spss统计分析及应用教程-第9章-结构方程模型
- 格式:ppt
- 大小:1.78 MB
- 文档页数:5
结构方程模型及其应用引言结构方程模型(SEM)是一种广泛应用于社会科学、心理学、经济学、医学等领域的统计方法。
SEM可以同时处理潜在变量和观测变量,并能够准确地估计模型中各种参数的值,以便更好地理解和预测现实世界中的各种现象。
基本概念结构方程模型包括路径分析、因素分析和结构方程建模等方面。
路径分析旨在揭示变量之间的因果关系,通过建立变量之间的路径图来表现各个变量之间的相互作用。
因素分析则是将变量之间的关系转化为潜在因素之间的关系,从而更好地理解变量之间的本质。
而结构方程建模则是将路径分析和因素分析结合起来,建立一个完整的模型,并估计模型中各种参数的值。
方法与技术结构方程模型的方法和技术包括问卷调查、数据采集、数据分析等。
在建立SEM模型之前,需要通过问卷调查来收集数据,确定潜在变量和观测变量的具体指标。
数据采集的方法可以包括网络调查、调查、面对面访谈等。
在数据采集完成后,需要使用特定的统计分析软件,如SPSS、AMOS等,来进行数据分析,估计模型中各种参数的值,并检验模型的拟合程度。
应用场景结构方程模型在教育、金融、医疗等领域有广泛的应用。
在教育领域,SEM可以帮助教育工作者了解学生学习成果的影响因素,为教育政策的制定提供科学依据。
在金融领域,SEM可以用来研究投资组合优化、风险管理等问题,帮助投资者做出更加明智的投资决策。
在医疗领域,SEM可以用来研究疾病发生、发展及其影响因素,为疾病的预防和治疗提供新的思路和方法。
案例分析以一个实际案例来说明结构方程模型的应用过程。
假设我们想要研究学生的心理健康状况对其学业成绩的影响。
首先,我们需要通过问卷调查来收集数据,确定潜在变量和观测变量。
潜在变量包括学生的心理健康状况和学业成绩,观测变量则包括学生的性别、年龄、家庭背景等。
然后,我们使用AMOS软件来建立SEM模型,并估计模型中各种参数的值。
在模型中,我们建立了一条从心理健康状况到学业成绩的路径,表示心理健康状况对学业成绩的影响。
结构方程模型结构方程模型(Structural Equation Modeling,简称SEM)是一种多变量统计分析方法,其主要用于探究变量之间的关系和影响。
它不仅可以用于描述变量之间的相关性,还可以帮助我们理解变量之间的因果关系。
在社会科学、教育学、心理学等领域中,SEM已经成为了一种常用的分析方法。
本文将从以下几个方面对SEM进行详细介绍。
一、 SEM的基本概念1. 结构方程模型结构方程模型是一种复杂的统计分析方法,它可以同时考虑多个因素对某个结果变量的影响,并且可以建立一个包含多个因素和结果变量之间相互作用关系的模型。
2. 因果关系在SEM中,我们通常会建立一个因果模型来描述变量之间的关系。
因果关系指的是一个事件或现象引起另一个事件或现象发生的关系。
在SEM中,我们通过设定不同变量之间的路径来表示它们之间可能存在的因果关系。
3. 测量模型测量模型是指将观测到的数据转化为潜在变量(latent variable)或者隐含特征(hidden feature)所形成的数学模型。
在SEM中,我们通常会将多个测量指标(observed variables)用一个潜在变量来代表。
4. 结构模型结构模型是指变量之间的关系模型。
在SEM中,我们通常会建立一个结构方程模型,其中包含多个因素和结果变量之间相互作用的关系。
二、 SEM的应用领域1. 社会科学社会科学领域是SEM的主要应用领域之一。
在社会科学研究中,SEM 可以帮助研究人员探究不同因素对社会现象产生的影响,并且可以通过因果关系的建立来分析各种社会问题。
2. 教育学教育学领域也是SEM的重要应用领域之一。
在教育研究中,SEM可以帮助研究人员分析不同因素对学生学习成绩产生的影响,并且可以通过建立因果模型来探究各种教育问题。
3. 心理学心理学是SEM的另一个主要应用领域。
在心理学研究中,SEM可以帮助研究人员探究不同因素对心理问题产生的影响,并且可以通过建立因果模型来分析各种心理问题。
