高一第二学期数学期末试题
- 格式:doc
- 大小:547.50 KB
- 文档页数:10
陕西省子洲中学2024届数学高一第二学期期末达标检测试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知在三角形ABC 中,2AB BC AC ===,、、A B C 点都在同一个球面上,此球面球心O 到平面ABC 的距离为263,点E 是线段OB 的中点,则点O 到平面AEC 的距离是( ) A .33B .63C .12D .12.在ABC △中,3AB =,1AC =,π6B =,则ABC △的面积是( ). A .32B .34C .32或34 D .32或3 3.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A .310B .15C .110D .1204.已知{}n a 为递增等比数列47565,6a a a a +==,则110a a +=() A .152B .5C .6D .3565.已知函数,且实数,满足,若实数是函数的一个零点,那么下列不等式中不可能成立的是( ) A .B .C .D .6.已知正方体1111ABCD A B C D -中,E 、F 分别为11A D ,1A A 的中点,则异面直线EF 和1BD 所成角的余弦值为( )A .6 B 3 C 2D 67.在ABC 中,12AN AC =,点P 是直线BN 上一点,若AP mAB AC =+,则实数m 的值是( ) A .2B .1-C .14-D .548.函数ln xy x=的图象大致为( ) A . B . C .D .9.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在位置为(2,0)B -,若将军从山脚下的点(2,0)A 处出发,河岸线所在直线方程为3x y +=,则“将军饮马”的最短总路程为( ) A .4B .5C 26D .3210.函数()cos 2f x x x π⎛⎫=- ⎪⎝⎭是( ) A .奇函数 B .非奇非偶函数C .偶函数D .既是奇函数又是偶函数二、填空题:本大题共6小题,每小题5分,共30分。
2024届四川绵阳中学高一数学第二学期期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等差数列{}n a 的前n 项和为n S ,若113a =,312S S =,则8a 的值为( ) A .137-B .0C .137D .1822.已知A(2,4)与B(3,3)关于直线l 对称,则直线l 的方程为 ( ). A .x +y =0 B .x -y =0 C .x -y +1=0D .x +y -6=03.如图,AB 是圆O 的直径,点C D 、是半圆弧的两个三等分点,AC a =,AD b =,则AO =( )A .b a -B .12a b - C .12a b -D .22b a -4.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知sin sin (sin cos )0B A C C +-=,a =2,c 2,则C = A .π12B .π6C .π4D .π35.tan15tan75︒+︒=( ) A .4B .23C .1D .26.已知函数2,01,()1,1.x x f x x x⎧⎪=⎨>⎪⎩若关于x 的方程1()()4f x x a a R =-+∈恰有两个互异的实数解,则a 的取值范围为 A .59,44⎡⎤⎢⎥⎣⎦B .59,44⎛⎤⎥⎝⎦C .59,{1}44⎛⎤⎥⎝⎦D .59,{1}44⎡⎤⎢⎥⎣⎦7.直线210mx y --=与直线2310x y 垂直,则m 的值为( ) A . 3B .34-C .2D .3-8.已知圆()()221 221:C x y ++-=,圆 ()()222 2516:C x y -+-= ,则圆1 C 与圆2C 的位置关系是( ) A .相离B .相交C .外切D .内切9.已知圆锥的底面半径为1,母线与底面所成的角为3π,则此圆锥的侧面积为( )A .23πB .2πC .3πD .π10.某种产品的广告费支出与销售额(单位:百万元)之间有如下对应数据: 2 4 5 6 830405070根据上表提供的数据,求出关于的回归直线方程为,则的值为( ) A .40B .50C .60D .70二、填空题:本大题共6小题,每小题5分,共30分。
2023-2024 学年度第二学期期末质量检测高一数学参考答案与评分细则一、单项选择题:本题共8小题,每小题满分5分,共40分.题号12345678答案CDACBDDA1.【解析】由题得()()()()231151+12i i i z i i ----==-,所以z 对应的点的坐标是15,22⎛⎫-- ⎪⎝⎭,故选C .2.【解析】零向量的方向是任意的,故A 错误;相等向量要求方向相同且模长相等,共线向量不一定是相等向量,故B 错误;当0λ<,则向量a 与a λ方向相反,故C 错误;对于D :单位向量的模为1,都相等,故D 正确.3.【解析】因为1238,,,,x x x x 的平均数是10,方差是10,所以123832,32,32,,32x x x x ++++ 的平均数是310232⨯+=,方差是231090⨯=.故选A .4.【解析】【方法一】向量a 在b方向上的投影向量为()()22cos ,1,04a b b bb a a b b b⋅<>⋅===;【方法二】数形结合,由图易得选项C 正确,故选C.5.【解析】样本中高中生的人数比小学生的人数少20,所以5320543543n n -=++++,解得120n =,故选B .6.【解析】对于选项A ,易得,αβ相交或平行,故选项A 错误;对于选项B ,,m n 平行或异面,故选项B 错误;对于选项C ,当直线,m n 相交时,//αβ才成立,故选项C 错误;对于选项D ,由线面垂直的性质可知正确,故选D.7.【解析】对于选项A ,因为掷两颗骰子,两个点数可以都是偶数,也可以都是奇数,还可以一奇一偶,即一次试验,事件A 和事件B 可以都不发生,所以选项A 错误;对于选项B ,因为C D ⋂即两个点数都是偶数,即A 与C D ⋂可以同时发生,所以选项B 错误;对于选项C ,因为331()664P B ⨯==⨯,333()1664P D⨯=-=⨯,又()0P BD =,所以()()()P BD P B P D ≠,故选项C 错误;对于选项D ,因为()1P C D = ,所以C D =Ω ,因为必然事件与任意事件相互独立,所以B 与C D ⋃是相互独立事件,故选D .8.【解析】因为11AC CB =,AC BC =,取AB 中点D ,则1C DC ∠为二面角1C AB C --的平面角,所以14C DC π∠=.在1Rt C DC ∆中,可得112,CD CC C D ===,又1182V AB CD CC =⋅⋅=,解得4AB =,所以AC ==.由1111A ABC B AA C V V --=得1111133ABC AA C S h S BC ∆∆⋅=⋅,代入数据求解得到点1A 到平面1ABC的距离h =,故选A .二、多项选择题:本题共3小题,每小题满分6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分.题号题9题10题11全部正确选项ABCBCAD9.【解析】依题意球的表面积为24πR ,圆柱的侧面积为22π24πR R R⨯⨯=,所以AC 选项正确;圆锥的侧面积为2πRR ⨯=,所以B 选项正确;圆锥的表面积为(2222π1π4πR R R R +=<,圆柱的表面积为2224π2π6πR R R +=,所以D 选项错误.故选ABC .10.【解析】由1i z i +=-得22z =,故选项A 错误;根据复数的运算性质,易知BC 正确;根据22z -≤的几何意义求解,点Z 在以圆心为()2,0,半径为2的圆内及圆周上,所以集合M 所构成区域的面积为4π,所以D 选项错误.故选BC .11.【解析】对于选项A ,若60A =︒,2a =,则2222cos a b c bc A =+-,即224b c bc bc =+-≥,当且仅当2b c ==时,取等号,所以1sin 2ABC S bc A ==≤△,所以ABC 故选项A正确,B 错误.对于选项C ,要使满足条件的三角形有且只有两个,则sin b A a b <<,因为4a b==,所以4sin A <πsin 0,2A A ⎛⎫∈ ⎪⎝⎭,所以03A π<<.故选项C 错误.对于选项D ,()cos cos a b c A B +=+等价于cos cos a b A B c +=+,即22222222a b b c a a c bc bc ac++-+-=+,对该等式通分得到()()()2222222ab a b a b c a b a c b +=+-++-,即2222322322a b ab ab ac a a b bc b +=+-++-,即3322220a b a b ab ac bc +++--=.这即为()()()()2220a b a ab b ab a b c a b +-+++-+=,由0a b +≠知该等式即为2220a b c +-=.