证券投资理论方差模型
- 格式:ppt
- 大小:2.88 MB
- 文档页数:10
证券投资学第三版习题答案证券投资学是金融学中的重要分支,它研究的是证券市场和投资行为。
而对于学习证券投资学的学生来说,习题是巩固知识、检验理解的重要工具。
本文将为大家提供《证券投资学第三版》的习题答案,帮助学生更好地掌握和应用所学知识。
第一章:证券投资的基本概念1. 证券投资的定义是指投资者将资金投入证券市场,购买证券并持有一段时间,以获取资本收益和/或股息收入的行为。
2. 证券投资的特点包括风险性、流动性、权益性和收益性。
3. 证券市场的分类可以从发行对象、交易场所和交易方式等角度进行划分。
第二章:证券投资的基本理论1. 有效市场假说认为,市场上的证券价格已经包含了所有可获得的信息,投资者无法通过分析信息来获得超额收益。
2. 资本资产定价模型(CAPM)是一种衡量资产风险和预期收益的模型,它可以帮助投资者进行资产配置和风险管理。
3. 技术分析是一种通过研究历史价格和交易量来预测未来价格走势的方法,它主要依赖于图表和指标分析。
第三章:证券投资的风险与收益1. 风险是指投资者在进行证券投资时可能遭受的损失或不确定性。
2. 风险与收益之间存在正相关关系,即高风险一般伴随着高收益,低风险则伴随着低收益。
3. 风险的种类包括市场风险、特定风险和系统风险等。
第四章:证券投资组合理论1. 投资组合是指将多种不同的证券按一定比例组合起来进行投资的策略。
2. 投资组合的目标是在给定风险水平下,实现最大的预期收益。
3. 马科维茨均值-方差模型是一种常用的投资组合选择模型,它将投资者的风险厌恶程度考虑在内,同时考虑了证券之间的相关性。
第五章:证券分析与评价1. 基本面分析是一种通过研究公司的财务状况、经营状况和行业环境等因素来评估证券价值的方法。
2. 技术分析是一种通过研究历史价格和交易量来预测未来价格走势的方法。
3. 相对估值方法是一种通过比较不同证券的相对估值水平来选择投资标的的方法。
第六章:证券市场与证券交易1. 证券市场是指证券发行和交易活动的场所,包括股票市场、债券市场和衍生品市场等。
均值—方差证券资产组合理论1. 简介均值—方差证券资产组合理论,也被称为马科维茨模型,是现代投资组合理论的基础。
该理论由美国经济学家哈里·马科维茨于1952年提出,并在1959年获得了诺贝尔经济学奖。
这一理论通过权衡资产组合的预期收益率和风险来寻找最佳的投资组合。
2. 理论原理均值—方差证券资产组合理论的核心原理在于风险与收益之间的平衡。
根据该理论,投资者可以通过有效的资产配置,实现在给定风险水平下最大化投资组合的预期收益率。
具体来说,均值—方差模型在计算资产组合时,考虑了以下两个重要指标:2.1 均值均值指的是资产组合的预期收益率。
通过对各个资产的历史数据进行分析和估计,可以计算出每个资产的预期收益率,并据此求得资产组合的整体预期收益率。
2.2 方差方差表示资产组合的风险程度。
在均值—方差模型中,方差用于衡量资产之间的波动性和相关性。
如果两个资产的收益变动具有较高的相关度,那么它们之间的方差较小;反之,如果两个资产的收益变动独立或者相关度较低,那么它们之间的方差较大。
3. 资产组合优化基于均值—方差证券资产组合理论,投资者可以通过优化资产组合来实现风险与收益之间的最佳平衡。
具体的资产组合优化包括以下几个步骤:3.1 数据准备在优化资产组合之前,首先需要收集并整理相关的数据。
这些数据包括各个资产的历史收益率、期望收益率以及方差。
通常,投资者可以通过金融数据提供商或者证券公司获取这些数据。
3.2 风险-收益曲线通过对各个资产的历史数据进行分析和计算,可以得到不同投资组合的风险和收益指标。
