概率的古典定义及其计算
- 格式:doc
- 大小:62.50 KB
- 文档页数:2
古典概型的特征与概率计算公式古典概型是概率论中最基本的概型之一,它的特点是每个事件的可能性相等。
在古典概型中,我们可以通过计算样本空间和事件空间的大小来计算事件发生的概率。
1.等可能性:在古典概型中,每个事件的发生概率都是相等的。
2.有限性:古典概型中的样本空间是有限的,即所有可能的结果有限个。
3.独立性:古典概型中的事件之间是相互独立的,即一个事件的发生不会影响其他事件的发生概率。
根据这些特征,我们可以通过以下公式计算古典概型中事件的概率:1.概率的定义:事件A的概率P(A)定义为事件A发生的可能性与样本空间Ω中所有可能结果发生的总可能性的比值。
即:P(A)=N(A)/N(Ω),其中N(A)表示事件A的结果数目,N(Ω)表示样本空间Ω中所有可能结果的数目。
2.互斥事件:如果两个事件A和B是互斥的(即A和B不可能同时发生),则它们的概率之和为各自概率的和。
即:P(A∪B)=P(A)+P(B)。
3.相互独立事件:如果两个事件A和B是相互独立的(即A的发生不会影响B的发生概率),则它们的概率乘积等于各自概率的乘积。
即:P(A∩B)=P(A)*P(B)。
4.补事件:事件A的对立事件为A的补事件,记作A'。
补事件是指样本空间中不属于事件A的结果。
事件A的发生与A'的不发生是互斥的。
因此,P(A')=1-P(A)。
5.复合事件:如果事件A和B是两个独立事件,则同时发生的概率为两个事件的概率乘积。
即:P(A∩B)=P(A)*P(B)。
通过以上公式,我们可以计算古典概型中事件的概率。
需要注意的是,在应用这些公式时,必须满足古典概型的特征,即事件是等可能发生的、样本空间是有限的,并且各事件之间是相互独立的。
古典概型及其概率计算公式古典概型是概率论中最简单的模型之一,适用于试验结果只有有限个可能结果、这些结果发生的概率相等的情况。
在古典概型中,可以使用概率计算公式来计算特定事件发生的概率。
首先,我们来了解一下古典概型的基本概念和特点。
古典概型由以下两个要素组成:1.试验空间:试验的所有可能结果构成的集合,记为S。
例如,一次掷硬币的试验空间为S={正面,反面}。
2.事件:试验空间的子集,即试验的一些结果或一些结果组成的集合。
事件可以用大写字母A、B、C等表示。
在古典概型中,如果试验的所有可能结果有n个,且这些结果发生的概率相等,则每个结果发生的概率为1/n。
这种情况下,事件A的概率可以用以下公式计算:P(A)=n(A)/n(S)其中,n(A)表示事件A中的结果个数,n(S)表示试验的结果个数。
接下来,我们通过几个具体的例子来进一步理解和应用古典概型及其概率计算公式。
例子1:一枚骰子的掷出结果。
试验空间S={1,2,3,4,5,6},共有6个可能的结果,每个结果发生的概率为1/6事件A:出现偶数点数;事件B:出现奇数点数。
n(A)=3,n(B)=3因此,事件A的概率为P(A)=n(A)/n(S)=3/6=1/2;事件B的概率为P(B)=n(B)/n(S)=3/6=1/2例子2:一副扑克牌中抽出一张牌的结果。
试验空间S={52张不同的牌},共有52个可能的结果,每个结果发生的概率为1/52事件A:抽出一张红心牌;事件B:抽出一张大于10的牌。
n(A)=26,n(B)=16因此,事件A的概率为P(A)=n(A)/n(S)=26/52=1/2;事件B的概率为P(B)=n(B)/n(S)=16/52=4/13例子3:一个有5个不同颜色的球的盒子中抽出3个球的结果。
试验空间S={所有可能的颜色组合},共有C(5,3)=10个可能的结果,每个结果发生的概率为1/10。
事件A:抽出的3个球颜色不相同。
n(A)=C(5,3)=10。