从而条件等价于2220a b c +-=且1c =,从而该三角形内切圆半径)121122ABC ab S ab ab r a b c a b c a b ab ===++++++ 当且仅当2a b ==时等号成立,从而0r <≤2213πππ24S r ⎛⎫-=≤= ⎪ ⎪⎝⎭内切圆.验证知当2a b ==时,等号成立,所以该三角形的内切圆面积的最大值是3π4-,所以选项D 正确.故选AD .三、填空题:本题共3小题,每小题5分,共15分;其中第14题的第一个空2分,第二个空3分.12.71513.a b <【注:也可以是b a >,0b a ->或a 小于b 】14.2;412.【解析】已知甲、乙两人独立的解同一道题,甲,乙解对题的概率分别是23,35,恰好有1人解对题的概率是22137353515⨯+⨯=.【注:写成有限小数不给分】13.【解析】由平均数在“拖尾”的位置,可知a b <.14.【解析】(1)13E ABC ABC V S EB -∆=⋅,在ABC ∆中,由余弦定理可知,1cos 8BAC ∠=,所以sin 8BAC ∠==,所以113772413282E ABC V -=⨯⨯⨯⨯⨯=.(2)作BH AC ⊥,垂足为H ,作1111B H AC ⊥,垂足为H 1,易证棱1BB 在平面11ACC A 上的射影为1HH ,则点E 在平面11ACC A 上的射影1E 在线段1HH 上,由(1)知,1cos 8BAC ∠=,故128AH AH AB ==,解得14AH =,故BH =,则1EE =,设AF 的中点为1Q ,外接球的球心为Q ,半径为1R ,则1QQ ⊥平面11ACC A ,即11//QQ EE ,在1Rt FQQ中,222211QF R QQ ==+①,又因为222211114QE R QQ Q E ⎛⎫==-+ ⎪ ⎪⎝⎭②,由①②可得211131216QQ Q E =+,所以当11Q E 取最小值时,1QQ 最小,即1R 最小,此时111Q E HH ⊥,因为1Q 是AF 的中点,则1E 是1HH 的中点,则E 是棱1BB 的中点.因为11//AA BB ,所以直线EF 与1BB 所成角即为直线EF 与1AA 所成角.由1111cos 8A CB =∠,再由余弦定理可得1B F 因为11EB =,所以EF =11cos 4E FEB B EF =∠=.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分,其中第(1)小问6分,第(2)小问7分。
河南天一大联考2024届高一数学第二学期期末考试试题 注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知5a =,3b =,且12a b ⋅=-,则向量a 在向量b 上的投影等于( ) A .-4 B .4 C .125- D .1252.如图,随机地在图中撒一把豆子,则豆子落到阴影部分的概率是( )A .B .C .D .3.下列函数中,既是偶函数又在(,0)-∞上是单调递减的是A .cos y x =-B .lg y x =C .21y x =-D .x y e -=4.在正方体1111ABCD A B C D -中,M 、N 分别是棱1AA 和AB 的中点,P 为上底面1111D C B A 的中心,则直线PB 与MN 所成的角为( ) A .30° B .45° C .60° D .90°5.若a 、b 、c >0且a (a +b +c )+bc =4-32a +b +c 的最小值为( ) A . 3-1B . 3 1C .3 2D .3 26.已知直线1:230l x ay +-=与()2:110l a x y -++=,若12l l //,则a =( ) A .2 B .1 C .2或-1 D .-2或17.若两个球的半径之比为1:3,则这两球的体积之比为( )A .1:3B .1:1C .1:27D .1:98.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,5sin 7A =,5a =,7b =,则sin B 等于( )A .35B .45C .37D .19.函数tan()42y x ππ=-的部分图像如图所示,则()OA OB AB +⋅的值为( )A .1B .4C .6D .710.下列命题正确的是( )A .有两个面平行,其余各面都是四边形的几何体叫棱柱.B .有两个面平行,其余各面都是平行四边形的几何体叫棱柱.C .有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱.D .用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台.二、填空题:本大题共6小题,每小题5分,共30分。
福建师大附中2023-2024学年第二学期期末考试高一数学试卷时间:120分钟满分:150分试卷说明:(1)本卷共四大题,20小题,解答写在答卷的指定位置上,考试结束后,只交答卷.(2)考试过程中不得使用计算器或具有计算功能的电子设备.第Ⅰ卷(选择题,共58分)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.设i 为虚数单位,复数满足,则复数的虚部是( )A .B .C .3iD .32.某汽车生产厂家用比例分配的分层随机抽样方法从A ,B ,C 三个城市中抽取若干汽车进行调查,各城市的汽车销售总数和抽取数量如右表所示,则样本容量为( )城市销售总数抽取数量A 420m B 28020C 700nA .60B .80C .100D .1203.某校文艺部有4名学生,其中高一、高二年级各2名,从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A.B .C .D .4.设是两条不同的直线,是两个不同的平面,给出下列说法,其中正确的是( )A .若,则B .若,则C .若,则D .若,则5.如图,在三棱锥中,分别是,的中点,则异面直线所成角的余弦值为()z ()i 142i z +=+z i-1-16131223,m n ,αβ,,m n m n αβ⊥⊥∥αβ⊥,m m αβ⊥∥αβ⊥,,m n m n αβ⊥⊂⊂αβ⊥,,m n m n αβ⊥⊂⊥αβ⊥A BCD -6,4,,AB AC BD CD AD BC M N ======AD BC ,AN CMA.B .C .D .6.有一组样本数据:,其平均数为2024.由这组数据得到一组新的样本数据:,那么这两组数据一定有相同的( )A .极差B .中位数C .方差D .众数7.已知正四棱台上底面边长为1,下底面边长为2,体积为7,则正四棱台的侧棱与底面所成角的正切值为( )ABCD .8.已知三棱锥中,平面,底面是以为直角顶点的直角三角形,且,三棱锥,过点作于,过作于,则三棱锥外接球的体积为()A .BCD .二、选择题:本题共3小题,每小题6分,共18分。
2021-2022学年辽宁省大连市高一下学期期末数学试题一、单选题1.已知复数,其中是虚数单位,则的共轭复数是( )()i 12i z =-i z A .B .C .D .2i -2i+12i+12i-A【分析】结合复数乘法、共轭复数等知识求得正确答案.【详解】.()2i 12i i,2iz z =+==--故选:A 2.若,且为第四象限角,则的值为( )12cos 13α=αtan αA .B .C .D .125125-512512-D【分析】结合同角三角函数的基本关系式求得正确答案.【详解】由于,且为第四象限角,12cos 13α=α所以,5sin 13α==-.sin 5tan cos 12ααα==-故选:D3.若、是空间中两条不同的直线,则的充分条件是( )a b a b ∥A .直线、都垂直于直线B .直线、都垂直于平面a b l a b αC .直线、都与直线成角D .直线、都与平面成角a b l 30°a b α60︒B【分析】根据线线平行、线线角等知识对选项进行分析,从而确定正确选项.【详解】A 选项,都与垂直,可能,A 选项错误.,a b l a b ⊥B 选项,都垂直于平面,则,B 选项正确.,a b αa b ∥C 选项,都与成角,可能相交,C 选项错误.,a b l 30°,a bD 选项,都与平面成角,可能异面,D 选项错误.,a b α60︒,a b 故选:B4.民间娱乐健身工具陀螺起源于我国,最早出土的石制陀螺是在山西夏县发现的新石器时代遗址.如图所示的是一个陀螺的立体结构图.已知底面圆的直径,16cm AB =圆柱体的高,圆锥体的高,则这个陀螺的表面积是( )8cm BC =6cm CD =A .B .C .D .2192πcm 2208πcm 2272πcm 2336πcm C【分析】结合组合体表面积的计算方法计算出正确答案.【详解】圆柱、圆锥的底面半径为,8cm,10cm =所以陀螺的表面积是.22π82π88π810272πcm ⨯+⨯⨯+⨯⨯=故选:C5.如图,小明同学为测量某建筑物的高度,在它的正东方向找到一座建筑物,CD AB 高为,在地面上的点(,,三点共线)测得楼顶、建筑物顶部的仰12m M B M D A C 角分别为和,在楼顶处测得建筑物顶部的仰角为,则小明测得建筑物15︒60︒A C 30°的高度为( )(精确到CD 1m 1.414≈ 1.732≈A .B .C .D .42m 45m 51m 57mD【分析】先求得,然后利用正弦定理求得,进而求得.AM CM CD 【详解】在直角三角形中,,ABM 1212sin15,sin15AM AM ︒==︒在三角形中,,ACM 301545,1806015105CAM CMA ∠=︒+︒=︒∠=︒-︒-︒=︒,1801054530ACM ∠=︒-︒-︒=︒由正弦定理得,sin 45sin 45sin 30sin 30CM AM AM CM ==⋅︒=︒︒︒在直角三角形中,CDM sin60,sin60CDCD CMCM︒==⋅︒======.363612 1.73257m=+=+⨯≈故选:D6.