在优化资产组合之前,投资者可以绘制出风险-收益曲线,以便直观地了解不同投资组合之间的收益和风险的关系。
3.3 最优组合根据风险-收益曲线,可以找到在给定风险水平下具有最高预期收益率的投资组合。
这个投资组合被称为最优组合,也是均值—方差模型的核心输出。
3.4 边际效益在确定最优组合后,投资者可以通过计算边际效益来衡量每个资产对投资组合的贡献。
均值-方差理论马克维茨开创性的提出了证券组合的均值方差模型,将证券及其组合用收益率均值和方差来描述,并在此基础上给出了组合的可行域空间及其有效组合,但是它的缺点就是没有描述在拥有无风险证券的情况下组合的状态,也没有给出期望收益与系统风险之间的关系(只有系统风险才会受到补偿,非系统风险不会得到补偿),只是给出了一定的期望收益和一定风险会画出怎么样的图形,得到什么样的有效组合,再次就是该模型计算太复杂。
传统的证券投资基金的绩效评价方法孕育于“金融大爆炸”的1952年,即投资组合理论的开端。
自美国经济学家马科维茨(Harry Markowtitz)在其《资产选择:有效的多样化》一文中,第一次使用边际分析的原理,用期望收益率(均值)和方差(或标准差)代表的风险来研究投资组合的报酬。
这在当时引起了极大反响,属于金融界上里程碑式的伟大发现。
它在很大程度上帮助了基金管理公司的基金管理者、经理人们和投资者们合理组合其持有的金融资产,确保在具有一定的风险时还能取得最大的收益。
马科维茨的投资组合理论需要两个重要的假设前提:第一,投资者们都使用预期收益率的均值来衡量未来的实际收益率水平,使用预期收益率的方差或标准差来衡量未来的实际收益率的所需要承担的风险;第二,每个投资者都是风险厌恶者,投资者在追求收益率最大化的同时也在追求风险的最小化,即希望收益率均值越大越好,其方差获标准差越小越好。
在满足上述假设条件后,马科维茨发现了收益和风险的度量方法,并建立了均值—方差模型。
每一项投资结果都可以用收益率来衡量,投资组合的投资收益率计算公式如下:(2—1)其中表示投资组合P的预期收益率,表示证券i在投资组合中所占比例,表示证券的收益率。
投资组合方差的计算公式如下:(2—2)其中表示投资组合的方差,表示与的相关系数。
当投资者们只关心收益和风险时,马科维茨的均值—方差模型可以比较精确地计算出收益与风险的大小。
当时在20世纪50年代的早期,计算机技术尚未普及,该模型的计算量是相当之大的,故当时仅用于小单位之间,并未广泛运用于大规模市场。
IT 大视野数码世界 P .38马科维兹的均值—方差数学模型邹世杰 成都外国语学校高新校区摘要:金融数学是一门应用性非常强的数学学科,有其独有的方法与理论基础。
另一方面,这门学科的发展常常得益于从其它的数学分支中吸取有启发性的方法与概念。
证券理论是金融数学研究中的一个重要的课题。
证券理论的研究方法主要来自于统计学,而统计学的基础是概率论。
我们这篇论文通过引入概率论中的一些最基础的概念,详细地描述著名的经济学家马科维兹提出的均值—方差数学模型。
1.引言金融数学是一门应用性很强的数学学科,有其独有的方法与理论基础。
而另一方面,这门学科的发展常常得益于从不同的数学分支中吸取有启发性的方法与概念。
证券理论是金融数学中的一个重要的研究课题。
证券理论的研究方法主要来自于统计学,而概率论则是统计学的基础。
我们这篇论文主要通过引入概率论中的一些最基础的概念,进而详细地描述著名的经济学家马科维兹提出的均值—方差数学模型。
均值—方差数学模型由经济学家马科维兹在二十世纪五十年代的时候引入到金融数学的研究中。
这个著名的金融数学模型因为同时考虑了金融市场中收益与风险两个主要的组成要素,并且这个模型本身的数学表达格外简单,所以它一经发表就迅速地发展成为了现代证券组合理论中的一块基石,并且为金融数学此后的发展开创了新的局面。