结构方程模型出现问题如何办?目录1结构方程模型SEM的拟合指标 (1)2 解决办法1:梳理建模流程(因子分析) (3)3 解决办法2:调整模型(MI指数调整和手工调整) (3)3 解决办法3:换用模型(路径分析或线性回归) (4)结构方程模型SEM是一种多元数据分析方法,其包括测量模型和结构模型,类似如下图:上图中红框即为测量模型,Factor1是A1~A4共4项表示;类似还有Factor2,Factor3和Factor4。
而结构模型是指影响关系情况,比如模型中Factor1和Factor2影响Factor3;Factor3影响Factor4。
如果说只研究测量模型,那么通常是指验证性因子分析CFA;如果说只研究结构模型,则称作路径分析path analysis。
验证性因子分析和路径分析均是结构方程模型的特殊形式。
结构方程模型由测量模型和结构模型构成,如果进行结构方程模型构建时想达到良好的模型效果。
那么就需要保证测量模型和结构模型均有着良好的拟合性,否则最终结构方程模型拟合效果都不会太好。
同时,结构方程模型有着非常多的拟合指标,比如卡方自由度比,RMSEA,CFA,RMR等几十种,但在实际研究中会发现基本上很难所有指标均达标,而且很多指标都不达标。
那怎么办呢?接下来针对结构方程模型的拟合指标、拟合效果不好时的3种解决办法等分别进行说明,期许得到最佳模型。
结构方程模型SEM的拟合指标结构方程模型拟合时,会有非常多的指标。
SPSSAU默认提供常用的15类指标,说明如下:在已有文献中,还会出现各类拟合指标,但基本上都是上述拟合指标的一种变型而已。
一般来说,模型拟合效果越好,各类指标越容易达标,但即使模型已经拟合非常好,也不能保证所有的参数均在标准范围内。
为什么会出现这种情况呢,比如卡方自由度值使用较多,但是该指标容易受到样本量的影响,样本量越大时,该指标越可能更小,有的指标在标准范围内,那么对应有的指标就可能不在标准范围内,没有一个指标可以完全性地确定模型的好或坏。
表一、关于顾客满意调查数据的收集本次问卷调研的对象为居住在某大学校内的各类学生(包括全日制本科生、全日制硕士和博士研究生),并且近一个月内在校内某超市有购物体验的学生。
调查采用随机拦访的方式,并且为避免样本的同质性和重复填写,按照性别和被访者经常光顾的超市进行控制。
问卷内容包括7个潜变量因子,24项可测指标,7个人口变量,量表采用了Likert10级量度,如对1正向的,采用Likert10级量度从“非常低”到“非常高”二、缺失值的处理采用表列删除法,即在一条记录中,只要存在一项缺失,则删除该记录。
最终得到401条数据,基于这部分数据做分析。
三、数据的的信度和效度检验1.数据的信度检验信度(reliability)指测量结果(数据)一致性或稳定性的程度。
一致性主要反映的是测验内部题目之间的关系,考察测验的各个题目是否测量了相同的内容或特质。
稳定性是指用一种测量工具(譬如同一份问卷)对同一群受试者进行不同时间上的重复测量结果间的可靠系数。
如果问卷设计合理,重复测量的结果间应该高度相关。
由于本案例并没有进行多次重复测量,所以主要采用反映内部一致性的指标来测量数据的信度。
折半信度(split-half reliability)是将测量工具中的条目按奇偶数或前后分成两半,采用Spearman-brown公式估计相关系数,相关系数高提示内部一致性好。
然而,折半信度系数是建立在两半问题条目分数的方差相等这一假设基础上的,但实际数据并不一定满足这一假定,因此信度往往被低估。
Cronbach在1951年提出了一种新的方法(Cronbach's Alpha系数),这种方法将测量工具中任一条目结果同其他所有条目作比较,对量表内部一致性估计更为慎重,因此克服了折半信度的缺点。
本章采用SPSS16.0研究数据的内部一致性。