设是空间四个不同的点,在下列命题中,不正确的是A B C D,,,A.若与共面,则与共面AC BD AD BCB.若与是异面直线,则与是异面直线AC BD AD BCC.若==,则AB AC DB,DC AD BC⊥D.若==,则=AB AC DB,DC AD BCD【分析】由空间四点共面的判断可是A,B正确,;C,D画出图形,可以判定AD与BC不一定相等,证明BC与AD一定垂直.【详解】对于选项A,若与共面,则与共AC BD A B C D AD,,,是四点共面,则BC面,正确;对于选项B,若与是异面直线,则四点不共面,则与是异面AC BD,,,A B C D AD BC直线,正确;如图,空间四边形ABCD中,AB=AC,DB=DC,则AD与BC不一定相等,∴D错误;对于C,当四点共面时显然成立,A B C D,,,当四点不共面时,取BC的中点M,连接,,,A B C DAM、DM,AM⊥BC,DM⊥BC,∴BC⊥平面ADM,∴BC⊥AD,∴C正确;本题通过命题真假的判定,考查了空间中的直线共面与异面以及垂直问题,是综合题.7.将函数的图象向右平移个单位长度后,得到函数的图象,sin 2y x =ϕcos 26y x π⎛⎫=+ ⎪⎝⎭则的值可以是( )ϕA .B .C .D .12π6π3π23πD【分析】利用三角函数图象变换可得出变换后的函数解析式,由已知可得出关于的ϕ等式,即可得出结果.【详解】因为,2cos 2sin 2sin 26623y x x x ππππ⎛⎫⎛⎫⎛⎫=+=++=+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭将函数的图象向右平移个单位长度后,得到函数sin 2y x =ϕ的图象,()()sin 2sin 22y x x ϕϕ=-=-⎡⎤⎣⎦由题意可得,可得,当时,,()2223k k ππϕ=-∈Z ()3k k πϕπ=-∈Z 1k =23ϕπ=故选:D.8.已知圆台上下底面半径分别为3、4,圆台的母线与底面所成的角为.且该圆台45︒上下底面圆周都在某球面上,则该球的体积为( )A .B .C .D .100π5003π200π7003πB【分析】根据圆台轴截面及已知求圆台的高,再根据球体半径与圆台上下底面半径的几何关系列方程求出球体半径,进而求球体的体积.【详解】由题意,轴截面如下图示,1AE DE ==若球体半径为R ,则,可得.229(1R -=5R =所以该球体积为.3450033R ππ=故选:B 二、多选题9.设非零复数、所对应的向量分别为,,则下列选项能推出1z 2z 1OZ 2OZ的是( )12OZ OZ ⊥A .B .C .D .12i z z =122z z =12=z z 1212z z z z +=-AD【分析】A 根据的几何意义判断;B 由即可判断;C 由12i z z =122OZ OZ =即可判断;D 由并结合向量数量积的运算律即可12||||OZ OZ = 1212OZ OZ OZ OZ +=- 判断.【详解】A :等价于将绕原点逆时针旋转得到,即,符12i z z =2OZ 90︒1OZ 12OZ OZ ⊥合;B :等价于,即共线,不符合;122z z =122OZ OZ =12,OZ OZ C :等价于,但不一定有,不符合;12=z z 12||||OZ OZ =12OZ OZ ⊥ D :等价于,两边平方并应用数量积的运算律1212z z z z +=-1212OZ OZ OZ OZ +=-可得,即,符合.120OZ OZ ⋅=12OZ OZ ⊥ 故选:AD10.一个正方体内接于一个球,过球心作一个截面,则截面的图形可能是( )A.B.C.D.ABC【分析】根据正方体截面过外接球球心,讨论截面是否过顶点及所过顶点个数、是否与侧面平行,即可判断截面图形的元素.【详解】当过球心的截面不平行于侧面且不过顶点时,截面图形为A;当过球心的截面平行于一对侧面时,截面图形为C;当过球心的截面过其中4个顶点,则截面图形为圆中含一个长方形,B正确,D错误.故选:ABC11.下列各式正确的是()A.B.()()1tan11tan442+︒+︒=12sin10-=︒C.D.23sin7022cos10-=-︒︒)tan70cos102012︒⋅︒︒-=AC【分析】结合三角恒等变换对选项进行分析,从而确定正确答案.【详解】A选项,,()tan1tan44tan45tan144,11tan1tan44︒+︒︒=︒+︒=-︒⋅︒,tan1tan441tan1tan44︒+︒=-︒⋅︒所以()()1tan11tan441tan1tan44tan1tan44+︒+︒=+︒+︒+︒⋅︒,A选项正确.tan1tan44tan1t211an44︒⋅︒+︒⋅+-︒==B选项,1sin10=︒()()2cos60cos10sin60sin102cos601011sin20sin2022︒︒-︒︒︒+︒==︒︒,B选项错误.cos70sin20444sin20sin20︒︒=⋅=⋅=︒︒C 选项,,C 选项正确.23sin 703cos 203cos 2021cos 203cos 202cos 10222--︒-︒===+︒-︒-︒-︒D选项,)sin 70tan 70cos10201cos101cos 70⎫︒︒⋅︒⋅︒-=⋅︒⋅⎪⎪︒⎭cos 20cos10sin 20︒=⋅︒cos10︒,D 选项错误.()sin 20301sin10︒-︒===-︒故选:AC12.已知函数在区间上单调,且满足()()()sin 0,f x x ωϕωϕ=+>∈R 75,126ππ⎛⎫⎪⎝⎭有下列结论正确的有( )73124f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭A .203f π⎛⎫= ⎪⎝⎭B .若,则函数的最小正周期为;()56f x f x π⎛⎫-= ⎪⎝⎭()f x πC .关于x 的方程在区间上最多有4个不相等的实数解()1f x =[0,2)πD .若函数在区间上恰有5个零点,则的取值范围为()f x 213,36ππ⎡⎫⎪⎢⎣⎭ω8,33⎛⎤ ⎥⎝⎦ABD【分析】A :在上单调,,,故()f x 73,124ππ⎛⎫ ⎪⎝⎭73124f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭73212423πππ+=;203f π⎛⎫= ⎪⎝⎭B :求出区间右端点关于的对称点,由题可知在75,126ππ⎛⎫⎪⎝⎭56x π=23x π=2x π=()f x 上单调,据此可求出f (x )周期的范围,从而求出ω的范围.再根据5,26ππ⎛⎫ ⎪⎝⎭知是f (x )的对称轴,根据对称轴和对称中心距离为周期的()56f x f x π⎛⎫-= ⎪⎝⎭512x π=倍即可求出ω,从而求出其周期;()214k k +∈Z C :根据ω的范围求出周期的范围,根据正弦型函数一个完整周期只有一个最高点即可求解;D :由知,是函数在区间,上的第1个零点,而在203f π⎛⎫=⎪⎝⎭23π()f x 23π⎡⎢⎣136π⎫⎪⎭()f x 区间上恰有5个零点,则,据此即可求ω的范围.213,36ππ⎡⎫⎪⎢⎣⎭13252632T T ππ<- 【详解】A ,∵,∴在上单调,又7375,,124126ππππ⎛⎫⎛⎫⊆ ⎪ ⎪⎝⎭⎝⎭()f x 73,124ππ⎛⎫ ⎪⎝⎭,,∴,故A 正确;73124f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭73212423πππ+=203f π⎛⎫= ⎪⎝⎭B ,区间右端点关于的对称点为,∵,f (x )在75,126ππ⎛⎫⎪⎝⎭56x π=23x π=2x π=203f π⎛⎫= ⎪⎝⎭上单调,∴根据正弦函数图像特征可知在上单调,∴75,126ππ⎛⎫ ⎪⎝⎭()f x 5,26ππ⎛⎫⎪⎝⎭为的最小正周期,即3,又,∴.若512(62322T T ππππω-==⋅ ()f x )ω0>ω03ω< ,则的图象关于直线对称,结合,得()56f x f x π⎛⎫-= ⎪⎝⎭()f x 512x π=203f π⎛⎫= ⎪⎝⎭,即,故()252121312442k k T k ππππω++-===⋅∈Z ()42k k ω=+∈Z k =0,,故B 正确.2,T ωπ==C ,由,得,∴在区间上最多有3个完整的周期,而03ω< 23T π()f x [)0,2π在1个完整周期内只有1个解,故关于的方程在区间上最多()1f x =x ()1f x =[)0,2π有3个不相等的实数解,故C 错误.D ,由知,是函数在区间,上的第1个零点,而在203f π⎛⎫=⎪⎝⎭23π()f x 23π⎡⎢⎣136π⎫⎪⎭()f x 区间上恰有5个零点,则,结合,得,213,36ππ⎡⎫⎪⎢⎣⎭13252632T T ππ<- 2T πω=81033ω< 又,∴的取值范围为,故D 正确.03ω< ω8,33⎛⎤⎥⎝⎦故选:ABD.