高中古典概型的概率公式高中数学中,概率是一个重要的概念,我们常用古典概型来计算事件的概率。
古典概型是指在同等条件下,事件发生的可能性相等。
这里介绍高中古典概型的概率公式。
1. 古典概型的定义首先我们来回顾一下古典概型的定义。
古典概型是指在同等条件下,事件发生的可能性相等。
比如掷一枚骰子,每个点数的概率都相等。
这就是古典概型。
2. 古典概型的概率公式对于古典概型,我们可以用公式来计算事件的概率。
公式如下:P(A) = n(A) / n(S)其中,P(A) 表示事件 A 发生的概率,n(A) 表示事件 A 中元素的个数,n(S) 表示样本空间中元素的个数。
例如,掷一枚骰子,求点数为 3 的概率。
这个事件的样本空间为 {1, 2, 3, 4, 5, 6},其中点数为 3 的元素个数为 1,样本空间的元素个数为 6。
因此,点数为 3 的概率为:P(点数为 3) = 1 / 6又例如,从一副扑克牌中抽出一张牌,求抽到黑桃的概率。
这个事件的样本空间为 52 张牌,其中黑桃牌的个数为 13 张,因此,抽到黑桃的概率为:P(抽到黑桃) = 13 / 52 = 1 / 43. 古典概型的应用古典概型的应用非常广泛,我们可以用它来计算各种事件的概率。
比如掷硬币、抽扑克牌、摇色子等等。
下面举一个例子。
假设有一个装有 5 个红球和 3 个蓝球的盒子。
现在从盒子中任取 2 个球,求取出的球都是红球的概率。
这个问题可以用古典概型来解决。
首先,样本空间中元素的个数为:n(S) = C(8, 2) = 28其中,C(n, m) 表示从 n 个元素中取出 m 个元素的组合数。
在这个问题中,从 8 个球中取出 2 个球的组合数为 28。
接着,事件中元素的个数为:n(A) = C(5, 2) = 10其中,从 5 个红球中取出 2 个红球的组合数为 10。
因此,取出的球都是红球的概率为:P(取出的球都是红球) = n(A) / n(S) = 10 / 28 = 5 / 144. 总结古典概型是解决概率问题的一种常用方法。
高中古典概型的概率公式
在高中数学中,我们学习了很多概率相关的知识,其中古典概型是最基础的一种。
古典概型是指在一次试验中,每个基本事件的概率相等的概率模型。
在这种模型中,我们可以通过概率公式来计算事件发生的概率。
古典概型的概率公式为:P(A) = m/n,其中P(A)表示事件A发生的概率,m表示事件A中有多少种有利的基本事件,n表示试验中所有基本事件的总数。
例如,我们抛一枚硬币,事件A为正面朝上,那么事件A发生的概率就是1/2,因为硬币正反面各一种基本事件,有利的基本事件只有一种。
再例如,我们从一副扑克牌中随机抽取一张牌,事件A为抽到红桃A,那么事件A发生的概率就是1/52,因为一副扑克牌中有52张牌,其中红桃A只有一张。
在实际应用中,古典概型的概率公式可以帮助我们计算各种事件的概率。
例如,在赌场中,我们可以通过古典概型的概率公式来计算各种赌博游戏的胜率,从而决定是否参与游戏。
古典概型的概率公式还可以帮助我们理解一些概率谬论。
例如,大数定律就是指在独立重复试验中,随着试验次数的增加,事件发生
的频率趋近于事件的概率。
这个定律的实际意义是,当我们进行足够多次的试验时,古典概型的概率公式才能真正反映出事件发生的概率。
古典概型的概率公式是高中数学中最基础的概率计算方法之一,它可以帮助我们计算各种事件的概率,理解概率谬论,以及在实际应用中做出正确的决策。
古典概型的概率计算例题和知识点总结在概率论中,古典概型是一种非常基础且重要的概率模型。
它具有简单直观、易于理解和计算的特点。
接下来,我们将通过一些具体的例题来深入理解古典概型的概率计算方法,并对相关知识点进行总结。
一、古典概型的定义与特点古典概型是指试验中所有可能的结果是有限的,并且每个结果出现的可能性相等。
