、顾客忠诚,其中前四个要素是前提变量,后三个因素是结果变量,前提变量综合决定并影响着结果变量(Eugene W. Anderson & Claes Fornell,2000;殷荣伍,2000)。
表 1 设计的结构路径图和基本路径假设2.1、顾客满意模型中各因素的具体范畴参考前面模型的总体构建情况、国外研究理论和其他行业实证结论,以及小范围甄别调查的结果,模型中各要素需要观测的具体范畴,见表2。
表2 模型变量对应表3正向的,采用Likert10级量度从“非常低”到“非常高”三、关于顾客满意调查数据的收集本次问卷调研的对象为居住在某大学校内的各类学生(包括全日制本科生、全日制硕士和博士研究生),并且近一个月内在校内某超市有购物体验的学生。
调查采用随机拦访的方式,并且为避免样本的同质性和重复填写,按照性别和被访者经常光顾的超市进行控制。
假设检验:结构方程模型分析5.6 假设检验:结构方程模型分析。
Karl Joreskog 和Dag Sordorm 在20 世纪70 年代提出结构方程模型(structure equation modeling,SEM)是应用线性方程表示观测变量与潜变量之间的关系以及潜变量之间关系的一种统计分析方法,试图通过实验数据验证理论模型假设中潜变量之间的关系,结构方程模型通过结合路径分析及因素分析的方法对观测变量与潜变量之间的关系进行验证,最终得出自变量与因变量之间的总体效应、直接效应及间接效应。
结构方程模型主要用于检验理论模型与样本数据之间的匹配度。
结构方程模型的应用软件很多,且各有特点,这些软件包括Lisrel(Linear Structural Relations)、AMOS(Analysis of MomentStructures)、EQS(E-quations)和Mplus 等。
本研究中采用的是AMOS 软件对数据进行分析。
结构方程模型通常包括测量模型和结构模型两种模型,其中测量模型描述的是潜在变量经由观测指标如何经过测量或概念化形成的,潜在变量和观测变量之间的关系共同构成了测量模型概念的内涵;而结构模型主要描述的是潜在变量之间的相关关系及模型中无法解释的变异量。
本研究采用的是结构模型,实际上包括了测量关系和结构关系两种关系。
在结构方程模型中,结构模型主要用于处理潜变量之间的相关关系,方程中包含三种随机变量:观测变量、潜变量及误差变量。
通过对外生变量、内生变量及中介变量进行区分厘清变量之间的结构关系。
结构方程模型可以通过矩阵方程式和路径图两种方式反映各变量之间的测量关系及结构关系,采用矩阵方程式的形式来反映模型关系如下所示:5.6.1 模型识别。
模型识别主要是通过模型拟合过程中的参数数目及可获得的数据资料反映模型是否具有可操作性以及是否能够得到合理的结果。
模型识别包括恰好识别、过渡识别和识别不足三种情况,可用模型自由度(DF)来鉴别模型识别情况,当DF<0,模型为识别不足;DF=0,模型为恰好识别;DF>0 模型为过渡识别。
多层线性模型的解读:原理与应用浙江师范大学心理研究所陈海德********************一、多层数据结构的普遍性多水平、多层次的数据结构普遍存在,如学生嵌套于班级,班级有嵌套与学校。
传统的线性模型,如方差分析和回归分析,只能涉及一层数据的问题进行分析,不能综合多层数据问题。
在实际研究中,更令人感兴趣的是学生一层的变量与班级一层的变量之间的交互作用,比如,学生之间的个体差异在不同班级之间可能是相同的、也可能是不同的。
学生数据层中,不同变量之间的关系可能因班级的不同而不同。
因此,学生层的差异可以解释为班级层的变量。
另一种类型的两层嵌套数据来自纵向研究数据,不同时间观测数据形成了数据结构的第一层,而被试之间的个体差异形成了第二层。
可以探索个体在发展趋势上的差异。
二、传统技术处理多层数据结构的局限如果把变量分解到个体水平,在个体水平上分析。
但是我们知道这些学生是来自同一班级的,不符合观察独立原则。
