结构方程模型及其应用-候杰泰课件
- 格式:ppt
- 大小:1.16 MB
- 文档页数:105
结构方程模型及其在医学中的应用作者:曲波郭海强任继萍孙高张阳于晓松【关键词】结构方程模型结构方程模型(Structural Equation Modeling, SEM)也称协方程结构模型(covariance Structure Models, CSM)或线性结构模型(Linear Stuctural Relations Models), LISREL模型是自20世纪六、七十年代才开始出现的新兴的统计分析手段,被称为近年来统计学三大进展之一[1]。
结构方程模型是一种建立、估计和检验因果关系模型的方法,模型中既包含有可观测的显在变量(observed variable),也可能包含无法直接观测的潜在变量(latent variable)。
从数理角度看,结构方程模型综合了通径分析和证实性因子分析(confirmatory factor analysis, CFA),是一种杂合体[2]。
目前结构方程模型已在心理、行为、教育和社会科学等学科领域里得到广泛的应用,但在医学领域的应用还不多,随着社会和行为科学研究问题复杂性的增加,以及统计软件的进一步发展,结构方程模型在医学领域将会逐步得到重视及应用。
1基本原理结构方程模型包括测量模型(Measurement Model)与结构模型(Structural Equation Model)[3]。
测量模型部分求出观察指标与潜变量之间的关系;结构模型部分求出潜在变量与潜在变量之间的关系。
在结构方程模型中,对于所研究的问题,无法直接测量的现象记为潜变量(Latent Variable)或称隐变量;可直接测量的变量记为观测变量(Manifest Variable)或显变量。
11测量模型(Measurement Model)一般由两个方程式组成,分别规定了内生的潜在向量η和内生的显在向量Y之间,以及外生的潜在变量ξ和外生的显在向量X间的关系,分别用方程表示为:Y=ΛYη+ω(1)X=ΛXξ+δ(2)其中,Y为q×1阶内生观测变量向量,X为p×1阶外生观测变量向量;η是n×1阶内生潜变量(即潜在的因变量)向量,ξ是m×1阶外生潜变量(即潜在的自变量)向量;ΛY为q×n阶矩阵,是内生观测变量Y在内生潜变量η上的因子载荷矩阵;ΛX为p×m阶矩阵,是外生观测变量X在外生潜变量ξ上的因子载何矩阵;δ为p×1阶测量误差向量,ε为q×1阶测量误差向量,δ、ε表示不能由潜变量解释的部分。
1.结构方程模式结构方程模式是在已有的因果理论基础上,用与之相应的线性方程系统表该因果理论的一种统计分析技术.目的在于探索事物间因果关系并将这种关系用因果模式、路径图等表述(Kline,R.B1998)。
一般,结构方程模式由测量和潜在变量两部分组成:测量部分求出观察指标与潜在变量之间的关系;潜在变量部分求出潜在变量与潜在变量之间关系。
因此,结构方程模式分为测量模式与潜在结构模式(侯杰泰,1994)。
测量模式的方程:X、Y分别是外源和内源指标;η、ε分别是内源和外源变量,δ、e分别是X、Y的测量误差;Λx是X指标与外源潜在变量ζ的关系;Λy是Y指标与内源潜在变量η的关系。
结构模式的方程:η=βη+Γε+ζη是内源潜在变量,ε是外源潜在变量间关系,ζ是内源潜在变量间关系,Γ是外源潜在变量对内源潜在变量影响,是模式内未能解释的部分。
2.结构方程模式的建构(1)模式构想出发点是为观察变量问候设的基本因果关系建立具体的模式。
这就需要清晰地说明变量间的因果联系,即通过路径图的方式,对变量间假定的因果联系予以描述。
但同时我们应该认识到.模式的建立必须以正确的理论为基础,如果某一路径缺乏理论依据,则它无法正确解释变量间的因果联系。
(2)模式限定可以用代表因果理论的线性方程系统表示理论上的模式。
在从概念理论到统计模式的过渡.可形成假设。
一假设是:线性模式可完全代表观察数据余假设分为:有关观察指标与潜在变量关系的假设;有关潜在变量或观察指标因果关系的方向及属性的假设。
(3)模式识别的判定模式形成的重要阶段是判定模式能否被识别。
要能识别某个模式,就需要说明线性方程的各个系统参数。
这些系统参数可根据观察分数的方差和协方差矩阵所提供的信息进行估计。