例如,掷一枚均匀的硬币,结果只有正面和反面两种,且出现正面和反面的可能性相等;掷一个均匀的骰子,结果有 1、2、3、4、5、6六种,每种结果出现的概率都是 1/6。
二、古典概型的概率计算公式如果一个试验有n 个等可能的结果,事件A 包含其中的m 个结果,那么事件 A 发生的概率 P(A) = m / n 。
三、例题解析例 1:从装有 3 个红球和 2 个白球的口袋中随机取出 2 个球,求取出的 2 个球都是红球的概率。
解:从 5 个球中取出 2 个球的组合数为 C(5, 2) = 10 种。
取出 2 个红球的组合数为 C(3, 2) = 3 种。
所以取出 2 个球都是红球的概率为 3 / 10 。
例 2:一个盒子里有 5 个完全相同的球,分别标有数字 1、2、3、4、5,从中随机摸出一个球,求摸到奇数球的概率。
解:总共有 5 个球,摸到每个球的可能性相等。
奇数球有 1、3、5 三个。
所以摸到奇数球的概率为 3 / 5 。
例 3:同时掷两个均匀的骰子,求点数之和为 7 的概率。
解:同时掷两个骰子,总的结果数为 6 × 6 = 36 种。
点数之和为7 的情况有(1,6)、(2,5)、(3,4)、(4,3)、(5,2)、(6,1),共 6 种。
所以点数之和为 7 的概率为 6 / 36 = 1 / 6 。
四、古典概型概率计算的注意事项1、要确保试验结果的等可能性。
如果试验结果不是等可能的,就不能使用古典概型的概率计算公式。
2、计算基本事件总数和事件包含的基本事件数时,要注意不重不漏。
3、对于复杂的问题,可以通过分类讨论或分步计算来解决。
古典概型和特征和概率计算公式古典概型是概率论中最简单的概率模型之一,也称为等可能概型。
在古典概型中,试验的所有可能的结果具有相同的概率,因此可以使用特征和概率计算公式来计算特定事件的概率。
一、古典概型的特征:在古典概型中,试验的样本空间S是有限的,即S={a1, a2, ..., an},其中n为有限个数。
每个样本点ai(a1 ≤ i ≤ n)的发生概率都是相等的,即P(ai) = 1/n。
二、概率计算公式:1.对于一个事件A,A是样本空间S的子集,事件A的概率可以用以下公式计算:P(A)=n(A)/n(S),其中n(A)表示事件A中发生的样本点数,n(S)表示样本空间中的总样本点数。
2.对于互斥事件A和B(即A和B不可能同时发生),它们的并事件(A∪B)的概率可以用以下公式计算:P(A∪B)=P(A)+P(B)。
3.对于独立事件A和B(即A的发生不受B的发生影响,反之亦然),它们的交事件(A∩B)的概率可以用以下公式计算:P(A∩B)=P(A)×P(B)。
4.对于事件A的对立事件(即A不发生),对立事件的概率可以用以下公式计算:P(A')=1-P(A),其中A'表示事件A的对立事件。
5.对于事件A的补事件(即A不发生的事件),补事件的概率可以用以下公式计算:P(A')=1-P(A)。
6.对于事件A的条件概率,即在事件B发生的条件下事件A发生的概率,可以用以下公式计算:P(A,B)=P(A∩B)/P(B),其中P(A,B)表示在已知事件B发生的条件下事件A发生的概率。
三、应用举例:假设有一个装有5个红球和3个蓝球的箱子。
现从箱子中任意取出一个球,求以下事件的概率:1.事件A:取出的球是红球。
P(A)=n(A)/n(S)=5/(5+3)=5/82.事件B:取出的球是蓝球。
P(B)=n(B)/n(S)=3/(5+3)=3/83.事件C:先后取出两个红球。
P(C)=P(A∩A)=P(A)×P(A)=(5/8)×(4/7)=20/56=5/144.事件D:取出的球不是红球。