在Analyze菜单中选择Scale下的Reliability Analysis(如图7-1),将数据中在左边方框中待分析的24个题目一一选中,然后点击,左边方框中待分析的24个题目进入右边的items方框中,使用Alpha 模型(默认),得到图7-2,然后点击ok即可得到如表7-3的结果,显示Cronbach's Alpha系数为0.892,说明案例所使用数据具有较好的信度。
结构方程模型精讲结构方程模型(Structural Equation Modeling,即SEM)是一种多变量统计分析方法,主要用于建立和验证变量之间的因果关系模型。
SEM在社会科学研究领域中被广泛应用,可以用于研究因果关系的生成机制、模型拟合度评估和预测效果等。
一个SEM模型通常包括以下几个重要的组成部分:1. 构念(Latent variables):构念是无法直接观察到的理论概念,代表研究对象的特征、态度或行为。
通过测量指标来间接度量构念。
构念可以是单一的或多个指标组合而成的。
2. 指标(Indicators):指标是可以直接观察到的变量,用于测量构念的表现。
指标可以是连续变量、二元变量、有序变量等。
3. 因果路径(Causal paths):因果路径是指构念之间或构念与指标之间的直接或间接影响关系。
因果路径可以是正向的、负向的或双向的。
4. 误差项(Error terms):误差项是构念和指标之间的测量误差或未被模型涵盖的因素。
误差项是模型的随机部分,代表了模型解释不了的部分。
5. 模型拟合度(Model fit):模型拟合度指模型是否能够较好地解释观察数据。
常用的模型拟合度指标包括卡方检验、比较拟合指数(CFI)、均方根误差逼近指数(RMSEA)等。
在进行SEM分析时,通常需要进行以下步骤:1.建立理论模型:根据研究问题和理论背景,构建起变量间的理论关系模型。
2.设计测量指标:选择符合研究目标的指标,考虑指标之间的相关性和可信度。
3.收集数据:通过问卷调查或实验等方法,收集观察数据。
4.编码和建模:将数据输入到结构方程模型软件进行分析和建模。
5.评估拟合度:使用适当的拟合度指标,评估模型对实际数据的拟合效果。
6.参数解释和检验:分析模型结果,解释参数估计值和检验统计量,判断变量间的因果关系和显著性。
通过SEM分析,可以帮助研究者建立潜在的因果关系模型,验证理论假设和推断变量间的关系。
SEM具有灵活性和广泛适用性,可以应用于各种类型的数据和研究领域。
结构方程模型及其应用结构方程模型(Structural Equation Modeling, SEM)是一种统计分析方法,用于建立和检验观测数据与潜在变量之间的关系模型。
它能够同时分析多个变量之间的直接和间接关系,并结合测量误差,以探索变量之间的因果关系。
SEM的应用领域广泛,如社会科学、行为科学、管理学、教育学、医学研究等,目的是通过数据分析来验证已有的理论模型或构建新的理论模型。
以下是SEM的主要应用领域:1.教育研究:SEM可以用于探究学习者的特质、学习环境、教学方法对学习成绩的影响,以及教育政策的实施对学生学业成就的影响等。
通过SEM可以分析学生学习动机、自尊心、学习方法等的影响因素,从而提出教育和教学改进的建议。
2.管理研究:SEM可以用于分析和解释组织绩效的影响因素。
例如,可以使用SEM来研究领导风格、员工满意度、组织文化对组织绩效的影响,从而提出管理措施和改进建议,促进组织发展。
3.社会科学研究:SEM可以用于研究社会行为、社会关系和社会问题。
例如,可以使用SEM来分析就业满意度的影响因素,探究家庭背景、教育程度和工作环境对就业满意度的影响关系。
4.医学研究:SEM可以应用于医学健康领域,探究各种疾病的发生与多个因素之间的关系。
例如,可以使用SEM来研究肥胖与心血管疾病之间的关系,分析饮食、运动、遗传等因素对肥胖和心血管疾病的影响。
结构方程模型的分析步骤主要包括模型设定、模型估计和模型检验。
模型设定是根据理论和研究目的确定潜在变量和观测变量之间的关系模型。
模型估计是利用统计方法计算模型中的参数估计,一般使用最大似然估计或广义最小二乘估计。
模型检验是通过计算模型拟合度指标来评估拟合效果,如卡方拟合度检验、比较拟合指数(CFI)、均方根误差逼近(RMSEA)等。