马科维兹本人也因这项工作获得了1990年度的诺贝尔经济学奖。
这篇论文的结构如下,在第二节中我们将主要介绍概率论中的一些最基础的概念,特别是均值与方差的概念,这主要是为了我们在接下来的章节里描述均值—方差模型做好必要的数学知识的准备。
第三节是我们这篇论文的核心,我们将详细地描述马科维兹提出的均值—方差数学模型。
最后一节我们将简要地对这篇论文进行总结,并讨论接下来可能的学习与研究方向。
2. 概率统计学的预备知识在这一章节中,我们将把我们的主要焦点放在对数学知识的介绍上,特别是概率论中的一些最基础的概念。
为了简便起见,我们假设整个论文中涉及的随机变量(稍后我们将给出它的正式定义)都是离散型的随机变量,介于我们这一篇论文的内容,这个假设也是合理的。
马柯维茨均值-方差模型在丰富的金融投资理论中,组合投资理论占有非常重要的地位,金融产品本质上各种金融工具的组合。
现代投资组合理论试图解释获得最大投资收益与避免过分风险之间的基本权衡关系,也就是说投资者将不同的投资品种按一定的比例组合在一起作为投资对象,以达到在保证预定收益率的前提下把风险降到最小或者在一定风险的前提下使收益率最大。
从历史发展看,投资者很早就认识到了分散地将资金进行投资可以降低投资风险,扩大投资收益。
但是第一个对此问题做出实质性分析的是美国经济学家马柯维茨(Markowitz)以及他所创立的马柯维茨的资产组合理论。
1952年马柯维茨发表了《证券组合选择》,标志着证券组合理论的正式诞生。
马柯维茨根据每一种证券的预期收益率、方差和所有证券间的协方差矩阵,得到证券组合的有效边界,再根据投资者的效用无差异曲线,确定最佳投资组合。
马柯维茨的证券组合理论在计算投资组合的收益和方差时十分精确,但是在处理含有较多证券的组合时,计算量很大。
马柯维茨的后继者致力于简化投资组合模型。
在一系列的假设条件下,威廉·夏普(William F. Sharp)等学者推导出了资本资产定价模型,并以此简化了马柯维茨的资产组合模型。
由于夏普简化模型的计算量相对于马柯维茨资产组合模型大大减少,并且有效程度并没有降低,所以得到了广泛应用。
1 模型理论经典马柯维茨均值-方差模型为:21min max ()..1p T p n i i X XE r X R s t x σ=⎧⎪=∑⎪⎪=⎨⎪⎪=⎪⎩∑T 其中,12(,,...,)T n R R R R =;()i i R E r =是第i 种资产的预期收益率;12(,,...,)T n X x x x =是投资组合的权重向量;()ij n n σ⨯=∑是n 种资产间的协方差矩阵;()p p R E r =和2p σ分别是投资组合的期望回报率和回报率的方差。
点睛:马柯维茨模型以预期收益率期望度量收益;以收益率方差度量风险。
该理论包含两个重要内容:均值-方差分析方法和投资组合有效边界模型。
在发达的证券市场中,马科维茨投资组合理论早已在实践中被证明是行之有效的,并且被广泛应用于组合选择和资产配置。
但是,我国的证券理论界和实务界对于该理论是否适合于我国股票市场一直存有较大争议。
从狭义的角度来说,投资组合是规定了投资比例的一揽子有价证券,当然,单只证券也可以当作特殊的投资组合。
本文讨论的投资组合限于由股票和无风险资产构成的投资组合。
人们进行投资,本质上是在不确定性的收益和风险中进行选择。
投资组合理论用均值—方差来刻画这两个关键因素。
所谓均值,是指投资组合的期望收益率,它是单只证券的期望收益率的加权平均,权重为相应的投资比例。
当然,股票的收益包括分红派息和资本增值两部分。
所谓方差,是指投资组合的收益率的方差。
我们把收益率的标准差称为波动率,它刻画了投资组合的风险。