古典概型的特征和概率计算公式完美正规版古典概型是概率论中最简单的一种概率模型,它采用了等可能性的假设,即每一个样本点出现的概率都是相等的。
这个模型的特征及其概率计算公式如下:1.样本空间:古典概型中的样本空间是一个有限个数的集合,用Ω表示。
例如,掷骰子的样本空间为Ω={1,2,3,4,5,6},抛硬币的样本空间为Ω={正面,反面}。
2.事件:在古典概型中,事件是样本空间的子集,用A表示。
例如,在掷骰子的样本空间中,事件A可以表示为"出现奇数点数",事件B可以表示为"出现偶数点数"。
3.等可能性假设:古典概型中的一个重要假设是每一个样本点出现的概率都是相等的。
例如,在掷骰子的样本空间中,每一个点数出现的概率都是1/64.概率计算公式:根据等可能性假设,我们可以使用计数的方法来计算事件的概率。
事件A的概率表示为P(A),计算公式为:P(A)=N(A)/N(Ω)其中,N(A)表示事件A中样本点的个数,N(Ω)表示样本空间中样本点的个数。
例如,对于掷骰子的样本空间Ω={1,2,3,4,5,6},事件A表示出现奇数点数,其样本点为{1,3,5},样本点个数为N(A)=3;样本空间Ω中的样本点个数为N(Ω)=6、因此,事件A的概率为:P(A)=N(A)/N(Ω)=3/6=1/2这个公式可以扩展到多个事件的情况下。
例如,对于掷骰子的样本空间Ω={1,2,3,4,5,6},事件A表示出现奇数点数,事件B表示出现偶数点数,这两个事件是互斥事件,即事件A和事件B不能同时发生。
因此,事件A和事件B的概率可以通过以下计算公式得到:P(A)=N(A)/N(Ω)=3/6=1/2P(B)=N(B)/N(Ω)=3/6=1/2请注意,在古典概型中,当事件A和事件B互斥时,它们的概率相加等于1,即P(A)+P(B)=1总结起来,古典概型的特征是样本空间有限、等可能性假设成立;概率计算公式是P(A)=N(A)/N(Ω)。
古典概型的特征和概率计算公式古典概型是概率论中最简单的概型之一,它是基于等可能性假设的。
古典概型的特征和概率计算公式如下所示。
1.特征:-等可能性假设:古典概型假设所有可能的结果具有相同的发生概率。
-有限个数的可能结果:古典概型假设实验的所有可能结果可数且是有限的。
-互斥性:古典概型假设每个实验结果都是唯一的,任意两个不同结果之间是互斥的,即同一次试验只能出现一种结果。
2.概率计算公式:在古典概型下,我们可以使用以下公式来计算事件的概率。
-样本空间:古典概型中,样本空间的大小等于实验的所有可能结果数的总和。
假设样本空间为S,大小为n,即S={A1,A2,A3,...,An}。
- 事件的概率: 假设事件A是样本空间S的子集,包含m个可能结果,即A = {Ai1, Ai2, Ai3, ..., Aim}。
则事件A的概率P(A)等于事件A中所有可能结果的概率之和。
P(A) = P(Ai1) + P(Ai2) + P(Ai3) + ... + P(Aim) = m/n。
3.举例说明:为了更好地理解古典概型的特征和概率计算公式,我们来举一个简单的例子。
假设有一个标准的六面骰子,每个面上的数字是等可能的。
(1)样本空间:这个例子中,样本空间S包含了所有可能的结果,即S={1,2,3,4,5,6}。
(2)事件A:假设我们关注的事件是掷出的数字是奇数。
事件A是样本空间S的子集,A={1,3,5}。
(3)概率计算:根据公式,我们可以计算事件A的概率:P(A)=P(1)+P(3)+P(5)=1/6+1/6+1/6=3/6=1/2从这个例子中,我们可以看到事件A的概率是1/2,即掷出的数字是奇数的可能性为1/2总结起来,古典概型是概率论中最基本的概型之一、它的特征包括等可能性假设、有限个数的可能结果和互斥性。
在古典概型下,我们可以使用简单的公式来计算事件的概率,即事件中所有可能结果的概率之和。