结构方程模型的优势在于可以同时分析多个变量之间的直接和间接关系,能够更好地理解变量之间的因果关系。
但是,需要注意的是,SEM对数据的要求较高,包括样本量要求较大、变量的度量要求合理、模型设定要合理等。
结构⽅程模型⼊门(纯⼲货!)⼀、结构⽅程模型的概念结构⽅程模型(Structural Equation Model,简称SEM)是基于变量的协⽅差矩阵来分析变量之间关系的⼀种统计⽅法,因此也称为协⽅差结构分析。
结构⽅程模型属于多变量统计分析,整合了因素分析与路径分析两种统计⽅法,同时可检验模型中的显变量(测量题⽬)、潜变量(测量题⽬表⽰的含义)和误差变量直接按的关系,从⽽活动⾃变量对因变量影响的直接效果、间接效果和总效果。
结构⽅程模型基本上是⼀种验证性的分析⽅法,因此通常需要有理论或者经验法则的⽀持,根据理论才能构建假设的模型图。
在构建模型图之后,检验模型的拟合度,观察模型是否可⽤,同时还需要检验各个路径是否达到显著,以确定⾃变量对因变量的影响是否显著。
⽬前,结构⽅程模型的分析软件较多,如Lisrel、EQS、Amos、Mplus、 Smartpls等等,其中AMOS的使⽤率甚⾼,因此我们重点了解⼀下使⽤AMOS软件进⾏结构⽅程模型分析的过程。
⼆、结构⽅程模型的相关概念在构建模型假设图,我们⾸先需要了解⼀些有关的基本概念1、显变量显变量有多种称呼,如“观察变量”、“测量变量”、“显性变量”、“观测变量”等等。
从这些称呼中可以看到,显变量的主要含义就是:变量是实际测量的内容,也就是我们问卷上⾯的题⽬。
在Amos中,显变量使⽤长⽅形表⽰。
2、潜变量潜变量也叫潜在变量,是⽆法直接测量,但是可以通过多个题⽬进⾏表⽰的变量。
在Amos中,潜变量使⽤椭圆表⽰。
在使⽤的过程中,我们可以通过这样的⽅式区分显变量和潜变量:在数据⽂件中有具体值的变量就是显变量,没有具体值但可通过多个题⽬表⽰的则是潜变量。
3、误差变量误差变量是不具有实际测量的变量,但必不可少。
在调查中,显变量不可能百分之百的解释潜变量,总会存在误差,这反映在结构⽅程模型中就是误差变量,每⼀个显变量都会有误差变量。
在Amos中,误差变量使⽤圆形进⾏表⽰(与潜变量类似)。
结构方程模型到底是啥?真的过时了吗文章转自:SPSS学堂作者:屠西茜本期我们对结构方程模型(SEM)进行初步介绍。
SEM将不可直接观察的概念,通过潜变量的形式,由多个观测变量构成,不仅可以估计测量过程中的误差,还能够评估测量的信度与效度。
探讨变量关系的同时,把测量过程产生的误差包含于分析过程之中,把测量信度的概念整合到路径分析等统计推断决策过程中。
在结构方程模型(SEM)中,将变量分为显变量(观测变量)和潜变量两种。
显变量是可以直接观测到的变量,如:身高、性别、被试在量表上的得分等,在结构方程模型图中用长方形表示;潜变量与显变量相对应,不可以直接观测,包括比较抽象的概念和由于种种原因不能准确测量的变量,需要借助显变量指标来估计。
比如社科研究中的自尊、信任、能力等。
在结构方程模型图中用椭圆形表示。
根据变量间的关系,SEM将变量分为内生变量和外生变量。
内生变量(1)影响自身的因素在模型之内(2)在模型中被影响的变量外生变量(1)影响自身的因素在模型之外(2)在模型中不被影响的变量内生变量和外生变量的关系如上图,对于“责任心”变量,由于在整个模型内没有影响它的因素,因此是一个外生变量,而对于“成功”变量,在模型内有影响它的因素,它被变量“责任心”影响,因此它是一个内生变量。
一般一个结构方程模型由两部分组成:测量模型和结构模型。
测量模型:描述潜变量与测量指标之间的关系,测量模型的基本目的是描述观察变量是否适合作为潜变量的测量手段,可以通过CFA来评估。
结构模型:描述潜变量之间的相互关系。
下图中,虚线框中为测量模型,实线框中为结构模型。
结构方程模型分析步骤假设提出研究假设的提出从研究问题出发。
例如,我们的研究问题是学生的学习动机是否与他的学习投入度有关?那么将问题转化为假设,H0:学习动机与学习投入无关,H1:一个学生的学习动机越积极,其学习投入度就越高。