本题综合考察的周期、单调性、对称中心、对称轴等特性,()()()sin 0f x x ωϕω=+>解题的关键是熟练掌握正弦型函数对称轴,对称中心的位置特征,掌握正弦型函数单调性与周期的关系.常用结论:(1)单调区间的长度最长为半个周期;(2)一个完整周期内只有一个最值点;(3)对称轴和对称中心之间的距离为周期的倍.()214k k +∈Z 三、填空题13.函数的最小正周期为___________.()tan2xf x =2π直接由正切函数的周期公式可得答案.【详解】.212T ππ==故答案为.2π14.如图,在正四棱柱中,,是棱的中点,异面直1111ABCD A B C D-1AB =E BC 线与所成角的余弦值为,则______.1AB 1CE m m=127-【分析】作辅助线,根据异面直线的定义找到与所成角,解三角形即可求得1AB 1C E 答案.【详解】在正四棱柱中,连接 ,1111ABCD A B C D-1DC 则由于四边形是平行四边形,故 ,1111,AD B C AD B C =∥11AB C D 11AB DC ∥故异面直线与所成角即为与所成角,1AB 1C E 1DC 1C E 即即为异面直线与所成角或其补角,1DC E ∠1AB 1C E 设,则所以 ,12AA=1AB ==112,4CC DC ====1DE C E ===所以,1cos DC E ∠==故异面直线与所成角的余弦值为,则1AB 1C E m m =15.已知函数不是常数函数,且函数满足:定义域为,的图象关于()f x ()f x R ()f x 直线对称,的图象也关于点对称.写出一个满足条件的函数2x =()f x ()1,0______.(写出满足条件的一个即可)()f x (答案不唯一)()ππsin 22f x x ⎛⎫- ⎝=⎪⎭【分析】根据对称性确定正确答案.【详解】依题意,不是常数函数,定义域为,()f x R 图象关于直线对称,也关于点对称,2x =()1,0所以符合题意.()ππsin 22f x x ⎛⎫- ⎝=⎪⎭故(答案不唯一)()ππsin 22f x x ⎛⎫- ⎝=⎪⎭16.如图,四边形为正方形,平面,,若ABCD AG ⊥ABCD ////AG DF CE ,,,则______.3AG AB ==2DF =1CE =:B EGD G BEF V V --=22:1【分析】将几何体补全为正方体,由、G BEF ABCD GIHJ G HEBJ G HIFE B CDFE B DFGA V V V V V V ------=----求出体积,即可得结果.B EGD ABCD GIHJ G HEBJ G HIDE E BCD G ABD V V V V V V ------=----【详解】将几何体补全为正方体,如下图示,G BEF ABCD GIHJ G HEBJ G HIFE B CDFE B DFGAV V V V V V ------=----111111112735333333335332323232=-⨯⨯⨯⨯-⨯⨯⨯⨯-⨯⨯⨯⨯-⨯⨯⨯⨯.3=B EGD ABCD GIHJ G HEBJ G HIDE E BCD G ABDV V V V V V ------=----111111112735335313333332323232=-⨯⨯⨯⨯-⨯⨯⨯⨯-⨯⨯⨯⨯-⨯⨯⨯⨯.6=所以.:2:1B EGD G BEF V V --=故2:1四、解答题17.已知向量,.()1,2a =(),3b x =(1)若,求的值;()3a b b -⊥ x (2)若向量,夹角为锐角,求的取值范围.a b x(1);x =(2)或.362x -<<32x >【分析】(1)应用向量线性运算坐标表示可得,根据向量垂直的坐标3(3,3)a b x -=- 表示即可求参数值;(2)由题设有,注意排除,同向共线时对应x 值即可.60a b x ⋅=+> a b【详解】(1)由题设,,又,3(3,3)a b x -=- ()3a b b-⊥ 所以,即,(3)90x x -+=2390x x --=可得.x =(2)由题设,,即,60a b x ⋅=+>6x >-当,同向共线时,有且,此时,可得,不满足,夹角a b a b λ= 0λ>132x λλ=⎧⎨=⎩32x =a b 为锐角,综上,或.362x -<<32x >18.如图1,菱形中,,,垂足为点,将沿翻折ABCD 60A ∠=︒DE AB ⊥E AED DE 到,使,如图2.A ED ' A E BE '⊥(1)求证:平面;A E '⊥EBD (2)在线段上是否存在一点,使平面?若存在,求的值;若不存A D 'F EF ∥A BC 'DFFA '在,说明理由.(1)证明见解析;(2)存在,.1DFFA ='【分析】(1)推导出,由此能证明平面.,,DE AE A E DE A E BE ⊥⊥⊥''A E '⊥BCDE(2)分别取的中点,连接,推导出四边形是平行,A D A C '',F M ,,EF FM BM EBMF 四边形,,从而在线段上存在一点,使平面,且.//EF BM A D 'F //EF A BC '1DFFA ='【详解】(1)在菱形中,,ABCD ,DE AB DE AE ⊥∴⊥ ,,,A E DE A E BE DE BE E ''∴⊥⊥⋂= 平面.A E '∴⊥EBD (2)在线段上存在一点,使平面.A D 'F EF //A BC '理由如下:分别取的中点,连接,,A D A C '',F M ,,EF FM BM 为的中位线,,且,FM A DC 'FM DC ∴∥12FM DC =在菱形中,,且,ABCD EB DC ∥12EB DC=,且四边形是平行四边形,,FM EB ∴∥,FM EB =∴EBMF EF BM ∴∥平面平面,EF ⊄ ,A BC BM '⊂A BC '平面,EF ∴ A BC '为中点,F A D '.1DFFA ∴'=19.已知为坐标原点,对于函数,称向量为函数O ()sin cos f x a x b x =+(),a M b O =的相伴特征向量,同时称函数为向量的相伴函数.()f x ()f x OM (1)若向量为的相伴特征向量,求实数的值;()2,2m =()sin 4h x x πλ⎛⎫=+ ⎪⎝⎭λ(2)记向量的相伴函数是,求在的值域.()5,12m =()f x ()f x 20,3x π⎡⎤∈⎢⎥⎣⎦(1)(2)⎤⎥⎦【分析】(1)根据已知相伴特征向量的定义可得,即可求解;()2sin 2cos h x x x =+(2)根据相伴函数的定义结合三角恒等变换得到函数的解析式,利用正弦型函数()f x 的性质求解值域即可.【详解】(1)解:因为向量为的相伴特征向量,()2,2m =()sin 4h x x πλ⎛⎫=+ ⎪⎝⎭则,()sin 2sin 2cos 44h x x x x x ππλ⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎝⎭⎝⎭解得.λ=(2)解:因为向量的相伴函数是()5,12m =,()5125sin 12cos 13sin cos 1313f x x x x x ⎛⎫=+=⨯+ ⎪⎝⎭设,则,512cos ,sin 1313θθ==sin 1θ<<32ππθ<<所以,()13sin()f x x θ=+当时,,20,3x π⎡⎤∈⎢⎥⎣⎦2,3x πϕϕϕ⎡⎤+∈+⎢⎥⎣⎦当时,函数有最大值为13,2x πϕ+=()f x 当时,即,函数有最小值为23x πϕϕ+=+23x π=()f x,222()5sin 12cos 333f πππ=⨯+⨯=故函数的值域为.()f x ⎤⎥⎦20.如图,在直三棱柱中,,且111ABC A B C -AC BC ⊥AC ==BC ,是棱的中点,是棱上的点,满足.12AA AB=D 1BB E 1CC 15CE EC =(1)证明:平面;AD ⊥1A DE (2)求直线与平面所成角的正弦值.AE 1ABB (1)证明见解析【分析】(1)先根据数量关系证明线线垂直,然后可得线面垂直;(2)先求解到平面的距离,然后根据线面角的定义求解正弦值.E 11ABB A【详解】(1)证明:因为,且;AC BC ⊥AC ==BC 3AB =因为,所以;12AA AB =16AA =因为是棱的中点,所以,D 1BB 1AD A D ==因为,所以;22211AD A D AA +=1AD A D ⊥因为,,所以;15CE EC =16AA =11,5C E CE ==在直角梯形中,,所以.11C B DE 11B C =13B D =DE =在直角三角形中,,所以ACE AC ==5CE AE 因为,所以.222AD DE AE +=AD DE ⊥由,,且,所以平面.1AD A D ⊥AD DE ⊥1=A D DE D ⋂AD ⊥1A DE (2)在直角三角形中,作于,如图,ACB CH AB ⊥H由等面积法可得;CH 由直棱柱的性质可得,所以平面;1AA CH ⊥CH ⊥11ABB A因为平面,所以到平面,1//CC 11ABB A E 11ABBA 设直线与平面所成角为,则AE 1ABB θsinθ==21.已知平面四边形中,,,.ABCD AB AD =AB AD ⊥AC =1BC =(1)若,求四边形的面积;56ACB π∠=ABCD (2)若记,.()0ACB θθπ∠=<<()CD f θ=①求的解析式;()f θ②求的最小值及此时角的值.CD θ(2)①②,此时.