这个概率计算公式是P(A)=m/n,其中m是事件A包含的可能结果数,n是样本空间S的大小。
古典概率计算公式
古典概率定义是指在一个实验中,每个可能的结果都是等可能发生的情况下,其中一结果发生的概率。
概率是一个介于0和1之间的数值,表示其中一事件发生的可能性。
在古典概率中,事件的概率等于事件发生的次数除以实验总次数。
P(A)=n(A)/n
其中,P(A)表示事件A的概率,n(A)表示事件A发生的次数,n表示实验总次数。
例如,假设现有一个包含5个红球和3个蓝球的袋子,从中随机抽取一个球。
事件A表示抽到红球的概率。
根据古典概率计算公式,我们可以计算出事件A的概率。
事件A发生的次数是红球的数量,即5,实验总次数是所有球的数量,即8、所以事件A的概率为:
P(A)=5/8=0.625
这意味着从袋子中抽取的球是红球的概率为0.625,或者说事件A发生的可能性为62.5%。
总结起来,古典概率计算公式是用于计算古典概率的数学公式。
古典概率定义了在一个实验中,每个可能的结果都是等可能发生的情况下,事件发生的概率。
古典概率计算公式根据事件的定义,将事件发生的次数除以实验总次数,得出事件的概率。
古典概率计算公式帮助我们更好地理解和计算古典概率,从而更好地应用于实际问题中。
第1.4节 古典概率模型一、 古典概型(等可能概型)(Classical probability)1.定义:“概型”是指某种概率模型。
“古典概型”是一种最简单、最直观的概率模型。
如果做某个随机试验E 时,只有有限个事件n A A A ,,,21 可能发生,且事件n A A A ,,,21 满足下面三条:(1)n A A A ,,,21 发生的可能性相等(等可能性);(2)在任意一次试验中n A A A ,,,21 至少有一个发生(完备性);(3)在任意一次试验中n A A A ,,,21 至多有一个发生(互不相容性)。
具有上述特性的概型称为古典概型(Classical probability)或等可能概型。
n A A A ,,,21 称为基本事件(Basic events)。
2.计算公式:等可能概型中事件概率的计算:设在古典概型中,试验E 共有n 个基本事件,事件A 包含了m 个基本事件,则事件A 的概率为n m A P )(3.例题:Example 1 一袋中有8个大小形状相同的球,其中5个黑色球,三个白色球。
现从袋中随机地取出两个球,求取出的两球都是黑色球的概率。
Solution 从8个球中取出两个,不同的取法有28C 种。
若以A 表示事件{取出的两球是黑球},那么使事件A 发生的取法为25C 种,从而=)(A P 25C /28C =5/14Example 2 在箱中装有100个产品,其中有3个次品,为检查产品质量,从这箱产品中任意抽5个,求抽得5个产品中恰有一个次品的概率。
Solution 从100个产品中任意抽取5个产品,共有5100C 种抽取方法,事件A ={有1个次品,4个正品}的取法共有49713C C 种取法,故得事件A 的概率为=)(A P 138.0510049713≈C C CExample 3 将N 个球随机地放入n 个盒子中)(N n >,求:(1)每个盒子最多有一个球的概率;(2)某指定的盒子中恰有m (N m <)个球的概率。
古典概型及其概率计算公式
【考点归纳】
1.定义:如果一个试验具有下列特征:
(1)有限性:每次试验可能出现的结果(即基本事件)只有有限个;
(2)等可能性:每次试验中,各基本事件的发生都是等可能的.
则称这种随机试验的概率模型为古典概型.
*古典概型由于满足基本事件的有限性和基本事件发生的等可能性这两个重要特征,所以求事件的概率就可以不通过大量的重复试验,而只要通过对一次试验中可能出现的结果进行分析和计算即可.