模式识别的必要但非充分条件是模式的参数个数不多于观察的方差和协方差数目(Duncan,1975;Everitt,1984)。
(4)模式拟合把统计模式与观察数据相拟合。
根据研究者的需要,可选用适当的拟合指标以考察模式与数据的拟合程度。
结构方程模型1优点(一)同时处理多个因变量结构方程分析可同时考虑并处理多个因变量。
在回归分析或路径分析中,就算统计结果的图表中展示多个因变量,其实在计算回归系数或路径系数时,仍是对每个因变量逐一计算。
所以图表看似对多个因变量同时考虑,但在计算对某一个因变量的影响或关系时,都忽略了其他因变量的存在及其影响。
(二)容许自变量和因变量含测量误差态度、行为等变量,往往含有误差,也不能简单地用单一指标测量。
结构方程分析容许自变量和因变量均含测量误差。
变量也可用多个指标测量。
用传统方法计算的潜变量间相关系数,与用结构方程分析计算的潜变量间相关系数,可能相差很大。
(三)同时估计因子结构和因子关系假设要了解潜变量之间的相关,每个潜变量者用多个指标或题目测量,一个常用的做法是对每个潜变量先用因子分析计算潜变量(即因子)与题目的关系(即因子负荷),进而得到因子得分,作为潜变量的观测值,然后再计算因子得分,作为潜变量之间的相关系数。
这是两个独立的步骤。
在结构方程中,这两步同时进行,即因子与题目之间的关系和因子与因子之间的关系同时考虑。
(四)容许更大弹性的测量模型传统上,我们只容许每一题目(指标)从属于单一因子,但结构方程分析容许更加复杂的模型。
例如,我们用英语书写的数学试题,去测量学生的数学能力,则测验得分(指标)既从属于数学因子,也从属于英语因子(因为得分也反映英语能力)。
传统因子分析难以处理一个指标从属多个因子或者考虑高阶因子等有比较复杂的从属关系的模型。
(五)估计整个模型的拟合程度在传统路径分析中,我们只估计每一路径(变量间关系)的强弱。
在结构方程分析中,除了上述参数的估计外,我们还可以计算不同模型对同一个样本数据的整体拟合程度,从而判断哪一个模型更接近数据所呈现的关系。
2对比线性相关分析 :线性相关分析指出两个随机变量之间的统计联系。
两个变量地位平等,没有因变量和自变量之分。
因此相关系数不能反映单指标与总体之间的因果关系。
结构方程模型的应用及分析策略结构方程模型的应用及分析策略侯杰泰成子娟(香港中文大学教育学院东北师范大学教育学院,130024)摘要:差不多所有心理、教育、社会等概念,均难以直接准确测量,结构方程(SEM,Structural Equation Modelling)提供一个处理测量误差的方法,采用多个指标去反映潜在变量,也令估计整个模型因子间关系,较传统回归方法更为准确合理。
本文主要用一系列有关学习动机的虚拟例子,指出每个问题的主要分析策略,以展示SEM在教育及心理学可以应用的研究范畴。
文内探讨的方法包括:验证性因素、高阶因子、路径及因果分析、多时段(multiwave)设计、单形模型(Simple Model)、及多组比较等。
关键词结构方程验证性因素分析路径及因果分析高阶因子多组比较结构方程(SEM,Structural Equation Modelling)、协方差结构模型(Covariance Structure Modelling、LISREL)等类似名词已渐流行,并成为一种十分重要的数据分析技巧;在大学高等学位研究课程,它是多变量分析(multivariate analysis)的重要课题;比较重要的社会、教育、心理期刊,也早已特开专栏介绍(如:候,1994;Connell & Tanaka,1987;Joreskog & Sorbom,1982);可见SEM在统计学中所建立的声望及崇高地位是无容置疑的。
本文主要用一系列有关学习动机的虚拟例子,来指出每个问题的主要分析策略,以展示结构方程模型在教育及心理学可以应用的研究范畴。
一、结构方程:优点及拟合概念1.数学模式很多社会、心理等变项,均不能准确地及直接地量度,这包括智力、社会阶层、学习动机等,我们只好退而求其次,用一些外项指标(observable indicators),去反映这些潜伏变项。
例如:我们以学生父母教育程度、父母职业及其收入(共六个变项),作为学生家庭社经地位(潜伏变项)的指标,我们又以学生中、英、数三科成绩(外显变项),作为学业成就(潜伏变项)的指标。