SPC统计过程控制与正态分布
- 格式:ppt
- 大小:1006.50 KB
- 文档页数:2
理解SPC统计图表的解读SPC(统计过程控制)是一种质量管理方法,旨在监控和控制过程中的变异性。
在SPC中,统计图表被广泛使用来帮助我们理解和解读过程中发生的变化。
本文将介绍几种常见的SPC统计图表,并解读它们的意义和应用。
1. 控制图控制图是SPC统计图表中最常见的一种。
它用来监控过程中的变异性,并判断过程是否处于控制状态。
常用的控制图包括X-bar图、R图和S图。
X-bar图X-bar图是用来监控过程平均值变化的控制图。
在图表上,我们可以看到一条中心线,代表过程的平均值,以及上下两条控制限,用于判断过程平均值是否处于控制状态。
解读X-bar图时,我们需要注意以下几点:•若数据点在控制限内波动,表示过程的平均值保持稳定;•若数据点在控制限之外,可能表示过程平均值发生了变化,需要进一步分析原因。
R图R图用来监控过程的变异性,即数据点之间的离散程度。
R图展示了一条上控制限、下控制限和一条平均线,用于判断过程的变异性是否在可接受的范围内。
解读R图时,我们需要注意以下几点:•若数据点在控制限内波动,表示过程的变异性保持稳定;•若数据点在控制限之外,可能表示过程的变异性超出了可接受的范围,需要进一步分析原因。
S图S图也是用来监控过程的变异性,与R图类似,但S图使用样本标准差来度量数据点之间的离散程度。
解读S图时,我们需要注意以下几点:•若数据点在控制限内波动,表示过程的变异性保持稳定;•若数据点在控制限之外,可能表示过程的变异性超出了可接受的范围,需要进一步分析原因。
2. 度量图度量图是SPC统计图表中用于度量过程能力的工具。
它帮助我们评估过程在规定限制范围内的表现,并判断过程能否满足要求。
常见的度量图包括直方图和正态概率图。
直方图直方图是一种以柱状表示数据分布情况的图表。
它可以帮助我们了解数据的分布形态和集中程度。
解读直方图时,我们需要注意以下几点:•若数据呈现类似正态分布的形态,表示过程的性能较好;•若数据呈现偏态或多峰分布的形态,可能需要进一步分析导致该现象的原因。
SPC质量控制之正态分布摘要:在用SPC进行质量控制的过程中, 其核心是对产品进行合理分组抽样后, 再进行的质量特性数据的分析.正态分布已经贯穿整个质量特性数据分析的过程, 是进行质量控制的最重要的工具.正态分布正态分布是指变量的频数或频率呈中间最多,两端逐渐对称地减少,表现为钟形的一种概率分布。
从理论上说,若随机变量x的概率密度函数为:则称x服从均数为μ,标准差为σ2的正态分布。
正态分布的特点●正态分布有两个参数(parameter),即位置参数(均数)和变异度参数(标准差)。
●高峰在均数处;●均数两侧完全对称。
●正态曲线下的面积分布有一定的规律。
●X轴与正态曲线所夹面积恒等于1 。
●对称区域面积相等。
正态曲线下面积的分布规律●正态曲线下面积的意义:正态曲线下一定区间内的面积代表变量值落在该区间的概率。
整个曲线下的面积为1,代表总概率为1。
●曲线下面积的求法:定积分法和标准正态分布法正态分布曲线下的面积●μ±σ范围内的面积为68.27%●μ±1.96σ范围内的面积为95%●μ±2.58σ范围内的面积占99%正态分布在质量控制中的意义当我们运用正态分布曲线、直方图、控制图等工具对质量特性数据进行分析和控制时,正态分布是其中最为关键的工具,因为在正常情况下产品质量特性值的分布,一般都服从正态分布或近似正态分布;并且在控制图的使用上,也要求抽样数据符合正态分布作为前提;在最后进行的过程能力分析时也必须符合先要达到正态分布这个条件.所以正态分布已经贯穿整个质量特性数据分析的过程.符合正态分布的事物在日常生活中是普遍存在的,它具有一定的广泛性.正态分布在对产品的质量特性数据的分析过程中占有重要的地位.在运用正态分布检验质量特性时,可以以它为基础,并在此基础上构筑出高效实用的检验方法和检验步骤,这为SPC的发展和应用打下了坚实的基础.。