()f θ=CD 14πθ=【分析】(1)由余弦定理求得,,继而得,,根据三AB =cos CAB ∠sin DAC ∠AD 角形的面积公式可求得答案;(2)①由余弦定理求得,再由正弦定理求得,继而得,AB sin CAB ∠cos DAC ∠,根据余弦定理可求得;AD ()f θ②由角的范围和正弦函数的性质可求得的最小值及此时角的值.CD θ【详解】(1)在中,,,所 以ABCAC=1BC =56ACB π∠=,222+2cos AB AC CB AC BCACB =-⋅∠即,所以2225+11cos6AB π=-⨯AB =所以,222cos 2CA AB BCCABCA AB +-∠===⋅又,,所以AB AD =AB AD ⊥sin DAC ∠=AD AB ==所以,151sin 26ABC S π=⨯=19sin 24ADC S DAC =∠= 所以四边形ABCD (2)①在中,,,所 以ABC AC =1BC =ACB θ∠=,222+2cos AB AC CB AC BC θ=-⋅即,所以,222+11cos AB θ=-⨯24AB θ=-又,所以sin sin AB CB CAB θ=∠sinCAB ∠=又,,所以AB AD =AB AD⊥co s DAC ∠=,224A AB D θ=-=所以2222+cos AD AC CD AD AC DAC-⋅=∠4+3θ=--,7+4πθ⎛⎫=- ⎪⎝⎭所以;()CD f θ==②因为,所以,0θπ<<5444πππθ<<+所以当,即时,,42ππθ=+4πθ=min 14CD f π⎛⎫=== ⎪⎝⎭所以,此时.CD 14πθ=关键点睛:本题主要考查运用正弦定理、余弦定理解三角形,关键在于运用正弦定理 、余弦定理表示其边和角得的解析式.()f θ22.如图,在四棱锥中,,底面为正方形.记直线S ABCD -SAB SAD∠=∠π2≤ABCD 与平面所成的角为.SA ABCD θ(1)求证:平面平面;SAC ⊥SBD (2)若二面角的大小为,求的值;B SA D --2π3cos θ(3)当时,、中点为,,点为线段上的动点(包括端点),π2θ=SB BC M N P CD ,二面角的大小记为,求的取值范围.2SA AB =M NP A --αtan α(1)证明详见解析(3)2⎤⎦【分析】(1)通过证明平面来证得平面平面.BD ⊥SAC SAC ⊥SBD (2)判断出直线与平面所成的角,解直角三角形求得.SA ABCD θcos θ(3)作出二面角的平面角,结合三角函数值域的求法,求得的取值M NP A --tan α范围.【详解】(1)连接,交点设为,连接.,AC BD O SO 依题意可知,所以,SAB SAD ≅ AB SD =所以三角形中,,SBD SO BD ⊥由于,,BD AC AC SO O ⊥⋂=所以平面,BD ⊥SAC 由于平面,BD ⊂SBD 所以平面平面.SAC ⊥SBD (2)过作,垂足为,连接,B BK SA ⊥K DK 由已知,得,SAB SAD ≅ DK SA ⊥所以是二面角的平面角,BKD ∠B SA D --所以.2π3BKD ∠=设正方形的边长为,则,ABCD a BD =所以,,BK DK AK ===由于,,,DK SA BK SA DK BD K ⊥⊥⋂=所以平面,则.SA ⊥DKB SA KO ⊥过作,垂足为,S SE AC ⊥E 由于平面,所以,BD ⊥SAC BD SE ⊥由于,所以平面,AC BD O = SE ⊥ABCD 所以,即是直线与平面所成角.SAC θ∠=SAC ∠SA ABCD 在中,,Rt AKOAO =所以cos AK AO θ==(3)取中点,过作,垂足为,连接,AB Q Q QR NP ⊥R ,MQ MR 则为二面角的平面角,即,MRQ ∠M NP A --MRQ α∠=则,tan MQ QR α=由已知,设正方形的边长为,则,=MQ AB ABCD a MQ AB a ==在正方形中,设,ABCD PNC β∠=,当时,在三角形中,QN =π,arc tan 24PNC β⎡⎤∠=∈⎢⎥⎣⎦QNR ,3π3ππarc tan 2,442QNR β⎡⎤∠=-∈-⎢⎥⎣⎦()()3π3π3πsin arc tan 2sin cos arc tan 2cos sin arc tan 2444⎛⎫-=- ⎪⎝⎭==,3πsin 4β⎤⎛⎫-∈⎥ ⎪⎝⎭⎦.3πsin 4QR QN β⎛⎫=⋅- ⎪⎝⎭.tan MQ QRα==当时,在三角形中,,π0,4PNC β⎡⎤∠=∈⎢⎥⎣⎦QNR πππ,442QNR β⎡⎤∠=+∈⎢⎥⎣⎦,.πsin 4β⎤⎛⎫+∈⎥ ⎪⎝⎭⎦πsin 4QR QN β⎛⎫=⋅+ ⎪⎝⎭.tan 2MQQRα⎤==⎦综上所述,的取值范围是.tanα2⎤⎦。
高一下学期期末考试数学试题第Ⅰ卷 选择题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}A |2,x x x R =≤∈,集合B 为函数y lg(1)x =-的定义域,则B A I ( ) A .(1,2) B .[1,2] C .[1,2) D .(1,2]2.已知20.5log a =,0.52b =,20.5c =,则a ,b ,c 的大小关系为( )A .a b c <<B .c b a <<C .a c b <<D .c b a <<3.一个单位有职工800人,其中高级职称160人,中级职称300人,初级职称240人,其余人员100人,为了解职工收入情况,现采取分层抽样的方法抽取容量为40的样本,则从上述各层中依次抽取的人数分别为( )A .15,24,15,19B .9,12,12,7C .8,15,12,5D .8,16,10,6 4.已知某程序框图如图所示,若输入实数x 为3,则输出的实数x 为( )A .15B .31 C.42 D .63 5.为了得到函数4sin(2)5y x π=+,x R ∈的图像,只需把函数2sin()5y x π=+,x R ∈的图像上所有的点( )A .横坐标伸长到原来的2倍,纵坐标伸长到原来的2倍.B .纵坐标缩短到原来的12倍,横坐标伸长到原来的2倍.C .纵坐标缩短到原来的12倍,横坐标缩短到原来的12倍. D .横坐标缩短到原来的12倍,纵坐标伸长到原来的2倍.6.函数()1ln f x x x=-的零点所在的区间是( )A .(0,1)B .(1,2) C.(2,3) D .(3,4)7.下面茎叶图记录了在某项体育比赛中,九位裁判为一名选手打出的分数情况,则去掉一个最高分和最低分后,所剩数据的方差为( )A .327 B .5 C.307D .4 8.已知函数()222cos 2sin 1f x x x =-+,则( )A .()f x 的最正周期为2π,最大值为3.B .()f x 的最正周期为2π,最大值为1. C.()f x 的最正周期为π,最大值为3. D .()f x 的最正周期为π,最大值为1.9.平面向量a r 与b r 的夹角为23π,(3,0)a =r ,||2b =r ,则|2|a b +=r r ( )A C.7 D .3 10.已知函数2log (),0()(5),0x x f x f x x -<⎧=⎨-≥⎩,则()2018f 等于( )A .1-B .2 C.()f x D .111.设点E 、F 分别为直角ABC ∆的斜边BC 上的三等分点,已知3AB =,6AC =,则AE AF ⋅u u u r u u u r( )A .10B .9 C. 8 D .712.气象学院用32万元买了一台天文观测仪,已知这台观测仪从启动的第一天连续使用,第n 天的维修保养费为446(n )n N *+∈元,使用它直至“报废最合算”(所谓“报废最合算”是指使用的这台仪器的平均每天耗资最少)为止,一共使用了( )A .300天B .400天 C.600天 D .800天第Ⅱ卷 非选择题二、填空题(本大题共4小题,每题5分,满分20分,将答案填在答题纸上) 13.已知θ为锐角且4tan 3θ=,则sin()2πθ-= . 14.A 是圆上固定的一点,在圆上其他位置任取一点B ,连接A 、B 两点,它是一条弦,它的长度不小于半径的概率为 .15.若变量x ,y 满足2425()00x y x y f x x y +≤⎧⎪+≤⎪=⎨≥⎪⎪≥⎩,则32z x y =+的最大值是 .16.关于x 的不等式232x ax >+(a为实数)的解集为,则乘积ab 的值为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 在ABC ∆中,角A ,B C ,所对应的边分别为a ,b ,c ,且5a =,3A π=,cos B =(1)求b 的值; (2)求sin C 的值.18. 已知数列{}n a 中,前n 项和和n S 满足22n S n n =+,n N *∈.(1)求数列{}n a 的通项公式; (2)设12n n n b a a +=,求数列{}n b 的前n 项和n T . 19. 如图,在ABC ∆中,点P 在BC 边上,AC AP >,60PAC ∠=︒,PC =10AP AC +=.(1)求sin ACP ∠的值;(2)若APB ∆的面积是,求AB 的长.20. 已知等差数列{}n a 的首项13a =,公差0d >.且1a 、2a 、3a 分别是等比数列{}n b 的第2、3、4项. (1)求数列{}n a 与{}n b 的通项公式;(2)设数列{}n c 满足2 (n 1)(n 2)n n na c ab =⎧=⎨⋅≥⎩,求122018c c c +++L 的值(结果保留指数形式).21.