2.古典概率的计算公式
如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是;
如果某个事件A包含的结果有m个,那么事件A的概率为P(A)==
.
【解题技巧】
1.注意要点:解决古典概型的问题的关键是:分清基本事件个数n与事件A中所包含的基本事件数.
因此要注意清楚以下三个方面:
(1)本试验是否具有等可能性;
(2)本试验的基本事件有多少个;
(3)事件A是什么.
2.解题实现步骤:
(1)仔细阅读题目,弄清题目的背景材料,加深理解题意;
(2)判断本试验的结果是否为等可能事件,设出所求事件A;
(3)分别求出基本事件的个数n与所求事件A中所包含的基本事件个数m;
(4)利用公式P(A)=求出事件A的概率.
3.解题方法技巧:
(1)利用对立事件、加法公式求古典概型的概率
(2)利用分析法求解古典概型.。
古典概型c公式和a公式
古典概型的概率公式:p(a)=m/n=a包含的基本事件的个数m/基本事件的总数n。
如果一次实验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1/n;如果某个事件a包含的结果有m个,那么事件a的概率为p(a)=m/n=a包含的基本事件的个数m/基本事件的总数n。
基本步骤:
(1)算是出来所有基本事件的个数n;
(2)求出事件a包含的所有基本事件数m;
(3)代入公式p(a)=m/n,算出p(a)。
资料拓展:
古典概型也叫做传统概率、其定义就是由法国数学家拉普拉斯 (laplace ) 明确提出的。
如果一个随机试验所涵盖的单位事件就是非常有限的,且每个单位事件出现的可能性均成正比,则这个随机试验叫作拉普拉斯试验,这种条件下的概率模型就叫做古典概型。
在这个模型下,随机实验所有可能的结果是有限的,并且每个基本结果发生的概率是相同的。
古典概型是概率论中最直观和最简单的模型,概率的许多运算规则,也首先是在这种模型下得到的。
古典概率模型就是在封闭系统内的模型,一旦系统内某个事件的概率在其他概率确认前被确认,其他事件概率也可以跟著出现发生改变。
概率模型可以由古典概型转型为几何概型。
古典概率一、常用概念及公式概率的定义:表示一个事件发生的可能性的大小的数。
概率依其计算方法不同,可分为古典概率、试验概率和主观概率。
人们最早研究概率是从掷硬币、掷骰子和摸球等游戏和赌博中开始的。
这类游戏有两个共同特点:一是试验的样本空间(某一试验全部可能结果的各元素组成的集合)有限,如掷硬币有正反两种结果,掷骰子有6种结果等;二是试验中每个结果出现的可能性相同,如硬币和骰子是均匀的前提下,掷硬币出现正反的可能性各为1/2,掷骰子出出各种点数的可能性各为1/6,具有这两个特点的随机试验称为古典概型或等可能概型。
计算古典概型概率的方法称为概率的古典定义或古典概率。
古典概率的定义:如果试验中可能出现的基本事件数有n个,而事件A包含的基本事件数为m个,A的概率。
古典概率通常又叫事前概率,是指当随机事件中各种可能发生的结果及其出现的次数都可以由演绎或外推法得知,而无需经过任何统计试验即可计算各种可能发生结果的概率。
关于古典概率是以这样的假设为基础的,即随机现象所能发生的事件是有限的、互不相容的,而且每个基本事件发生的可能性相等。
例如,抛掷一枚平正的硬币,正面朝上与反面朝上是唯一可能出现的两个基本事件,且互不相容。
如果我们把出现正面的事件记为E,出现事件E的概率记为p(E),则:P(E)=11+1=12一般说来,如果在全部可能出现的基本事件范围内构成事件A的基本事件有a个,不构成事件A的事件有b个,则出现事件A的概率为:P(A)= +古典概率基本特征:1、可知性,可由演绎或外推法得知随机事件所有可能发生的结果及其发生的次数。
2、无需试验,即不必做统计试验即可计算各种可能发生结果概率。
3、准确性,即按古典概率方法计算的概率是没有误差的。
4,有限性:所有基本事件是有限个5,等可能性:各基本事件发生的可能性是相等的。
注意事项:对毫无秩序的经营管理工作做出决策时,应用这种方法就会发生各种各样的问题。
这主要表现在:1、古典概率的假想世界是不存在的。
12.2.2 概率的古典定义及其计算
定义 如果随机试验具有如下特征:
(1)事件的全集是由有限个基本事件组成的;
(2)每一个基本事件在一次试验中发生的可能性是相同的;
则这类随机试验称为古典概型.