SPC简介统计过程控制(简称SPC)是一种借助数理统计方法的过程控制工具。
它对生产过程进行分析评价,根据反馈信息及时发现系统性因素出现的征兆,并采取措施消除其影响,使过程维持在仅受随机性因素影响的受控状态,以达到控制质量的目的。
它认为,当过程仅受随机因素影响时,过程处于统计控制状态(简称受控状态);当过程中存在系统因素的影响时,过程处于统计失控状态(简称失控状态)。
由于过程波动具有统计规律性,当过程受控时,过程特性一般服从稳定的随机分布;而失控时,过程分布将发生改变。
SPC正是利用过程波动的统计规律性对过程进行分析控制。
因而,它强调过程在受控和有能力的状态下运行,从而使产品和服务稳定地满足顾客的要求。
实施SPC的过程一般分为两大步骤:首先用SPC工具对过程进行分析,如绘制分析用控制图等;根据分析结果采取必要措施:可能需要消除过程中的系统性因素,也可能需要管理层的介入来减小过程的随机波动以满足过程能力的需求。
第二步则是用控制图对过程进行监控。
控制图是SPC中最重要的工具。
目前在实际中大量运用的是基于Shewhart原理的传统控制图,但控制图不仅限于此。
近年来又逐步发展了一些先进的控制工具,如对小波动进行监控的EWMA和CUSUM控制图,对小批量多品种生产过程进行控制的比例控制图和目标控制图;对多重质量特性进行控制的控制图。
SPC源于上世纪二十年代,以美国Shewhart博士发明控制图为标志。
自创立以来,即在工业和服务等行业得到推广应用,自上世纪五十年代以来SPC在日本工业界的大量推广应用对日本产品质量的崛起起到了至关重要的作用;上世纪八十年代以后,世界许多大公司纷纷在自己内部积极推广应用SPC,而且对供应商也提出了相应要求。
在ISO9000及QS9000中也提出了在生产控制中应用SPC方法的要求。
SPC生产统计过程控制一、spc的基础知识1.关于控制、过程、统计2.特性及其分类3.统计学基础二、spc的基本原理4.过程的理解与过程控制5.波动及波动的原因6.局部措施和系统措施三、统计过程的控制思想1.正态分布简介2.统计控制状态及两种错误3.过程控制和过程能力4.过程改进循环四、控制图类型1.控制图应用说明2.控制图的定义和目的3.控制图解决问题思路4.控制图益处5.控制图分类6.控制图的选择五、建立计算型控制图的步骤和计算方法1.均值和极差图2.均值和标准差图3.中位数和极差图4.单值和移动极差图六、计数型控制图与过程能力指数1.过程能力解释前提2.过程能力的计算3.过程能力指数4.过程绩效指数七、过程判异准则以下是常用的八项判异准则:1、一点落在A区以外;2、连续9点落在中心线同一侧;3、连续6点递增或递减;4、连续14点相邻点上下交替;5、连续3点有2点落在中心线同一侧的B区以外;6、连续5点中有4点落在中心线同一侧的C区以外;7、连续15点在C区中心线上下;8、连续8点在中心线同侧。
质量控制中的统计过程控制技术与应用质量控制是现代工业生产不可或缺的一部分,合理的质量控制可以有效的提高产品质量、降低生产成本、增强竞争力。
而统计过程控制技术(SPC)作为质量控制中的一种重要方法,可以通过对生产过程中某一特定指标进行实时监控和控制,实现对质量过程的持续监控和改善。
一、SPC的基本概念和原理统计过程控制是一种基于统计学方法的质量控制方法。
SPC的理论基础在于统计方法中的正态分布和中心极限定理。
通过对生产过程中某一特定指标的实时监控,SPC可以帮助企业实现对质量过程的监控和控制,从而帮助企业提高产品质量,降低生产成本。