导致个体间随机误差相互独立的假设不能满足。
如果把个体变量集中到较高水平,在较高水平上进行分析。
这样丢弃了组内信息,而组内变异可能占了大部分。
三、原理☆水平1(学生)的模型与传统的回归模型类似,所不同的是回归方程的截距和斜率不再是一个常数,而是水平2变量水平不同(不同的班级),其回归方程的截距和斜率也不同的,是一个随机变量。
如,每个班级的回归方程的截距和斜率都直接依赖于班级教师教学方法。
☆多层线性模型分为“随机截距模型”和“随机截距和随机斜率模型”。
“随机截距模型”假定因变量的截距随着群体的不同而不同,但各群体的回归斜率是固定,因此不同层次因素之间缺乏互动。
“随机截距和随机斜率模型”假定截距和回归斜率都因群体而异,允许不同层次因素之间的互动。
参数估计方法有:迭代广义最小二乘法、限制性的广义最小二乘估计、马尔科夫链蒙特卡罗法。
这些方法代替了传统的最小二乘法估计,更为稳定和精确。
比如,当第二层的某单位只有少量的被试,或不同组样本量不同时,多层线性模型进行了加权估计、迭代计算。
R语言(七)-结构方程模型评价R语言(七)--结构方程模型评价方法一、模型评价任务:评价假设的模型对数据的拟合程度解释:一个拟合优度高的模型并不代表该模型是正确的模型,也不表示该模型有很高的实用性,只能说假设模型比较符合实际数据。
如果无法对估计和检验的结果进行解释,则有时可以根据相关理论来构建假设模型,之后再根据拟合优度指标来评价模型,不应根据拟合优度指标来调整模型。
二、基本拟合优度检验参数检验(模型与实际数据的拟合程度)模型外在质量评估模型拟合优度检验模型内在质量评估模型内在结构拟合优度检验显著性检验(Z value 和 P值)合理性检验(Estimate)参数符号是否合理出现负的误差方差参数的取值范围是否合理潜变量间相关系数的绝对值大于1或接近1因子载荷偏低(小于0.5)出现过大或过小的标准误差参数是否可以得到合理的解释模型最受关注的三个焦点:测量模型的因子载荷因子的方差或协方差结构方程的路径系数三、PLS-SEM的评价方法Bootstrap方法(对数据可放回的重复抽样)函数narm用于忽略NA数据值,naomit用于剔除缺失值odd.ration用于计算比率library(boot)boot(data=a,statistic=OR,R=1000)# quantile()函数可以得到95%的置信区间quantile(a_boot$t,c(0.025,0.975))四、结构方程模型适配性评价指标及标准Default model(预设模型),Saturated model(饱和模型),Independence model(独立模型)。
在模型适配度统计量识别方面需要以Default model(预设模型)为主。
HOELTER为临界样本数CN适配统计量。
1. x2值:显著性概率值p>0.05(未达显著水平),x2使用样本数为100至200;.2. GFI值:>0.90;3. AGFI值:>0.90;4. RMR值:<0.05;5. RMSEA值:<0.05(适配良好),<0.08适配合理;6. NCP值:越小越好,最好是0;7. NFI值:>0.90;8. RFI值:>0.90;9. IFI值:>0.90;10. TLI值:>0.90;11. PGFI值:>0.50;12. PNFI值:>0.50;13. CN值:>200;14. NC值(x2自由度比值):1<nc<3,表示模型有简约适配度;< p="">NC>5,表示模型需要修正。
构建结构方程的变量设计结构方程模型(Structural Equation Modeling, SEM)是一种多变量分析方法,旨在通过估计多个观察变量和潜在变量之间的相互关系来研究潜变量的结构模式。
在构建结构方程的变量设计时,需要考虑研究目的、理论基础、适用性和可解释性等因素。
本文将介绍构建结构方程的变量设计的基本原则和步骤。