定义 在古典概型中,如果试验的基本事件总数为n ,事件A 包含的基本事件个数为m ,那么事件A 发生的概率为P (A )=n
m 。
这个定义叫做概率的古典定义。
它同样具备概率统计定义的三个性质。
例1 从1,2,3,4,5,6,7,8,9九个数字中,随机地取出一个数字,求这个数字是奇数的概率。
解 设A={取出的是一个奇数},则基本事件总数为n=9,事件A 包含了5个基本事件(抽到1,3,5,7,9),即m=5,所以,P (A )=9
5=n m 。
例2 在10个同样型号的晶体管中,有一等品7个,二等品2个,三等品1个,从这10个晶体管中任取2个,计算:
(1)2个都是一等品的概率;
(2)1个是一等品,1个是二等品的概率。
解 基本事件总数为从10个晶体管中任取2个的组合数,故n=210C =45。
(1)设A={取出2个都是一等品},它的种数m=27C =21,其概率为P (A )=15
74521==n m ; (2)设B={取出2个,1个是一等品,1个是二等品},它的种数m=1217C C =14,所以
P (B )=45
14=n m 。
例3 储蓄卡上的密码是一组四位数号码,每位上的数字可以在0到9这10个数字中选取,问:
(1)使用储蓄卡时如果随意按下一组四位数字号码,正好按对这张储蓄卡的密码的概率是多少?
(2)某人没记准储蓄卡的密码的最后一位数字,他在使用这张储蓄卡时如果随意按下密码的最后一位数字,正好按对密码的概率是多少?
解 (1)由于储蓄卡的密码是一组四位数字号码,且每位上的数字有从0到9这10中取法,这种号码共有410组。
又由于是随意按下一组四位数字号码,按下其中哪一组号码的可能性都相等,可得正好按对这张储蓄卡的密码的概率1P =4
101。
(2)按四位数字号码的最后一位数字,有10中按法,由于最后一位数字是随意按的,按下其中各个数字的可能性相等,可得按下的正好是密码的最后一位数字的概率10
12=P 。
课堂练习:习题12.2 1—4 订正讲解
12.3.1 概率的加法公式
1.互斥事件概率的加法公式
设事件A 、B 互斥,则P (A ∪B )=P (A )+P (B ) (12-1) 一般地,如果事件,,21A A …,n A 两两互斥,那么
P (⋃⋃21A A …n A ⋃)=++)()(21A P A P …+)(n A P (12-2) 这个公式叫做概率的有限可加性。
根据互逆事件的定义可知,A A ⋃是一个必然事件,A 与A 互斥,于是,我们有 P (A )+1)()(=⋃=A A P A P ,从而得到 =)(A P 1-P (A ) (12-3) 例1 从一批含有一等品、二等品和废品的产品中任取一件,取得一等品、二等品的概率分别是0.73和0.21,求产品的合格率及废品率。
解 分别用21,A A 及A 表示取出1件是一等品、二等品及合格品的事件,则A 表示取出1件是废品的事件,按题意有 Φ=⋃=2121,A A A A A 且,所以,由公式12-1得
P (A )=)()()(2121A P A P A A P +=⋃=0.73+0.21=0.94 P )(A =1-P(A)=1-0.94=0.06
小结:
1、 随机试验的古典概型
2、概率的古典定义
3、用古典定义求概率的方法
4、在用定义进行计算时要注意其分子与分母的求法。