人们在证券投资决策中应该怎样选择收益和风险的组合呢?这正是投资组合理论研究的中心问题。
投资组合理论研究“理性投资者”如何选择优化投资组合。
所谓理性投资者,是指这样的投资者:他们在给定期望风险水平下对期望收益进行最大化,或者在给定期望收益水平下对期望风险进行最小化。
因此把上述优化投资组合在以波动率为横坐标,收益率为纵坐标的二维平面中描绘出来,形成一条曲线。
这条曲线上有一个点,其波动率最低,称之为最小方差点(英文缩写是MVP)。
这条曲线在最小方差点以上的部分就是著名的(马考维茨)投资组合有效边界,对应的投资组合称为有效投资组合。
投资组合有效边界一条单调递增的凹曲线。
如果投资范围中不包含无风险资产(无风险资产的波动率为零),曲线AMB是一条典型的有效边界。
A点对应于投资范围中收益率最高的证券。
如果在投资范围中加入无风险资产,那么投资组合有效边界是曲线AMC。
C点表示无风险资产,线段CM是曲线AMB的切线,M是切点。
M点对应的投资组合被称为“市场组合”。
如果市场允许卖空,那么AMB是二次曲线;如果限制卖空,那么AMB是分段二次曲线。
证券行业的投资组合理论在证券投资领域,投资组合理论被广泛应用于资产配置和风险管理。
本文将介绍证券行业的投资组合理论,并探讨其在实践中的应用。
一、投资组合理论的基本概念投资组合理论旨在通过优化资产配置来实现风险与收益间的平衡。
其核心思想是通过不同资产间的组合,能够降低整体投资组合的风险,同时提高预期收益。
以下是一些基本概念:1. 投资组合:指由不同资产构成的投资组合,例如股票、债券、基金等。
投资组合可以是单一资产的组合,也可以是多个不同资产类别的组合。
2. 风险:指投资者可能面临的损失或波动性。
在投资组合理论中,风险通常通过资产的波动性来衡量。
3. 收益:指投资带来的回报。
投资组合理论的目标是通过优化资产配置来最大化预期收益。
4. 盈亏分布:投资组合的盈利和亏损可能会遵循一定的概率分布。
理解和分析盈亏分布有助于评估投资组合的风险特征。
二、马科维茨的均值-方差模型马科维茨的均值-方差模型是投资组合理论的重要基石。
该模型将投资组合的风险和收益联系起来,并通过优化资产配置来实现最优组合。
1. 风险和收益关系:根据均值-方差模型,投资组合的风险可以通过计算资产之间的协方差来衡量。
协方差越高,风险越大。
而收益可以通过计算资产的期望收益率来估算。
2. 最优投资组合:均值-方差模型认为,存在一组权重分配,可以同时最小化投资组合的风险和最大化预期收益。
这个最优权重分配可以通过数学方法进行计算。
三、投资组合的多样化投资组合的多样化是降低风险的重要策略。
通过将不同资产类别或不同行业的资产组合在一起,可以减少特定风险的影响。
1. 资产类别多样化:将股票、债券、商品等不同类型的资产组合在一起,可以降低整体投资组合的风险。
因为不同类型的资产受到不同的市场因素影响,它们可能会呈现出良好的相关性。
2. 行业多样化:将不同行业的股票组合在一起,可以减少特定行业风险对投资组合的影响。
例如,在证券行业投资组合中,可以包含银行、保险、证券公司等不同类型的股票。
投资学中的投资决策模型在投资学中,投资决策模型是一种用于分析和评估投资机会的工具。
它能够帮助投资者在选择投资项目时做出明智的决策,以最大程度地实现投资者的预期收益。
一、投资决策模型的基本概念在介绍投资决策模型之前,我们首先需要了解一些基本概念。
投资决策模型是一种数学模型,它通过对投资项目进行定量分析,量化投资者在不同投资机会中的选择。
投资决策模型通常包括以下几个关键要素:1. 投资目标:投资者的投资目标是使用投资资金实现的期望结果。
例如,某人可能想要实现资本增值,而另一个人可能更注重稳定的现金流入。