为响应党中央“扶贫攻坚”的号召,某单位知道一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2018年种植的一批试验紫甘薯在不同温度时6组死亡株数:经计算:615705i i i x y ==∑,6214140ii x ==∑,62110464i i y ==∑≈0.00174.其中i x ,i y 分别为试验数据中的温度和死亡株数,1,2,3,4,5,6.i =(1)y 与x 是否有较强的线性相关性?请计算相关系数r (精确到0.01)说明.(2)求y 与x 的回归方程ˆˆˆ+a y bx =(ˆb 和ˆa 都精确到0.01);(3)用(2)中的线性回归模型预测温度为35C ︒时该批紫甘薯死亡株数(结果取整数). 附:对于一组数据11(,v )u ,22(,v )u ,L L ,(,v )n n u ,①线性相关系数ni i u v nu vr -=∑,通常情况下当|r |大于0.8时,认为两个变量具有很强的线性相关性.②其回归直线ˆˆv u αβ=+的斜率和截距的最小二乘估计分别为: 1221ˆni i i nii u v nu vunu β==-=-∑∑,ˆˆˆav u β=-;22.已知函数()2lg(a)1f x x =+-,a R ∈. (1)若函数()f x 是奇函数,求实数a 的值;(2)在在(1)的条件下,判断函数()y f x =与函数lg(2)xy =的图像公共点各数,并说明理由;(3)当[1,2)x ∈时,函数lg(2)x y =的图像始终在函数lg(42)xy =-的图象上方,求实数a 的取值范围.答案一、选择题答案9. 【解析】方法1: (1,b =-,2(1,a b +=±,|2|13a b +=。
(A)(B ) (C) (D)图1 高一数学必修二期末测试题(总分100分 时间100分钟)班级:______________:______________一、选择题(8小题,每小题4分,共32分)1.如图1所示,空心圆柱体的主视图是( )2.过点()4,2-且在两坐标轴上截距的绝对值相等的直线有 ( ) (A)1条 (B )2条 (C)3条 (D)4条3.如图2,已知E 、F 分别是正方体ABCD —A 1B 1C 1D 1的棱BC ,CC 1的中点,设α为二面角D AE D --1的平面角,则αsin =( )(A)32(B )35(C) 32 (D)322 4.点(,)P x y 是直线l :30x y ++=上的动点,点(2,1)A ,则AP 的长的最小值是( )(A)2 (B ) 22 (C)32 (D)425.一束光线从点(1,1)A -出发,经x 轴反射到圆22:(2)(3)1C x y -+-=上的最短 路径长度是( )(A )4(B )5 (C )321- (D )26图26.下列命题中错误..的是( ) A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β B .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β C .如果平面α⊥平面γ,平面β⊥平面γ,l =βα ,那么l ⊥平面γ D .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β7.设直线过点(0,),a 其斜率为1,且与圆222x y +=相切,则a 的值为( ) (A )4± (B )2± (C ) 22± (D )2±8.将一张画有直角坐标系的图纸折叠一次,使得点)2,0(A 与点B(4,0)重合.若此时点)3,7(C 与点),(n m D 重合,则n m +的值为( ) (A)531(B)532 (C) 533 (D)534二、填空题(6小题,每小题4分,共24分)9.在空间直角坐标系中,已知)5,2,2(P 、),4,5(z Q 两点之间的距离为7,则z =_______. 10.如图,在透明塑料制成的长方体1111D C B A ABCD -容器内灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:①水的部分始终呈棱柱状;②水面四边形EFGH 的面积不改变; ③棱11D A 始终与水面EFGH 平行; ④当1AA E ∈时,BF AE +是定值. 其中正确说法是 .11.四面体的一条棱长为x ,其它各棱长均为1,若把四面体的体积V 表示成关于x 的函数)(x V ,则函数)(x V 的单调递减区间为 .12.已知两圆2210x y +=和22(1)(3)20x y -+-=相交于A B ,两点,则公共弦AB 所在直线的直线方程是 .13.在平面直角坐标系中,直线033=-+y x 的倾斜角是 .14.正六棱锥ABCDEF P -中,G 为侧棱PB 的中点,则三棱锥D GAC 与三棱锥P GAC 的体积之比GAC P GAC D V V --:= .三、解答题(4大题,共44分)15.(本题10分)已知直线l 经过点)5,2(-P ,且斜率为43-. (Ⅰ)求直线l 的方程;(Ⅱ)求与直线l 切于点(2,2),圆心在直线110x y +-=上的圆的方程.16.(本题10分)如图所示,在直三棱柱111C B A ABC -中,︒=∠90ABC ,1CC BC =,M 、N 分别为1BB 、11C A 的中点.(Ⅰ)求证:11ABC CB 平面⊥; (Ⅱ)求证:1//ABC MN 平面.17.(本题12分)已知圆04222=+--+m y x y x . (1)此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线042=-+y x 相交于M 、N 两点,且ON OM ⊥ (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程.18.(本题12分)已知四棱锥P-ABCD ,底面ABCD 是60=∠A 、边长为a 的菱形,又ABCD PD 底面⊥,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点. (1)证明:DN//平面PMB ;(2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离.数学必修二期末测试题及答案CA一、选择题(8小题,每小题4分,共32分)1C , 2C, 3B , 4C , 5A , 6D , 7B , 8D.二、填空题(6小题,每小题4分,共24分)9. 111或-=z ; 10. ①③④; 11. ⎪⎪⎭⎫⎢⎣⎡3,26 ; 12. 30x y +=; 13. 150°; 14. 2:1.三、解答题(4大题,共44分)15.(本题10分)已知直线l 经过点)5,2(-P ,且斜率为43-. (Ⅰ)求直线l 的方程;(Ⅱ)求与直线l 切于点(2,2),圆心在直线110x y +-=上的圆的方程. 解析:(Ⅰ)由直线方程的点斜式,得),2(435+-=-x y 整理,得所求直线方程为.01443=-+y x……………4分 (Ⅱ)过点(2,2)与l 垂直的直线方程为4320x y --=, ……………5分由110,4320.x y x y +-=⎧⎨--=⎩得圆心为(5,6),……………7分∴半径22(52)(62)5R -+-=, ……………9分故所求圆的方程为22(5)(6)25x y -+-=. ………10分 16.(本题10分) 如图所示,在直三棱柱111C B A ABC -中,︒=∠90ABC ,1CC BC =,M 、N 分别为1BB 、11C A 的中点.(Ⅰ)求证:11ABC CB 平面⊥; (Ⅱ)求证:1//ABC MN 平面.解析:(Ⅰ)在直三棱柱111C B A ABC -中,侧面C C BB 11⊥底面ABC ,且侧面C C BB 11∩底面ABC =BC , ∵∠ABC =90°,即BC AB ⊥,∴⊥AB 平面C C BB 11 ∵⊂1CB 平面C C BB 11,∴AB CB ⊥1. ……2分 ∵1BC CC =,1CC BC ⊥,∴11BCC B 是正方形, ∴11CB BC ⊥,∴11ABC CB 平面⊥. …………… 4分 (Ⅱ)取1AC 的中点F ,连BF 、NF . ………………5分 在△11C AA 中,N 、F 是中点,∴1//AA NF ,121AA NF =,又∵1//AA BM ,121AA BM =,∴BM NF //,BM NF =,………6分故四边形BMNF 是平行四边形,∴BF MN //,…………8分而BF ⊂面1ABC ,MN ⊄平面1ABC ,∴//MN 面1ABC ……10分 17.(本题12分)已知圆04222=+--+m y x y x .(1)此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线042=-+y x 相交于M 、N 两点,且ON OM ⊥ (O 为坐标原点),求m 的值;(3)在(2)的条件下,求以MN 为直径的圆的方程. 解析:(1)方程04222=+--+m y x y x ,可化为 (x -1)2+(y -2)2=5-m , ∵此方程表示圆, ∴5-m >0,即m <5.(2)⎩⎪⎨⎪⎧x 2+y 2-2x -4y +m =0,x +2y -4=0,消去x 得(4-2y )2+y 2-2×(4-2y )-4y +m =0, 化简得5y 2-16y +m +8=0.