根据研究假设,建构相关的潜变量,即学习动机和学习投入。
SPSS-结构方程式模型使你的数据更会说话——结构方程式模型在市场调查中的应用内容提要:在IDC日常市场研究工作中一些高级数据分析方法得不到应有的问题普遍存在。
而结构方程式模型作为一种实证性的数据分析技术已经发展的相当完备了,它广泛运用于市场调查的各个方面,成为提供市场营销战略策略的有力工具。
这种实证性统计方法的运用可以提高数据分析结果的有效性和科学性。
希望通过介绍结构方程式模型的建构原理,并通过一个具体研究案例的介绍使IDC同事们能对此项技术有一定了解。
结构方程式中包括了主要的分析方法,在IDC 公司中较为常见的是利用SPSS软件进行相关数字变量分析。
由于篇幅有限,本文只介绍一些基本定义,详细的介绍请参看文章后面的参考书目。
一、结构方程式模型及其建构原理结构方程式模型(Structural Equation Modeling,简称SEM)或称为因果关系模型、协方差结构模型,或者直接称为LISRLE模型,这主要是因为LISREL是用来分析结构方程式模型的早期最流行的软件。
它是一种建立、估计和检验因果关系模型的多元统计分析技术。
它包含了回归分析(multiple regression)、因子分析(factor analysis)、路径分析(path analysis)和多元方差分析(multivariate analysis of variance)等一系列多元统计分析方法,是一种非常通用的、线性的、借助于理论进行假设检验的统计建模技术。
这一模型和方法由K.Joreskog与其合作者在70年代提出并逐步改进和完善,到90年代初期开始得到了广泛的应用。
随着SEM理论和分析软件的不断发展和完善,结构方程式模型不仅在市场研究中成为分析数据、检验理论的好工具,而且在心理学、社会学、计量经济学、管理学、行为科学和传播学等领域都得到了广泛的应用。
结构方程式模型本质上是利用联立方程求解。
我们希望的是模型拟合的再生数据尽可能接近原始数据,如果真是这样的话,假设的因果关系结构与变量间的相互关联模式就是拟合的或是一致的。
戏说统计学习笔记(9)——结构方程模型我们已经发出了李连江教授的《戏说统计》课程中的八篇学习笔记:相关分析、显著性检验、回归分析、多元回归分析、因子分析与量表构造、卡方检验、对数回归、最大似然估计。
今天,我们将发出第九篇学习笔记:结构方程模型。
希望我们的整理可以继续供大家讨论学习。
结构方程模型提纲一、什么是结构方程模型二、结构方程模型的三个优点:(一)证实性因子分析(二)路径分析可以包括中介变量(三)提高拟合程度三、举例一、什么是结构方程模型结构方程模型最早应用于心理学领域,因为在心理学领域中的因变量和自变量都是由多个指标来测量的。
如果要将这几个指标合并在一起,就需要建立一个量表。
建立量表的方式有很多,但是都会遇到一个问题:如果先把几个指标变成一个量表,那么在这个过程中会有信息损失,有些在原生的状态下测得的东西变成量表之后会成为粗略的东西。
在这个过程中会造成信息损失。
因此发展出了结构方程模型。
如果用某几个指标形成量表,再用量表去做回归分析是可以的,但是会损失很多信息。
还有一个问题是做普通的回归分析的时候,回归模块有一个假定:几个自变量之间一定是彼此相关的。
理论上来讲,如果就假定这两个变量不相关,是不被回归的模块所允许的。
而我们在做因果分析的时候,往往会面临这样的情况:我们有充分的理由或充分的理论依据认为这两个自变量之间不相关。
那么这个时候我们就可以规定这两个变量是不相关的,但是在正常做回归分析的时候,是不能够这样做的。
另外一个情况是,有一些因果链条,A的变化会影响C,但是A的变化不是直接影响C的,而是通过影响B来影响C。
举个简单的例子,祖父对于孙子是有影响的,但是祖父对于孙子的影响不是直接的影响,而是通过影响孙子的父母一方。
如果我们想分析祖父影响孙子,就要看一看祖父是怎样影响孙子的父辈,再来看怎么样影响到孙子。
在这里有一个中介变量B。
这用普通的回归分析是不能够得出结果的,而是需要做一个路径分析。