2. 投资机会:投资者可以选择的不同投资项目或资产。
这些投资机会通常包括股票、债券、房地产等。
3. 风险和回报:投资者在做出投资决策时需要考虑风险和回报之间的权衡。
通常来说,风险越高,潜在回报也越高。
4. 决策准则:投资者根据其个人需求和偏好,选择适合的决策准则。
常见的决策准则包括收益率、风险和流动性等。
二、投资决策模型的种类投资决策模型根据其基本理论和方法可以分为多种类型。
下面介绍几种常用的投资决策模型。
1. 资本预算模型资本预算模型用于评估投资项目的回报和风险。
常用的资本预算模型包括净现值(NPV)、内部收益率(IRR)和修正后的内部收益率(MIRR)等。
这些模型可以帮助投资者计算投资项目的现金流量,并与项目的初始投资进行比较,以评估其潜在回报。
2. 有效市场假说模型有效市场假说模型认为,在有效市场中,投资者无法通过分析股票价格来获得超额利润。
这一模型基于以下假设:市场上的投资者都是理性的、信息是公平和准确的,投资者无法准确预测市场价格的变化。
3. 均值-方差模型均值-方差模型是一种广泛使用的投资决策模型,它将投资者对风险和回报的偏好量化为收益率和方差的数学表达式。
通过计算投资组合的期望收益和风险,投资者可以选择最佳的投资组合。
三、投资决策模型的应用投资决策模型在实际投资中起到了重要的作用。
它可以帮助投资者降低风险、优化投资组合,并最大化收益。
证券投资学计算题分类一、股价指数的计算例1:其中,股票发行股数变化是因为股三实施了10股配5股,配股价15元/股,股本扩大至1500万股;股五10送10,股本扩张至2000万股,若t 期的股价指数为350点,试计算t+1期的指数。
现时股价指数=上一日收盘指数二、除权价格计算。
例2:某投资者以15元/股的价格买入A 股元票2万股,第一次配股10配3,派现5元,配股价为10元/股;第二次分红10送4股并派现金红利2元,试计算投资者在送配后的总股数及每次分配后的除权报价。
(3。
64万股,9.47元)除权价=(登记日收盘价-每股股息+配股率×配股价)÷(1+每股送股率+每股配股率)三、证券估值与投资收益率计算 债券估值: 统一公债:久期计算:上一交易日收盘总市值当前股票总市值⨯)1()1(12NR MC R C R C V +++⋅⋅⋅++++=Rc V =[()()()][]ty p C y tC P Py M C n y C y C D nt tt n t t tnn *)1(/)1(1/1121111221∑∑==+=+=+++++++=股票价值计算:四、资本市场理论1、均值——方差模型单种证券的预期收益率与风险∑-==j j j p r r Var 22)()(μσ两种证券的预期收益率与风险一般意义下的两证券最小风险组合:y D y y D P P ∆-=⎪⎪⎭⎫ ⎝⎛+∆-=∆+⨯='11到期收益率到期收益率变化久期价格变化的百分比∑∞=+=++++++=1332210)1()1()1()1(t tt R D R D R D R D P ,)1()1(1110∑-=++=-g R D R g D P tt ∑∑=∞+=-++++=Tt T t tt t T R D R g D P 111110)1()1()1( )1()1(10∑=+++=nt nnn t t R E M R D P ∑==jj j j p r r E )(μ212222]..)1(2)1([)1(B A AB A A B A A A P BA A A P x x x x x x σσρσσσμμμ-+-+=-+=210RDR D P ∆+=当相关系数=1,0,-1时的最小方差组合。
金融学十大模型引言金融学作为一门重要的学科,研究了资金的配置和利用方式,涵盖了广泛的主题,如投资、风险管理、资本市场等。