设M (x 1,y 1),N (x 2,y 2),则⎩⎨⎧y 1+y 2=165, ①y 1y 2=m +85. ②由OM ⊥ON 得y 1y 2+x 1x 2=0, 即y 1y 2+(4-2y 1)(4-2y 2)=0, ∴16-8(y 1+y 2)+5y 1y 2=0. 将①②两式代入上式得NM BD CA16-8×165+5×m +85=0,解之得m =85. (3)由m =85,代入5y 2-16y +m +8=0,化简整理得25y 2-80y +48=0,解得y 1=125,y 2=45.∴x 1=4-2y 1=-45,x 2=4-2y 2=125. ∴M ⎝⎛⎭⎫-45,125,N ⎝⎛⎭⎫125,45, ∴MN 的中点C 的坐标为⎝⎛⎭⎫45,85.又|MN |= ⎝⎛⎭⎫125+452+⎝⎛⎭⎫45-1252=855, ∴所求圆的半径为455.∴所求圆的方程为⎝⎛⎭⎫x -452+⎝⎛⎭⎫y -852=165. 18.(本题12分)已知四棱锥P-ABCD ,底面ABCD 是60=∠A 、边长为a 的菱形,又ABCD PD 底面⊥,且PD=CD ,点M 、N 分别是棱AD 、PC 的中点. (1)证明:DN//平面PMB ;(2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离.解析:(1)证明:取PB 中点Q ,连结MQ 、NQ ,因为M 、N 分别是棱AD 、PC 中点,所以QN//BC//MD ,且QN=MD ,于是DN//MQ .PMB DN PMB DN PMB MQ MQDN 平面平面平面////⇒⎪⎭⎪⎬⎫⊄⊆. …………………4分(2)MB PD ABCD MB ABCD PD ⊥⇒⎭⎬⎫⊆⊥平面平面又因为底面ABCD 是60=∠A ,边长为a 的菱形,且M 为AD 中点, 所以AD MB ⊥.又所以PAD MB 平面⊥..PAD PMB PMB MB PAD MB 平面平面平面平面⊥⇒⎭⎬⎫⊆⊥………………8分(3)因为M 是AD 中点,所以点A 与D 到平面PMB 等距离.过点D 作PM DH ⊥于H ,由(2)平面PMB ⊥平面P AD ,所以PMB DH 平面⊥.故DH 是点D 到平面PMB 的距离..55252a a aaDH =⨯=所以点A 到平面PMB 的距离为a 55.………12分。
(4)(3)(1)俯视图俯视图俯视图侧视图侧视图侧视图侧视图正视图正视图 正视图正视图(2)俯视图·高一数学(必修二)期末质量检测试题1.若直线l 经过原点和点A (-2;-2);则它的斜率为( ) A .-1B .1C .1或-1D .02.各棱长均为a 的三棱锥的表面积为( ) A .234aB .233aC .232aD .23a3. 如图⑴、⑵、⑶、⑷为四个几何体的三视图;根据三视图可以判断这四个几何体依次分别为( )A .三棱台、三棱柱、圆锥、圆台B .三棱台、三棱锥、圆锥、圆台C .三棱柱、正四棱锥、圆锥、圆台D .三棱柱、三棱台、圆锥、圆台4.经过两点(3;9)、(-1;1)的直线在x 轴上的截距为( )A .23-B .32-C .32 D .25.已知A (1;0;2);B (1;,3-1);点M 在z 轴上且到A 、B 两点的距离相等;则M 点坐标为( )A .(3-;0;0)B .(0;3-;0)C .(0;0;3-)D .(0;0;3)6.如果AC <0;BC <0;那么直线Ax+By+C=0不通过( ) A .第一象限B .第二象限C .第三象限D .第四象限7.已知圆心为C (6;5);且过点B (3;6)的圆的方程为( ) A .22(6)(5)10x y -+-= B .22(6)(5)10x y +++= C .22(5)(6)10x y -+-=D .22(5)(6)10x y +++=8.在右图的正方体中;M 、N 分别为棱BC 和棱CC 1的中点;则异面直线AC 和MN 所成的角为( ) A .30° B .45°C .90°D . 60°9.给出下列命题①过平面外一点有且仅有一个平面与已知平面垂直 ②过直线外一点有且仅有一个平面与已知直线平行 ③过直线外一点有且仅有一条直线与已知直线垂直 ④过平面外一点有且仅有一条直线与已知平面垂直 其中正确命题的个数为( ) A .0个 B .1个C .2个D .3个10.点),(00y x P 在圆222r y x =+内;则直线200r y y x x =+和已知圆的公共点的个数为( )A .0B .1C .2D .不能确定二、填空题(每题4分;共20分)111.已知原点O (0;0);则点O 到直线x+y+2=0的距离等于 .12.经过两圆922=+y x 和8)3()4(22=+++y x 的交点的直线方程 13.过点(1;2);且在两坐标轴上截距相等的直线方程 14.一个圆柱和一个圆锥的底面直径..和它们的高都与某一个球的直径相等;这时圆柱、圆锥、球的体积之比为 .15.已知两条不同直线m 、l ;两个不同平面α、β;给出下列命题: ①若l 垂直于α内的两条相交直线;则l ⊥α; ②若l ∥α;则l 平行于α内的所有直线; ③若m ⊂α;l ⊂β且l ⊥m ;则α⊥β; ④若l ⊂β;α⊥l ;则α⊥β;⑤若m ⊂α;l ⊂β且α∥β;则m ∥l ;其中正确命题的序号是 .(把你认为正确命题的序号都填上) 三、解答题(5道题;共40分)16.(本大题6分)如图是一个圆台形的纸篓(有底无盖);它的母线长为50cm ;两底面直径分别为40 cm 和30 cm ;现有制作这种纸篓的塑料制品50m 2;问最多可以做这种纸篓多少个?17.(本大题8分)求经过直线L 1:3x + 4y – 5 = 0与直线L 2:2x – 3y + 8 = 0的交点M ;且满足下列条件的直线方程M(1)与直线2x + y + 5 = 0平行 ; (2)与直线2x + y + 5 = 0垂直;18.(本大题8分)求圆心在03:1=-x y l 上;与x 轴相切;且被直线0:2=-y x l 截得弦长为72的圆的方程.19. (本大题8分)在正方体ABCD-A 1B 1C 1D 1中;E 、F 分别是BB 1、CD 的中点. (1).证明:;1F D AD ⊥ (2). 求AE 与D 1F 所成的角;ED 1C 1B 1A 1(3). 设AA 1=2;求点F 到平面A 1ED 1的距离.20.(本大题10分)已知方程04222=+--+m y x y x . (1)若此方程表示圆;求m 的取值范围;(2)若(1)中的圆与直线042=-+y x 相交于M ;N 两点;且OM ⊥ON (O 为坐标原点)求m的值;(3)在(2)的条件下;求以MN 为直径的圆的方程.参考答案一、选择题:二、填空题:11.212. 4 x+3y+13=0 13.3,2+==x y x y 14.3:1:2.15. ①④ 三、 解答题:16.解:)('2'rl l r r S ++=π-----------1分=)5020501515(2⨯+⨯+π)(2m π----------3分≈=Sn 5080(个)-------5分 答:(略)--------6分17.解:⎩⎨⎧-=-=+832543y x y x 解得⎩⎨⎧=-=21y x --------2分所以交点(-1;2) (1)2-=k -----3分直线方程为02=+y x --------5分 (2)21=k ---------6分 直线方程为052=+-y x --------8分 18.解:由已知设圆心为(a a 3,)--------1分与x 轴相切则a r 3=---------2分圆心到直线的距离22a d =----------3分弦长为72得:229247a a =+-------4分 解得1±=a ---------5分圆心为(1;3)或(-1;-3);3=r -----------6分 圆的方程为9)3()1(22=-+-y x ---------7分或9)3()1(22=+++y x ----------8分19.证明:(1). 正方体ABCD-A 1B 1C 1D 1; C C DD AD 11面⊥∴;C C DD F D 111面⊂;.1F D AD ⊥∴ -------------------2分(2) 取AB 的中点;并连接A 1P ; 易证ABE AP A ∆≅∆1; 可证;AE P A ⊥1;即F D AE 1⊥;所以AE 与D 1F 所成的角为.90︒-------------------4分(3) 取CC 1中点Q ; 连接FQ ;11//D A FQ 又作FQD A FH 1平面⊥; 又 111,,A FQD FH FQ FH Q D FH 平面⊥∴⊥⊥;所以FH 即为F 到平面FQD 1A 1的距离; -------------------6分 解得:,553=FH 所以F 点到平面A 1ED 1的距离为.553-------------------8分20.解:(1)04222=+--+m y x y x D=-2;E=-4;F=mF E D 422-+=20-m 40>5<m …………2分(2)⎩⎨⎧=+--+=-+04204222m y x y x y x y x 24-=代入得 081652=++-m y y ………..3分51621=+y y ;5821my y += ……………4分 ∵OM ⊥ON得出:02121=+y y x x ……………5分 ∴016)(852121=++-y y y y ∴58=m …………….7分 (3)设圆心为),(b a582,5421121=+==+=y y b x x a …………….8分 半径554=r …………9分 圆的方程516)58()54(22=-+-y x ……………10分。