1.研究目的和理论基础:在构建结构方程的变量设计时,首先要明确研究目的和背景,确定研究领域的理论基础。
理论基础是从研究领域的相关文献和理论框架中提取的有关变量的研究建议。
通过对相关研究的综述和理论分析,可以确定需要关注的变量和变量之间的假设关系。
2.测量工具选择:根据研究目的和理论基础选择适当的测量工具来衡量所关注变量的各个维度。
测量工具应具有良好的信度和效度,并能够准确地反映变量的内涵。
常用的测量工具包括问卷调查、观察和测试等。
在选择测量工具时,可以参考之前的研究和经过验证的工具,也可以根据研究目的设计新的测量工具。
3.变量操作化:测量工具选择后,需要对变量进行操作化,将其转化为可观察到的指标。
操作化是将潜变量转化为观察变量的过程,通过观察变量来间接地反映潜变量的性质。
操作化可以通过直接测量或间接测量来实现。
直接测量是指直接测量潜变量的指标,例如使用问卷对被试进行调查;间接测量是借助其他变量来间接地测量潜变量,例如使用观察指标、次级分析等。
4.变量关系设定:根据研究假设和理论框架,将变量之间的关系用结构方程模型表示。
结构方程模型由测量模型和结构模型组成。
测量模型表示观察变量和潜变量之间的关系,结构模型表示潜变量之间的关系。
在设定变量关系时,可以根据理论和经验进行适当的假设和约束。
根据变量之间的关系假设,可以构建线性或非线性的结构方程模型。
5.模型拟合度检验:构建结构方程模型后,需要对模型进行拟合度检验,以评估模型的合理性。
常用的拟合指标包括卡方值(Chi-square, χ2)、标准化拟合指数(Goodness-of-Fit Index, GFI)、调整拟合指数(Adjusted Goodness-of-Fit Index, AGFI)、比较拟合指数(Comparative Fit Index, CFI)和根均方误差逼近指数(Root Mean Square Error of Approximation, RMSEA)等。
摘要:针对以往的顾客满意度研究存在的问题,本研究提出“忠诚度导向的顾客满意度研究模型”,使用结构方程模型(Structural Equation Modelling,简称为SEM)探索顾客满意度的构成要素及其对顾客忠诚度的影响。
在对某著名IT公司该公司的顾客满意度连续监测中,采纳了“忠诚度导向的顾客满意度研究模型”,取得较好的效果。
本文展示了对该公司2001年第二季度的笔记本电脑顾客满意度进行研究的具体操作流程。
最后,提出了“忠诚度导向的顾客满意度研究模型”的进一步发展方向。
关键词结构方程、顾客满意度、IT行业1 传统的顾客满意度研究模型顾客满意度(customer satisfaction)已经成为当今企业竞争的一个重要因素,在2000版的国际ISO9001标准中,将顾客满意作为八大管理原则基础之一,并在标准中明确提出了有关对顾客满意度进行测量和监控的要求。
(黄健宇,2000)目前,从不同的学科出发,对顾客满意度采取了两种研究路线。
其一是从管理学的角度,采取专家评价法、模糊评价法或者AHP法确定构成顾客满意度的各要素以及各要素之间的权重,(李冠,2001;李卫星,2001)此类方法的最大特点是依据专家经验而非顾客实际感知。
另一种研究路线则是从消费心理学的角度出发,将顾客满意度加以操作性的定义,继而通过问卷调查与其他方法调查顾客取得有关数据,然后加以统计处理,得出构成满意度的各要素的权重,(阿伦?杜卡,1998;迈克丹尼尔等,2001)此类方法的最大特点是满意度之间的权重是由顾客感知所决定。
两种方法各有优劣,与企业所归属的行业领域有关。
本文着重讨论的是后一类消费心理学的顾客满意度研究。
一般而言,传统的顾客满意度研究有四个基本目标:1)确定满意度的关键决定因素。
不同行业的顾客满意度的关键决定因素可能有所不同,在这里,重要的是找出促使全体顾客满意的产品或者服务的某个特殊要素。
2)测量当前的顾客满意度。