在金融学的研究中,有许多重要的模型被提出来帮助我们理解和分析金融市场的运作。
本文将介绍金融学领域中的十大经典模型,帮助读者更好地了解金融学的核心概念。
一、资本资产定价模型(CAPM)资本资产定价模型是现代金融学中最重要的模型之一。
它描述了资产的期望收益与其风险之间的关系。
该模型认为,资产的期望收益率应该等于无风险利率加上风险溢价,该风险溢价与资产的系统风险相关。
CAPM模型为投资者提供了一种评估资产回报和风险之间关系的工具,被广泛应用于投资决策和资产定价。
二、有效市场假说(EMH)有效市场假说认为,金融市场是高效的,即市场上的资产价格已经反映了所有可得到的信息。
根据EMH的观点,投资者无法通过分析公开信息来获得超额收益,因为这些信息已经被市场充分反映在价格中。
EMH的三种形式分别是弱式有效市场、半强式有效市场和强式有效市场。
EMH对于理解金融市场的运作方式以及投资者的行为具有重要意义。
三、资本结构理论资本结构理论研究了企业如何选择债务和股权融资来最大化股东财富。
这个理论的核心是税收优惠和财务杠杆的概念。
通过债务融资,企业可以减少税收负担,并提高股东收益。
然而,过多的债务融资也会增加财务风险。
资本结构理论为企业的融资决策提供了一个理论框架,帮助企业找到最佳的资本结构。
四、期权定价模型期权定价模型是衡量和计算期权价值的工具,其中最著名的是布莱克-斯科尔斯模型。
这个模型基于无套利原则,利用股票价格、期权行权价格、无风险利率、期权到期时间和股票波动率等因素来计算期权的理论价值。
期权定价模型在金融衍生品市场中具有重要的应用价值,为期权交易者提供了参考。
五、现金流量贴现模型(DCF)现金流量贴现模型是评估投资项目价值的常用方法。
该模型将未来的现金流量折现到现值,以确定投资项目的净现值。
DCF模型基于时间价值的概念,认为未来的现金流量价值低于现在的现金流量价值。
投资组合的标准方差投资组合的标准方差是衡量投资风险的重要指标,它可以帮助投资者更好地评估自己的投资组合的风险水平。
标准方差是指一组数据的离散程度,用来衡量这组数据的波动程度,也可以理解为投资组合收益的波动性。
在投资决策中,了解和计算投资组合的标准方差对于投资者来说至关重要。
首先,投资组合的标准方差可以帮助投资者评估投资组合的风险水平。
标准方差越大,代表投资组合的波动性越高,风险也就越大。
相反,标准方差越小,代表投资组合的波动性越低,风险也就越小。
通过计算投资组合的标准方差,投资者可以更清晰地了解自己的投资组合的风险水平,从而更好地制定投资策略和风险控制措施。
其次,投资组合的标准方差还可以帮助投资者进行投资组合的优化。
在构建投资组合时,投资者往往会选择不同的资产进行配置,通过计算各个资产的标准方差,可以帮助投资者找到最佳的资产配置比例,从而实现风险和收益的平衡。
通过优化投资组合的配置,投资者可以在保证一定收益的情况下,尽量降低投资组合的风险,提高投资的效率和收益率。
此外,投资组合的标准方差还可以帮助投资者进行风险管理。
在投资过程中,风险管理是至关重要的一环,而标准方差可以帮助投资者更好地识别和评估投资组合的风险来源,从而及时采取相应的风险管理措施。
通过定期计算投资组合的标准方差,投资者可以及时发现风险的变化和趋势,从而更好地制定风险管理策略,保护投资组合的价值和利益。
总之,投资组合的标准方差是投资风险管理中的重要工具,它可以帮助投资者更好地评估投资组合的风险水平,优化投资组合的配置,以及进行有效的风险管理。
投资者应该重视标准方差的计算和分析,将其纳入到自己的投资决策和风险管理中,从而更好地实现自己的投资目标和理财规划。
希望本文对投资者们有所帮助,谢谢阅读!。