SPC的基本原理是以控制图为基础,通过收集过程数据,建立有效的控制上限和下限线,对过程进行实时监控和控制,当过程落在控制上限和下限线之间时,认为过程处于可控状态,否则认为过程处于不可控状态,需要进行进一步研究和控制。
二、SPC的应用场景SPC在生产过程中的应用非常广泛,可以适用于各种不同的生产场景。
下面列举几个典型的应用场景。
1.瓶颈工序控制在制造工艺过程中,通常存在一些关键生产环节,这些环节通常被称为瓶颈工序。
在这些瓶颈工序中,质量控制尤为重要,因为这些环节的效率和产品的质量直接影响到整个生产过程的效率和质量。
SPC 可以帮助企业实时监控这些瓶颈工序,并对其进行控制,从而提高过程效率和产品质量。
2.常规过程控制在任何生产环节中,都存在着一些常规的生产过程,这些常规过程通常采用流水线生产方式,相对于瓶颈工序而言,这些生产环节的控制相对简单。
SPC可以帮助企业实现对这些常规的生产过程的监控和控制,从而降低生产成本,提高生产效率。
3.新产品开发和试制阶段在新产品的开发和试制阶段,需要对生产过程进行有效的控制和监控,以确保产品的质量和效率。
SPC可以帮助企业在新产品开发和试制阶段进行实时监控和控制,从而提高产品的质量和效率。
三、SPC的应用效果SPC的应用可以帮助企业实现以下目标:1.提高产品质量SPC可以帮助企业进行实时的质量监控和控制,对产品质量进行持续改善,提高产品的合格率和稳定性。
统计过程控制(SPC)案例分析一.用途1. 分析判断生产过程的稳定性,生产过程处于统计控制状态。
2.及时发现生产过程中的异常现象和缓慢变异,预防不合格品产生。
3.查明生产设备和工艺装备的实际精度,以便作出正确的技术决定。
4.为评定产品质量提供依据。
二.控制图的基本格式1.标题部分X-R控制图数据表2 质量 特 性在方格纸上作出控制图:样本横坐标为样本序号,纵坐标为产品质量特性。
图上有三条平行线:实线CL :中心线 虚线UCL :上控制界限线 LCL :下控制界限线。
三. 控制图的设计原理1. 正态性假设:绝大多数质量特性值服从或近似服从正态分布。
2. 3σ准则:99。
73%。
3. 小概率事件原理:小概率事件一般是不会发生的。
4. 反证法思想。
四. 控制图的种类1. 按产品质量的特性分(1)计量值(S X R X R X R X S ----,,~,)(2)计数值(p,pn,u,c图)。
2.按控制图的用途分:(1)分析用控制图;(2)控制用控制图。
五.控制图的判断规则1.分析用控制图:规则1 判稳准则-----绝大多数点子在控制界限线内(3种情况);规则2 判异准则-----排列无下述现象(8种情况)。
2.控制用控制图:规则1 每一个点子均落在控制界限内。
规则2 控制界限内点子的排列无异常现象。
[案例1] p控制图某半导体器件厂2月份某种产品的数据如下表(2)(3)栏所表示,根据以往记录知,稳态下的平均不合格品率0389p,作控制.0图对其进行控制.数据与p图计算表[解]步骤一 :预备数据的取得,如上边表所示.步骤二: 计算样本不合格品率024.085/2/,/111====n D p n D p i i i 步骤三: 计算p 图的控制线ii i i n n p p p LCL CL n n p p p UCL n D p /)0389.01(0389.030389.0/)1(30389.0/)0389.01(0389.030389.0/)1(30389.02315/90/--=--==-+=-+=====∑∑由于本例中各个样本大小i n 不相等,所以必须对各个样本分别求出其控制界线.例如对第一个样本n1=85,有UCL=0.102 CL=0.0389 LCL=-0.024此处LCL 为负值,取为零.作出它的SPC 图形.CLLCL[案例2]为控制某无线电元件的不合格率而设计p图,生产过程质量要求为平均不合格率≤2%。