高一第二学期数学期末试题本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至3页,第Ⅱ卷5 至8页,满分150分.考试时间120分钟.第I 卷(共60分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡 皮擦干净后,再选涂其他答案标号。
不能答在试题卷上. 3.考试结束,监考人将本试卷和答题卡一并收回.参考公式:用最小二乘法求线性回归直线方程,y=bx+a 中的系数:b=∑∑==--ni ini i ix n n yx 1221yxa=x b y -一、选择题:本大题共12小题,每小题5分.共60分.在每小题给出的四个选项中,选择一个符合题目要求的选项. 1.已知扇形的半径为R ,面积为2R ,则这个扇形圆心角的弧度数为 A .3 B .32 C .2 D .42.已知向量:a =(2,3),b =(4,y),若:a ∥b,则y=A .一38 B .6 C.38D .一6 3.一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是 A .至多有一次中靶 B .两次都中靶C .只有一次中靶D .两次都不中靶4.十进制数25转化为=进制数为A.)(211001B.)(210101 C .)(210011 D .)(211100 5.某公司在甲、乙、丙三个城市分别有180个、150个、120个销售点,公司为了调查产 品销售的情况,需从这450个销售点中抽取一个容量为90的样本,记这项调查为 ①;某学校高二年级有25名足球运动员,要从中选出5名调查学习负担情况,记这 项调查为②,则完成①②这两项调查宜采用的抽样方法依次是A .系统抽样,分层抽样B .简单随机抽样,分层抽样C .分层抽样,简单随机抽样D .分层抽样,系统抽样 6.已知a 是第二象限角,且tana= -125,则sina= A .51 B .- 51 C .-135 D .135 7.函数y=cosx x tan (o ≤x ≤π,且x ≠2π)的图象为8.如右图所示的是一个算法的程序框图,它的算法功能是 A .求出a ,b ,c 三数中的最大数 B .求出a ,b ,c 三数中的最小数 C .将a ,b ,c 按从小到大排列 D .将a ,b ,c 按从大到小排列9.如果数据x 1,x 2,…,x n 的平均数为x ,方差为2s ,则2x 1+3,2 x 2+ 3,…,2 x n 十3的平均数和方差分别为A .x ,2s B .2x +3,42sC .2 x +3,22sD .2x +3,42s +910.某设备的使用年限x 与所支出的总费用y(万元)有如下的统计资料则根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归直线方程为 (参考数值;21+22+23+42=30,1X1.5+2×2+3×3+4×3.5=28.5)A .y ˆ =0.7x+O .75B .y ˆ=0.75x+0.7C .yˆ=0.6x+0.75 D .yˆ=0.65x+0.7 11.已知f(x)=asinx+btanx+3满足f(5π)=5,则f(599π)= A .2 B .I C . 8 D .- 212.已知AD 、BE 分别是△ABC的边BC、AC上的中线,且AD =a ,E B =b则BC = A .b a 3231+ B .b a3132+C .b a 3432+D .b a3234+第Ⅱ卷(共90分)注意事项:1.用黑色或蓝色钢笔、圆珠笔直接答在答题纸...上。
2.答卷前将密封线内的项目填写清楚。
二、填空题:本大题共4小题。
每小题4分。
共16分.答案须填在题中横线上 13.某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图如下:上图中,中间数字表示得分的十位数,旁边数字表示得分的个位数.请根据上图回 答,成绩比较稳定的运动员是 . 14.向面积为s 正方形 ABCD 内任意投一点P ,则△PAB 的面积小于等于4s的概率为 . 15.右图程序框图的运行结果是 . 16.对于函数,f(x)=3sin(2x+6π),给出下列命题: ①图象关于原点成中心对称; ②图象关于直线x=6π对称; ③图象向左平移6π个单位,即得到函数y=3cos2x 的 图象,其中正确命题的序号为 .三、解答题:本大题共6小题.共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分) (Ⅰ)化简:200370cos 170cos 1280cos 100sin 21---.(Ⅱ)已知:sinacosa=41,且4π<a <2π,求:COSa-Sina 的值.18.(本小题满分12分)一个社会调查机构就某地居民的月收入(单元:元)调查了10000人,所得数据整理后 分成六组,绘制出如图(1)所示的频率分布直方图.记图(1)中从左到右的第一、第二,…, 第六组的频数分别为A 1,A 2,…,A 6.(如A 2表示月收人在[1500,2000)内的频数) (Ⅰ) 求这10000人中,月收入(单位:元)在[1000,3000)内的人数;(Ⅱ)图(2)是统计图(1)中月收入在[1500,3500)的人数的程序框图,写出图(2)中的 判断框内应填的条件.19.(本小题满分12分)某校有学生会干部7名,其中男干部有1A ,A 2,A 3,A 4共4人;女干部有B 1,B 2,B 3共3人.从中选出男、女干部各1名,组成一个小组参加某项活动. (Ⅰ)求A 1被选中的概率;(Ⅱ)求A 2,B 2 不全被选中的概率.20.(本小题满分12分)已知a=1,b =2.(Ⅰ)若a 与b 的夹角为060,求b a +;(Ⅱ)若b a -与a 垂直,求a 与b的夹角.21.(本小题满分12分)如图为函数,f(x)=Asin (A k (++)ϕωχ>0,K ≠0,ω>0,ϕ<2π)的图象的一部分 (Ⅰ)求f(x)的解析式及f(x)的单调递增区间;(Ⅱ)求f(1)+f (2)+f(3)+…f(2008)的值22.(本小题满分14分)设A(7,1),B(1,5),P(7,14)为坐标平面上三点,0为坐标原点,点M 为线段OP 上 的一个动点.(I)求向量MA 在向量AB 方向上的投影的最小值; . (II)当MA ·MB 取最小值时,求点M 的坐标;(III)当点M 满足(2)的条件和结论时,求cos ∠AMB 的值.(0.0002+0.0004+0.0005+0.0005)×500=0.8 (4分) 所以月收入在[1000,3000)内的人数为10000X0.8=800(人) (6分) (II)即需求5432A A A A +++,故判断框中应填i<67?(或i ≤57?) (12分) 19.解:(I)从7名学生会干部中选出男干部、女干部各1名,其一切可能的结果共有 12种:(11,B A ),(21,B A ),(31,B A ),(12,B A ), (22,B A ),(32,B A ),(13,B A ),(23,B A ),(33,B A ),(14,B A ),(24,B A ),(34,B A ).……………………………3分用M 表示“1A 被选中”这一事件,则M 中的结果有3种:(11,B A ),(21,B A ,(31,B A ). 由于所有12种结果是等可能的,其中事件M 中的结果有3种,因此,由古典概型的概率计算公式可得:P(M)=41123= 6分 (Ⅱ)用N 表示“22,B A 不全被选中”这一事件,则其对立事件N 表示“22,B A 全被选∵θ∈〔01800,〕 ∴θ=045即a 与b的夹角为045 21.解:(I)由图象可知:A=202-=1, k=22+=12T=3-1=2 ∴T=4 ∴W=2422πππ==T∴f(x)=sin(2πx+1+)ϕ ∵图像过点(0,1) ∴1= sin ϕ+1 ∴sin ϕ=0∴f(x)=sin2πx+1 (5分) 由一2π+2k π≤2πx ≤2π+2k π (k ∈ǎz)得,f(x)的单调递增区间为[一1+4k ,l+4k](k ∈z) (7分).(Ⅱ)∵f(x)=sin x+l 的周期T =4又,f(1)=1+1=2 ,f(2)=0+1=1 ,f(3)=-1+1=0 _f(4)=0+1=1∴f(1)+f(2)+f(3)+lf(4)=2十l+0十1=4 (10分) 即f(1)+f(2)+f3)+…+f(2008)=502×4=2008 (12) 22.解:(I)设M(x ,y) ∵点M 在线段OP 上i(Ⅱ)由(I)知A M=(7一x ,1—2x)又B M=(1,5)一(x ,2x)=(1—x,5—2x)∴A M ·B M=(7--x ,1—2x)·(1一x ,5—2x)=(7--x) (1一x+(1—2x)(5—2x)=52)2-x (--8 当x=2∈ (0,7)时A M ·B M取最小值一8,此时点M(2,4).……… (11分) (Ⅲ)由(1I)知,A M =(5,一3),B M=(一1,1)Cos ∠AMB =22221)1()3(5)1,1()3,5(+--+-⋅-=⋅B M A M B M A M=17174-。